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Lattice QCD and flavour physics
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The past

Accuracy of Lattice QCD



History of lattice errors (before 2006)

1.23(6)
5%

262(35)
13%

189(27)
14%

Hashimoto
Ichep’04

1.24(4)(6)
6%

276(38)
14%

193(27)(10)
15%

L.Lellouch
Ichep’02

1.16(5)
4%

267(46)
17%

200(30)
15%

C.Bernard
Latt’00

--------
175(25)
14%

J.Flynn
Latt’96

sBs
[MeV]
f B  B

[MeV]
   f ξ

1.21(2)(5)
4%

246(16)(20)
10%

223(15)(19)
11%

N.Tantalo
CKM’06

For many years, uncertainties in lattice calculations have 
been dominated by the quenched approximation
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CKM PARADIGM OF CP

Ciuchini et al.,2000

εK

UTfit, today

In spite of the relatively large lattice uncertainties, 
important results for flavour physics have been achieved

sin2β

CP-conserving and CP-violating 
processes determine the same 

CKM phase

UTsizes
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Predictions exist since 1995

PREDICTION OF Sin2βCiuchini et al.,1995:
Sin2βUTA = 0.65 ± 0.12

Measurements

Ciuchini et al.,2000:
Sin2βUTA = 0.698 ± 0.066

Direct measurement today:
Sin2βJ/ψ K0 = 0.655 ± 0.027

UTfit today:
Sin2βUTA = 0.751 ± 0.035



The predicted range was very large in 
the frequentistic CKMFitter approach

Direct measurement today
Δms = (17.77 ± 0.12) ps-1

SM PREDICTION OF Δms
LOOKING FOR NEW PHYSICS EFFECTS

Ciuchini et al.,2000:
Δms = (16.3 ± 3.4) ps-1

UTfit today:
Δms = (16.8 ± 1.6) ps-1



The present



1%(0.507 ± 0.005) ps-1Δmd

0.7%(17.77 ± 0.12) ps-1Δms

0.5%(2.228 ± 0.011) x 10-3εK

4%0.655 ± 0.027Sin2β

0.2%0.27599 ± 0.00059
|Vus| FK

|Vud| Fπ

0.2%0.21661 ± 0.00047|Vus| f+(0)
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PRECISION FLAVOUR PHYSICS
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f+(0), fK, BK, 
fB

260≥ 0.07
2

[2+1+1]
Twisted 
massETMC

f+(0), fK300≥ 0.062Clover (NP)QCDSF

BK2900.12
2

[2+1]
OverlapJLQCD

fK190≥ 0.072+1Clover 
smearedBMW

f+(0), fK, BK,
K→ππ

290≥ 0.082+1DWFRBC/UKQCD

fK1560.092+1Clover (NP)PACS-CS

fK, BK, fB, BB,
B→D/π lν

230≥ 0.0452+1Improved 
staggered

MILC
+ FNAL, HPQCD,…

Observables(Mπ)min
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KAON AND B PHYSICS ON THE LATTICE



For Lattice QCD 
today: ~ 5–30TFlops

(like the # 500 in the 
TOP500 list)

For Lattice QCD 
today: ~ 5–30TFlops

(like the # 500 in the 
TOP500 list)

1) Increasing of computational power    
Unquenched simulations
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[Del Debbio et al. 2006]CPU cost for Nf=2 Wilson fermions:

TeraFlops machines 
are required to 

perform unquenched 
simulations. Available 
only since few years.

THE “PRECISION ERA” OF LATTICE QCD: WHY NOW

The Moore’s Law
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Ukawa 2001 (The Berlin wall):

CPU cost (for Nf=2 Wilson fermions):

Del Debbio et al. 2006:

2) Algorithmic improvements:
Light quark masses
in the ChPT regime 2001

( )latt latt
ud sM m mπ ˆ200 300 MeV   / 1 / 6 1 / 12≈ − ≈ −Today:

( )latt latt
ud sM m mˆ500 MeV   / 1 / 2≈ ≈πFew years ago:

ChPT

Today



The FLAG working group

FLAG
Flavianet Lattice Averaging Group

A working group of:

(constituted in November 2007)

a collection of current lattice results and references

Aims: for each quantity, provide to the network’s working groups
and to the wider community

averages of lattice results (when it makes sense)

a summary of the essential aspects of each calculation, using an easy-
to-read “color code” classification (            )

G.Colangelo, S.Dürr, A.Jüttner, L.Lellouch, 
H.Leutwyler, V.Lubicz, S.Necco, C.Sachrajda, 

S.Simula, T.Vladikas, U.Wenger, H.Wittig



The FLAG colour coding
A number of sources of systematic errors are identified and to each 
calculation a colour with respect to each of these is assigned:

when the systematic error has been estimated in a satisfactory manner 
and convincingly shown to be under control

when a reasonable attempt at estimating the systematic error has been 
made, although this could be improved

when no or a clearly unsatisfactory attempt at estimating the systematic 
error has been made



The FLAG colour coding



K
Vus

[Marciano 04]

K π
Vus

Vus from kaon decays: f+  (0) and fK/fπKπ



K
Vus

[Marciano 04]

K π
Vus

Assuming the Standard ModelAssuming the Standard Model and combining with nuclear β decays:

1

2

3
4

From nuclear β decays 
20 superallowed transitions

[Hardy and Towner 08]

one obtains:

and Lattice independent estimates 
of the hadronic parameters

[FLAG ]

Vus from kaon decays: f+  (0) and fK/fπKπ



Vus from kaon decays: f+  (0) and fK/fπKπ

f+(0) = 0.962 (3) (4) 0.5%

K π

Vus 

Error in 2006:  0.9%

• |Vus|Kl3 = 0.2252(13)

• |Vus| = 0.2255(10)
Using unitarity and |Vud| from 
nuclear β decays

[ V.Lubicz@LATT’09 ]

Analytical model calculations 
tends to give larger predictions 

than lattice results



K

Vus 

Vus from kaon decays: f+  (0) and fK/fπKπ

fK/fπ = 1.196 (1) (10) 0.8%

[Marciano 04]

• |Vus|Kl3 = 0.2252(13)

• |Vus| = 0.2255(10)
Using unitarity and |Vud| from 
nuclear β decays

• |Vus|Kl2 = 0.2248(19)

The accuracy is comparable to the 
one reached on f+(0)  [0.5%]

[ V.Lubicz@LATT’09 ]



Until 2008 few unquenched calculations at Until 2008 few unquenched calculations at 
fixed (and rather large) lattice spacingfixed (and rather large) lattice spacing

[VL, C.Tarantino 0807.4605]

K0-K0 mixing: BK

K K

VqsVqd*

K K

B̂K= 0.79 ± 0.04 ± 0.08
C.Dawson@Latt’05

B̂K= 0.86 ± 0.05 ± 0.14
L.Lellouch@Latt’00

B̂K= 0.731 ± 0.036
V.Lubicz@Latt’09

B̂K= 0.90 ± 0.03 ± 0.15
S.Sharpe@Latt’96 17%

17%

11%

5%



3 results with no 
red tags, all new

BK = 0.724 (8) (28) [Nf=2+1, ALVdW 09]^

BK = 0.738 (8) (25) [Nf=2+1, RBC/UKQCD 09]^

BK = 0.730 (30) (30) [Nf=2,    ETM 09]^

No visible effect of the 
partial quenching (Nf=2).

K0-K0 mixing: BK



K0-K0 mixing: BK

K K

VqsVqd*
[ V.Lubicz@LATT’09 ]

BK = 0.731 (7) (35)^ 5%

From the UT fit, assuming the 
Standard Model

with Kε = 0.94(2), 
A.Buras, D.Guadagnoli, G.Isidori, 

arXiv:1002.3612

BK = 0.87 (8)^

Error in 2006:  11%



B-mesons decay constants: fB,fBs

Averages from J.Laiho, E.Lunghi, R.Van de Water, 0910.2928

Error in 2006:  14%

fB = 192.8 ± 9.9 MeV

fBs= 238.8 ± 9.5 MeV
4-5%

Error in 2006:  5%

fBs/fB = 1.231 ± 0.027 2%



B-B mixing: BBd/s

Error in 2006:  13% Error in 2006:  5%

B B

VtbVtq*

ξ = 1.243 ± 0.028 2%fBs√BBs= 275 ± 13 MeV   ^ 5%

BBd = 1.26 ± 0.11^

BBs = 1.33 ± 0.06^

Only one modern calculation
HPQCD [0902.1815]

Combining with fB and fBs:



Exclusive Vcb

Roma-TOV

TWO DIFFERENT APPROACHES:

- “double ratios” (FNAL)
- “step scaling” (TOV)

Remarkable agreement

Error in 2006:  4%
F(1) = 0.924 ± 0.022
G(1) = 1.060 ± 0.035 3%

2%

Averages from 
VL, C.Tarantino 0807.4605



*

Error in 2006:  11%

|Vub|excl.= (35.0 ± 4.0) 10-4 11%

Exclusive Vub

MORE LATTICE 
CALCULATIONS REQUIRED

Vub = (4.0 ± 0.4) 10-3 

Model dependent
BLNP, DGE, GGOU, ADFR, BLL

incl.

Vub = (3.5 ± 0.4) 10-3

From LQCD and QCDSR

excl.



1.24  ± 0.03275  ± 130.73 ± 0.04Lattice

1.25  ± 0.06265  ± 40.87  ± 0.08UTA

ξfBs√BBs (MeV)BK

OF LATTICE PARAMETERS

Assuming the validity of 
the Standard Model one 
can perform a fit of the 
hadronic parameters:

Lattice inputs are less relevant today for the SM analysis.
But they are crucial when looking for new physics effects

2%! from Δms

UT-angles UT-lattice



K-K AND B-B MIXING BEYOND THE SM

B - B

JLQCD 02
HPQCD 06

APE 01

[M.Ciuchini et al., hep-lat/9808328]

APE 99
Babich et al 06
CP-PACS 06 ∗

K - K

The full operator basis only in the quenched approximation
For K-K mixing results quite in disagreement

NEW
 CA

LCU
LATIO

NS A
RE 

NEED
ED !!



The future



The goal of the SuperB factory is precision flavour 
physics for indirect New Physics searches

For example: testing the CKM paradigm at the 1% level

“the dream”

Today With a SuperB in 2015

The theoretical accuracy must compete with the 
experimental one.

Can we reach the 1% accuracy in Lattice QCD ??



The SuperB   
is 

running

Cost of the “SuperB” lattice simulation

Nconf = 120

Ls = 4.5 fm
[V = 1363 × 270]

a = 0.033 fm
[ 1/a = 6.0 GeV ]
ˆ

sm/m = 1/12
[ Mπ = 200 MeV ]

Simulation 
parameters

~ 3 PFlop-years Affordable with
1-10 PFlops available 

for Lattice QCD in 2015 !VL @



60 TFlop 
Year

[2011 LHCb]

2 – 3%4 - 5%5.5 - 6.5%11%
3 – 4%--------13%

0.5%
(5% on 1-F)

1.2%
(13% on 1-F)

2%
(21% on 1-F)

4%
(40% on 1-F)

F B → D/D*lν

0.5 – 0.8 %
(3-4% on ξ-1)

1.5 - 2 %
(9-12% on ξ-1)

3%
(18% on ξ-1)

5%
(26% on ξ-1)

ξ
1 – 1.5%3 - 4%4 - 5%13%
1 – 1.5%2.5 - 4.0%3.5 - 4.5%14%fB

1%3%5%11%

< 0.1%
(2.4% on 1-f+)

0.4%
(10% on 1-f+)

0.7%
(17% on 1-f+)

0.9%
(22% on 1-f+)

6 TFlop 
Year
[2009]

Current latt. 
error 

(2006)

Hadronic 
matrix 
element

KB̂

K π
+f (0 )

1 /2
B s B sf B

B π
+f , .. .

B K * /ρ
1T →

1-10 PFlop 
Year

[2015 SuperB]

V.Lubicz  @



THE 2009 STATUS REPORT

13%

11%
4%

5%

13%

14%
11%

0.9%

Lattice 
error in 
2006

2 – 3%4 - 5%5.5 - 6.5%11%

3 – 4%--------13%

0.5%1.2%2%2%F B → D/D*lν

0.5 – 0.8 %1.5 - 2 %3%2%ξ

1 – 1.5%3 - 4%4 - 5%5%

1 – 1.5%2.5 - 4.0%3.5 - 4.5%5%fB

1%3%5%5%

< 0.1%0.4%0.7%0.5%

1-10 PFlop 
Year

60 TFlop 
Year

6 TFlop 
Year

Lattice 
error in 
2009

Hadronic 
matrix 
element

KB̂

Kπ
+f (0)

1/2
Bs Bsf B

Bπ
+f ,...
B K*/ρ

1T →

The expected accuracy has been reached! (except for Vub)

[2011 LHCb] [2015 SuperB][2009]



The past

the 
present

and the 
future
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