Lattice QCD and flavour physics

Vittorio Lubicz

Workshop on "Indirect Searches for New Physics at the time of LHC"

15/02/2010 - 26/03/2010

OUTLINE:

The accuracy of LQCD in the flavour sector

- the past (the quenched era)
- the present
- the future (LHCb, superB)

The Galileo Galilei Institute for Theoretical Physics Arcetri, Florence

Lattice QCD and flavour physics

Accuracy of Lattice QCD

For many years, uncertainties in lattice calculations have been dominated by the quenched approximation

History of lattice errors (before 2006)

	f _B [MeV]	$f_{Bs}\sqrt{B_s}$	ξ	
J.Flynn	175(25)			
Latt'96	14%			
C.Bernard	200(30)	267(46)	1.16(5)	
Latt'00	15%	17%	4%	QUENCHED
L.Lellouch	193(27)(10)	276(38)	1.24(4)(6)	
Ichep'02	15%	14%	6%	
Hashimoto	189(27)	262(35)	1.23(6)	$\left(\begin{array}{c} 6 \\ 9 \\ \end{array} \right)$
Ichep'04	14%	13%	5%	
N.Tantalo	223(15)(19)	246(16)(20)	1.21(2)(5)	UNQUENCHED
CKM106	11%	10%	4%	

In spite of the relatively large lattice uncertainties, important results for flavour physics have been achieved

Ciuchini et al., 1995: Sin $2\beta_{\text{UTA}} = 0.65 \pm 0.12$

PREDICTION OF Sin2ß

Ciuchini et al.,2000: Sin2 β_{UTA} = 0.698 ± 0.066

UTfit today: Sin2 $\beta_{\text{UTA}} = 0.751 \pm 0.035$

Direct measurement today: Sin2 $\beta_{J/\psi \kappa 0}$ = 0.655 ± 0.027

SM PREDICTION OF Δm_s LOOKING FOR NEW PHYSICS EFFECTS

The present

PRECISION FLAVOUR PHYSICS

Experiments 2010				Lattice	2006	
V _{us} f ₊ (0)	0.21661 ± 0.00047	0.2%	ſ	f ₊ (0)	0.5%	0.9%
$\frac{ \mathbf{V}_{us} \mathbf{F}_{K}}{ \mathbf{V}_{ud} \mathbf{F}_{\pi}}$	0.27599 ± 0.00059	0.2%		F_K/ F _π	0.9%	1.1%
٤ _K	(2.228 ± 0.011) × 10 ⁻³	0.5%		Β _κ	5%	11%
Δm _d	(0.507 ± 0.005) ps ⁻¹	1%		$f_B \sqrt{B_B}$	5%	13%
Δm _s	(17.77 ± 0.12) ps ⁻¹	0.7%		f _{Bs} √B _{Bs}	5%	13%
Sin2β	0.655 ± 0.027	4%				

KAON AND B PHYSICS ON THE LATTICE

Collaboration	Quark action	Nf	a [fm]	(M _π) ^{min} [MeV]	Observables
MILC + FNAL, HPQCD,	Improved staggered	2+1	≥ 0.045	230	$f_{K}, B_{K}, f_{B}, B_{B}, B \rightarrow D/\pi Iv$
PACS-CS	Clover (NP)	2+1	0.09	156	f _K
RBC/UKQCD	DWF	2+1	≥ 0.08	290	f ₊ (0), f _K , B _K , K→ππ
BMW	Clover smeared	2+1	≥ 0.07	190	f _K
JLQCD	Overlap	2 [2+1]	0.12	290	B _K
ETMC	Twisted mass	2 [2+1+1]	≥ 0.07	260	f ₊ (0), f _K , B _K , f _B
QCDSF	Clover (NP)	2	≥ 0.06	300	f ₊ (0), f _K

THE "PRECISION ERA" OF LATTICE QCD: WHY NOW

1) Increasing of computational power Unquenched simulations

For Lattice QCD today: ~ 5-30TFlops (like the # 500 in the TOP500 list)

TeraFlops machines are required to perform unquenched simulations. Available only since few years.

CPU cost for Nf=2 Wilson fermions: [Del Debbio et al. 2006] TFlops-years $\approx 0.15 \left(\frac{N_{conf}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.15}{\hat{m}/m_s}\right) \left(\frac{0.08 \text{ fm}}{a}\right)^6$ Algorithmic improvements:
 Light quark masses in the ChPT regime

CPU cost (for Nf=2 Wilson fermions):

Ukawa 2001 (The Berlin wall):

$$\Gamma \text{Flops-years} \simeq (3.1) \left(\frac{N_{\text{conf}}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m} / m_s}\right)^5 \left(\frac{0.1 \text{ fm}}{a}\right)^7$$

Del Debbio et al. 2006: TFlops-years $\simeq 0.03 \left(\frac{N_{conf}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m}/m_s}\right) \left(\frac{0.1 \text{ fm}}{a}\right)^6$

Today: $M_{\pi}^{latt} \approx 200 - 300 \text{ MeV} \left(\hat{m}_{ud}^{latt} / m_s \approx 1 / 6 - 1 / 12 \right)$ (ChPT) Few years ago: $M_{\pi}^{latt} \approx 500 \text{ MeV} \left(\hat{m}_{ud}^{latt} / m_s \approx 1 / 2 \right)$

The FLAG working group

Aims: for each quantity, provide to the network's working groups and to the wider community

- a collection of current lattice results and references
- a summary of the essential aspects of each calculation, using an easy-to-read "color code" classification (\star \blacksquare)
- averages of lattice results (when it makes sense)

The FLAG colour coding

A number of sources of systematic errors are identified and to each calculation a colour with respect to each of these is assigned:

when the systematic error has been estimated in a satisfactory manner and convincingly shown to be under control

when a reasonable attempt at estimating the systematic error has been made, although this could be improved

when no or a clearly unsatisfactory attempt at estimating the systematic error has been made

- <u>Chiral extrapolation</u>:
 - ★ $M_{\pi,\min} < 250 \text{ MeV}$
 - 250 MeV $\leq M_{\pi,\min} \leq 400$ MeV
 - $M_{\pi,\min} > 400 \text{ MeV}$

It is assumed that the chiral extrapolation is done with at least a three-point analysis. In case of nondegeneracies among the different pion states M_{π} stands for an average pion mass.

The FLAG colour coding

- Continuum extrapolation:
 - \star 3 or more lattice spacings, at least 2 points below 0.1 fm
 - 2 or more lattice spacings, at least 1 point below 0.1 fm
 - otherwise

It is assumed that the action is O(a)-improved. The colour coding criteria for non-improved actions change as follows: one lattice spacing more needed.

- Finite-volume effects:
 - ★ $(M_{\pi}L)_{\min} > 4$ or at least 3 volumes
 - $(M_{\pi}L)_{\min} > 3$ and at least 2 volumes
 - otherwise

It is assumed that $L_{\min} \geq 2$ fm, otherwise a red dot will be assigned. In case of nondegeneracies among the different pion states M_{π} stands for an average pion mass.

- <u>Renormalization</u> (where applicable):
 - \star non-perturbative
 - 2-loop perturbation theory (with a converging series)
 otherwise

- <u>Running</u> (where applicable):
 - \star non-perturbative
 - otherwise

V_{us} from kaon decays: $f_{+}^{K\pi}(0)$ and f_{K}/f_{π}

 V_{us} from kaon decays: $f_{+}^{K\pi}(0)$ and f_{K}/f_{π}

3
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
 $|V_{ud}| = 0.97425(22)$
one obtains: [FLAG]
 $f_+(0) = 0.9608(46)$ $F_K/F_{\pi} = 1.1927(59)$
and $|V_{us}| = 0.22544(95)$ Lattice independent estimates of the hadronic parameters

V_{us} from kaon decays: $f_{+}^{K\pi}(0)$ and f_{K}/f_{π}

 $f_{+}(0) = 0.962(3)(4)$ 0.5%

Analytical model calculations tends to give larger predictions than lattice results

V_{us} from kaon decays: $f_{+}^{K\pi}(0)$ and f_{K}/f_{π}

$$f_{\rm K}/f_{\pi} = 1.196(1)(10)$$
 0.8%

The accuracy is comparable to the one reached on $f_{+}(0)$ [0.5%]

•
$$|V_{us}|_{Kl2} = 0.2248(19)$$

• $|V_{us}|_{KI3} = 0.2252(13)$

•
$$|V_{us}| = 0.2255(10)$$

Using unitarity and $|V_{ud}|$ from nuclear β decays

K ⁰ -K ⁰	mixing:	B _K
--------------------------------	---------	----------------

K⁰-K⁰ mixing: B_K

From the UT fit, assuming the Standard Model

$$\hat{B}_{K} = 0.87 (8)$$

with Kɛ = 0.94(2), A.Buras, D.Guadagnoli, G.Isidori, arXiv:1002.3612

B-mesons decay constants: f_B,f_{Bs}

Averages from J.Laiho, E.Lunghi, R.Van de Water, 0910.2928

$$f_{Bs}\sqrt{B}_{Bs} = 275 \pm 13 \text{ MeV}$$
 5% $\xi = 1.243 \pm 0.028$ 2%
Error in 2006: 13% Error in 2006: 5%

Exclusive Vcb

TWO DIFFERENT APPROACHES:

- "double ratios" (FNAL)
- "step scaling" (TOV)

Remarkable agreement

Error in 2006: 4%

Exclusive Vub

OF LATTICE PARAMETERS

Assuming the validity of the Standard Model one can perform a fit of the hadronic parameters:

from ∆ms

	B _K	f _{Bs} √B _{Bs} (MeV)	ξ		
UTA	0.87 ± 0.08	265 ± 4	1.25 ± 0.06		
Lattice	0.73 ± 0.04	275 ± 13	1.24 ± 0.03		

Lattice inputs are less relevant today for the SM analysis. But they are crucial when looking for new physics effects

K-R AND B-B MIXING BEYOND THE SM

The full operator basis only in the quenched approximation For K-K mixing results quite in disagreement

The future

The goal of the SuperB factory is precision flavour physics for indirect New Physics searches

For example: testing the CKM paradigm at the 1% level

The theoretical accuracy must compete with the experimental one. <u>Can we reach the 1% accuracy</u> in Lattice QCD ??

V.Lubicz @

Villa Mondragone Monte Porzio Catone - Italy 13 - 15 November 2006

Hadronic	Current latt.	6 TFlop	60 TFlop	1-10 PFlop
matrix	error	Year	Year	Year
element	(2006)	[2009]	[2011 LHCb]	[2015 SuperB]
$f^{K\pi}(0)$	0.9%	0.7%	0.4%	< 0.1%
I ₊ (0)	$(22\% \text{ on } 1-f_+)$	(17% on 1-f ₊)	(10% on 1-f ₊)	(2.4% on 1-f ₊)
В _к	11%	5%	3%	1%
f _B	14%	3.5 - 4.5%	2.5 - 4.0%	1 – 1.5%
$f_{Bs}B_{Bs}^{1/2}$	13%	4 - 5%	3 - 4%	1 – 1.5%
ξ	5%	3%	1.5 - 2 %	0.5 – 0.8 %
	(26% on ξ-1)	(18% on ξ-1)	(9-12% on ξ-1)	(3-4% on ξ-1)
$\mathcal{F}_{B \to D/D^* l \nu}$	4%	2%	1.2%	0.5%
	$(40\% \text{ on } 1-\mathcal{F})$	(21% on 1- <i>F</i>)	(13% on 1- <i>F</i>)	(5% on 1- ${\cal F}$)
$f_{+}^{B\pi},$	11%	<mark>5</mark> .5 - 6.5%	4 - 5%	2 - 3%
$T_1^{B \rightarrow K * / \rho}$	13%			3 - 4%

THE 2009 STATUS REPORT

Hadronic matrix element	Lattice error in 2006	Lattice error in 2009	6 TFlop Year [2009]	60 TFlop Уear [2011 LHCb]	1-10 PFlop Year [2015 SuperB]
$f_{+}^{K\pi}(0)$	0.9%	0.5%	0.7%	0.4%	< 0.1%
$\mathbf{\hat{B}}_{\mathrm{K}}$	11%	5%	5%	3%	1%
f_B	14%	5%	<mark>3.5</mark> - 4.5%	<mark>2.5</mark> - 4.0%	1 – 1.5%
$f_{Bs}^{}B_{Bs}^{1/2}$	13%	5%	4 - 5%	3 - 4%	1 – 1.5%
щ	5%	2%	3%	1.5 - 2 <mark>%</mark>	0.5 - 0.8 %
$\mathcal{F}_{B \to D/D^* lv}$	4%	2%	2%	1.2%	0.5%
$f_{+}^{B\pi},$	11%	11%	<mark>5.5</mark> - 6.5%	4 - 5%	2-3%
$T_1^{B \rightarrow K^*/\rho}$	13%	13%			3-4%

The expected accuracy has been reached! (except for Vub)

