Gluon determination from F₂ and F₂^c

H. Jung (DESY)

- Towards precision determiantion of uPDFs
 - why unintegrated parton density functions (uPDFs) ?
- Determination of uPDFs using $F_{2'}$, F_{2}^{c}
- Is it all consistent ?
- What tells collinear approach ?

Need for uPDFs: transverse momenta

Need for uPDFs: transverse momenta

Hannes Jung, GGI - high density wrokshop, Firenze 2007

Applications: beauty at HERA and LHC

from Proceedings of the HERA-LHC workshop hep-ph/0601013

Cross sections at parton level in central region

MNR (massive NLO) – FONLL (matched NLL) – CASCADE (uPDF)

Evolution of uPDFs and x-section

- unintegrated PDFs (uPDFs): keep full k, dependence during perturbative evolution
 - → using D_{okshitzer}G_{ribov}L_{ipatov}A_{ltarelli}P_{arisi}, B_{alitski}F_{adin}K_{uraev}L_{ipatov}

Ciafaloni Catani Fiorani Marchesini evolution equations

- → CCFM treats explicitly real gluon emissions
 - ➔ according to color coherence ... angular ordering
 - ➔ angular ordering includes DGLAP and BFKL as limits...
- k_t dependence in PDFs: from collinear to k_t factorization
- cross section (in k_t factorization) : $\frac{d\sigma^{jets}}{dE_T d\eta} = \sum \int \int \int \int dx_g \ dQ^2 d \dots \left[dk_{\perp}^2 x_g \mathcal{A}_i(x_g, k_{\perp}^2, \bar{q}) \right] \hat{\sigma}_i(x_g, k_{\perp}^2)$
 - → can be reduced to the collinear limit:

$$\frac{d\sigma^{jets}}{dE_T d\eta} = \sum \int \int \int dx \, dQ^2 d \dots x f_i(x, Q^2) \hat{\sigma}_i(x, Q^2, \dots)$$

or

Evolution of uPDFs and x-section II

- only gluons densities are considered here !!!
- evolve with **CCFM** using
 - \star full gluon splitting function and $\alpha_{
 m s}(M_Z)=0.118$
 - \star starting scale for evolution $Q_0 = 1.2 \text{ GeV}$

Fitting **uPDFs**:

- using **FitPDF** (E. Perez [Saclay])
 - → applicable also for collinear DGLAP evolution
 - ➔ allowing different treatment of correlated systematic uncertainties
- **uPDF** is a convolution of starting distribution $\mathcal{A}_0(x_0)$ with perturbative evolution: $x\mathcal{A}(x,k_{\perp},\bar{q}) = \int dx_0 \mathcal{A}_0(x_0) \cdot \frac{x}{x_0} \tilde{\mathcal{A}}\left(\frac{x}{x_0},k_{\perp},\bar{q}\right)$
- Calculate x-section for x, Q^2 for inclusive quantities
 - Optionally use full event simulation including parton showering and hadronization of CASCADE MC generator for final state predictions
 - optimize parameters in starting distribution $\mathcal{A}_0(x_0)$ with χ^2
- General procedure, applicable also for DGLAP fits

Fit to F₂ data

•
$$\chi^2 = \sum_i \left(\frac{(T-D)^2}{\sigma_i^{2 \ stat} + \sigma_i^{2 \ uncor}} \right)$$

- fit parameters of starting distribution $xg(x,\mu_0^2) = Nx^{-B_g} \cdot (1-x)^4$
- using F₂ data H1 (H1 Eur. Phys. J. C21 (2001) 33-61, DESY 00-181) $x < 0.05 \ Q^2 > 5 \ {
 m GeV}^2$
- parameters: $\mu_r^2 = p_t^2 + m_{q,Q}^2$ $m_q = 250 \, {
 m MeV}, m_c = 1.5 \, {
 m GeV}$
- Fit (only stat+uncorr):
 - $\frac{\chi^2}{\text{ndf}} = \frac{111.8}{61} = 1.83$ $B_g = 0.018 \pm 0.003$ → similar to DGLAP fits (~1.5)

Fit to F₂ data: checking results

- Strong sensitivity to small x part B_q
- Clear preference for large x parameters.
 → keep C_a and D_a fixed in fit....

Fit to F_{g} data: α_{g}

- Check sensitivity to alphas
- sensitive to:
 - $\alpha_{\rm s}(\mu) \cdot x \mathcal{A}(x, k_\perp, \bar{q})$
- here use (1-loop):

$$\alpha_{\rm s}(\mu) \sim rac{1}{\log rac{\mu}{\Lambda_{qcd}}}$$

• $\Lambda_{qcd} \sim 0.13$ gives:

 $\alpha_{\rm s}(M_Z)=0.118$

Fit to F^c data

g

•
$$\chi^2 = \sum_i \left(\frac{\left(T - D\right)^2}{\sigma_i^{2 \ stat} + \sigma_i^{2 \ syst}} \right)$$

fit parameters of starting distribution

$$xg(x,\mu_0^2) = Nx^{-B_g} \cdot (1-x)^4$$

using F[°] data H1 (H1 PLB528 (2002) 199, EPJC 40 (2005) 349 ,EPJC45 (2006) 23)

 $Q^2 > 1 \text{ GeV}^2$ fit result: $\frac{\chi^2}{\text{ndf}} = \frac{18.8}{20} = 0.94$ ۲

 $B_g = 0.286 \pm 0.002$ with higher than for F_2 !?!?!?! → compare to $\frac{\chi^2}{ndf} = \frac{190.4}{50} = 3.81$ → for gluon from F_{2} fit

Fit to F_2^c data

•
$$\chi^2 = \sum_i \left(\frac{\left(T - D\right)^2}{\sigma_i^{2 \ stat} + \sigma_i^{2 \ syst}} \right)$$

 fit parameters of starting distribution

$$xg(x,\mu_0^2) = Nx^{-B_g} \cdot (1-x)^4$$

• using F₂^c data H1 (H1 PLB528 (2002) 199, EPJC 40 (2005) 349 ,EPJC45 (2006) 23)

 $Q^2 > 1 \text{ GeV}^2$ fit result: $\chi^2 = 18.8$

fit result: $\frac{\chi^2}{\text{ndf}} = \frac{18.8}{20} = 0.94$

with $B_g = 0.286 \pm 0.002$ • uncertainty obtained with CTEQ (eigenvector) method, using

> $\Delta \chi^2 = 1$ but, CTEQ uses tolerance T² =100 for global fits....

0

Fit to F_2^{c} data

•
$$\chi^2 = \sum_{i} \left(\frac{\left(T - D\right)^2}{\sigma_i^{2 \ stat} + \sigma_i^{2 \ syst}} \right)$$

- fit parameters of starting distribution $xg(x,\mu_0^2) = Nx^{-B_g}\cdot(1-x)^4$
- using F₂^c data H1
 (H1 PLB528 (2002) 199, EPJC 40 (2005) 349 ,EPJC45 (2006) 23)

 $Q^2 > 1 \text{ GeV}^2$

• fit result: $\frac{\chi^2}{\text{ndf}} = \frac{18.8}{20} = 0.94$

with $B_g = 0.286 \pm 0.002$

- \rightarrow higher than for F_2 !?!?!?!
- ➔ significant change of uPDF

Fit to F_2^c data: uPDF

Calculating F_L: sensitive to gluon

$$\sigma_{L}(\gamma g \rightarrow q \overline{q}) \rightarrow F_{L}$$

$$\gamma_{T/L}$$

$$g$$

- calculate contribution to F_{L} in k_{t} -factorization
- similar level of agreement for CCFM uPDF as obtained in collinear factorization with best parametrization

A. Kotikov, A. Lipatov, N. Zotov

Geometric scaling: F₂ and F₂^c

• do we expect geometric scaling also for F_2^{c} ?

Geometric scaling: F₂ and F₂^c

- do we expect geometric scaling also for F_2^{c} ?
 - → even not when changing scale to $Q^2 + m_c^2$?

Fit of intrinsic k, distribution

 $xA(x,k_{t^{2},\mu}^{2})$ 01 set qg=1.2 fit set gauss-fit 10 k_t²=1 GeV² k_t²=10 GeV² 10 -3 -2 -1 -4 -3 -2 -1 -4 10 10 10 10 10 10 10 10 X Х xA(x,k², µ²) 01 set qq=1.2 fit set gauss-fit 10 x=0.0001 x=0.001 10 10 -1 10 _{k² (GeV²)} 10 10 10 10 10 10 10 1

 $\mu = 4 \text{ GeV}$

 Fit parameters of intrinsic k_t distribution

$$\sim \exp\left(-rac{(k_{\perp}-\bar{k_{\perp}})^2}{\sigma^2}
ight)$$

- fit results from F_2 fit $\bar{k_\perp} \sim 0.8$ $\sigma \sim 0.5$
- small change in χ^2
- essentially no sensitivity from F^c₂

$\boldsymbol{k}_t \ \boldsymbol{in} \ \boldsymbol{F}_2$

investigate k, from Monte Carlo using uPDF

k, in F, and F,°

investigate k, from Monte Carlo using uPDF

Hannes Jung, GGI - high density wrokshop, Firenze 2007

Gluon from F_2 and F_2^c

- investigations:
 - **x** suppress small k_t region for F_2 with different ansaetze:
 - x linear suppression
 - **x** GBW k_t distribution
 - no significant change in steepness of gluon
- fit parameters for GBW agree with original formulation
- fit parameters for gaussian kt are reasonable
- → what makes F^c₂ so different from F²₂?

What tells collinear factorization ?

- Are similar effects seen in collinear factorization using DGLAP ?
- Howto constrain parton densities:
 - → in collinear factorization is much more tricky ...
 - ➔ Howto tell the difference of gluon and sea ?
 - ➔ howto find appropriate parameterization ?

Fit to F₂^c in collinear approach

• F_2^c from F_2 fit

• F_2° from F_2° fit

Fit to F₂^c in collinear approach

- Significantly steeper gluon required from F₂^c
- using FitPDF from E. Perez
- compare gluon from F_2 (H1 published) and F_2^{c} fits
- gluon comes out very different... consistent picture ?
 - \rightarrow fix gluon with F_2^{c}
 - \rightarrow fit quarks with F_2
 - → consistent fit ?

$F_2^{\ c}$ in NLO,NNLO

Hannes Jung, GGI - high density wrokshop, Firenze 2007

Page 24

Conclusion

- Full treatment of kinematics in calculations is necessary NEED **uPDFs**
 - NLO corrections are MUCH smaller then
 - → uPDFs are needed for precision calculations at LHC: see heavy quarks, Higgs etc ...
 - first real uPDF fits to data from HERA presented !!!!
- F_2 data suggest flat gluon distribution
- F_2^{c} data suggest steeply rising gluon distribution
 - very different from F₂ gluon !!!!
 - even for collinear case !!!
 - ➔ do we see new effects, saturation etc ?

Heavy quark measurements could be the tool for saturation ... !!!!!!! ????????????

Backup slides

Fit to F^c data: checking results

Fit to F₂ data

•
$$\chi^2 = \sum_i \left(\frac{\left(T - D\right)^2}{\sigma_i^{2 \ stat} + \sigma_i^{2 \ uncor}} \right)$$

- fit parameters of starting distribution $xg(x, \mu_0^2) = Nx^{-B_g} \cdot (1-x)^4$
- using F₂ data H1 (H1 Eur. Phys. J. C21 (2001) 33-61, DESY 00-181) $x < 0.01 \ Q^2 > 5 \ {
 m GeV}^2$
- Fit (only stat+uncorr):

 $B_g = 0.018 \pm 0.003 \, {\rm from} \, F_2$

 $B_g = 0.286 \pm 0.002 \,\mathrm{from} \, F_2^c$

F₂ with GLR effects (EHKQS)

- use F2 HERA data
- fit with DGLAP+GLRMQ

K. Eskola, H. Honkanen, V. Kolhinen, L. Qiu, C.Salgado EHKQS (Nucl.Phys.B660:211-224,2003)

$$\frac{dxg}{d\log Q^2} \sim \left. \frac{dxg}{d\log Q^2} \right|_{DGLAP} - \frac{1}{R^2} K \otimes \left[xg \right]^2$$

Advantage of uPDFs

Х

Application to D* + jets in γp

Geros analysis

D^* + jets in γp

 $\textbf{xA}(\textbf{x},\textbf{k}_{t}^{2},\!\boldsymbol{\mu}^{2})$ chi**2 for inclusive D* (*pt* and *eta*) 10 F_{2} gluon : new fit f2 A0 $\chi^2 = 22.32/13 = 1.72$ new f2c fit 10 10 new *F*^c gluon: k_t²=0.5 GeV² $k_{1}^{2}=10 \text{ GeV}^{2}$ $k_{t}^{2}=1$ G 10 $\chi^2 = 24.33/13 = 1.87$ 10 10 10⁻² 10⁻¹ 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10 → no big effect from new fit Х Х Х → although gluon is very different $xA(x,k_{1}^{2}\mu^{2})$ 1 01 → $\gamma p \rightarrow D^* + X$ probes different xg range: $\langle x_q \rangle = -2.5$ and new fit it new f2c A0 10 $< k_{\perp} >= 3.7$ compared to F2c 10 → is still consistent 10 x=0.0001 x=0.001 x=0.01 10 **→** use sensitivity to kt from jets 10 10 10 10² 10⁻¹ 10² 10⁻¹ 1 10 10² 10 10 10 1 1 k_{t}^{2} (GeV²) k_{+}^{2} (GeV²) k_{+}^{2} (GeV²)

F2c in dipole model:

 K.Golec-Biernat and S.Sapeta hep-ph/0607276

Figure 4: Predictions for the charm structure function $F_2^{c\bar{c}}$ in the BGK model with heavy quarks (solid lines). The predictions in the GBW model [1] are shown for reference (dashed lines).

F2c in dipole model:

H.Kowalski and D.Teaney hep-ph/0304189

FIG. 11: A comparison of the measured F_2^c [32] to the results of the model.

The dipole model makes a direct prediction for the inclusive charm contribution to F_2 . In the dipole approach the charm quark distribution is calculated from the gluon distribution. Figure 11 shows a comparison between the measured and predicted values of the charm structure function F_2^c . The results depend weakly on the charm mass. The good agreement with data for both ZEUS and H1 experiments [32, 33] confirms the consistency of the model and supports the dipole picture.