Unitarity Triangle Analysis and Searches for New Physics

> Luca Silvestrini INFN, Rome

- Status of the Standard Model Analysis
- UT beyond the SM and constraints on NP:
 - Minimal Flavour Violation: UUT, $B \rightarrow \tau v$, ...
 - Beyond MFV: NP scales, B_s mixing, ...
- Conclusions and Outlook

http://www.utfit.org

INTRODUCTION

- SM UT analysis:
 - -provide the best determination of CKM parameters
 - test the consistency of the SM ("direct" vs "indirect" determinations)
 - -provide predictions for future experiments (ex. sin2 β , Δm_s , ...)

INTRODUCTION

- NP UT analysis: given some hypothesis on NP (no corr. to SM tree, MFV, NMFV, ...)
 - -disentangle possible NP effects: CKM determination, mixing, decay amplitudes
 - -provide best CKM determination
 - -extract allowed range for NP contributions to Δ F=2 & Δ F=1
 - -obtain bounds on NP parameters

CP-CONSERVING INPUT

- $|V_{ub}|/|V_{cb}| \sim R_{b}$ (tree-level)
 - $-incl b \rightarrow clv \Rightarrow |V_{cb}| = (41.54 \pm 0.44 \pm 0.58)10^{-3}$, $b \rightarrow u | v \Rightarrow | V_{ub} | = (39.9 \pm 1.5 \pm 4.0) \ 10^{-4}$ (HFAG + flat error for model spread) $-\text{excl: } \mathbf{B} \rightarrow \mathbf{D}^{(*)} |_{\mathbf{V}} \Rightarrow |_{\mathbf{V}_{cb}}| = (39.0 \pm 0.9) 10^{-3},$ $b \rightarrow \pi(\rho) | v \Rightarrow | V_{ub} | = (35.0 \pm 4.0) \ 10^{-4}$ using LQCD form factors

Lubicz & Tarantino

CP-CONSERVING INPUT

- $|V_{td}|/|V_{cb}| \sim R_t$ from $B_d \overline{B}_d$ and $B_s \overline{B}_s$ mixing (loop mediated):
 - $-\Delta m_d = (0.507 \pm 0.005) \text{ ps}^{-1}$
 - $-\Delta m_s = (17.77 \pm 0.12) \text{ ps}^{-1}$
 - $-f_{Bs}JB_{Bs} = (275 \pm 13) \text{ MeV}$
 - $-\xi = 1.24 \pm 0.03$ Laiho, Lunghi, V.d.Water

CP-VIOLATING INPUT

- Sin2 β from B \rightarrow J/ Ψ K + th error from CPS: sin2 β = 0.655 ± 0.027
- γ combined: (72 ± 11)° U (-108 ± 11)°
- α combined: $(91 \pm 6)^{\circ}$
- $\varepsilon_{\rm K}$ corrected for measured phase, Im $A_{\rm O}$ and LD contributions Buras, Guadagnoli, Isidori

 $-F_{\kappa}$ =156.0 ± 1.3 MeV, B_{κ} = 0.731 ± 0.036

Lubicz @ Lattice09

RESULTS OF THE SM FIT

ē	= 0.130 ± 0.020
ħ	= 0.352 ± 0.013
β	$= (22 \pm 1)^{\circ}$
γ	= (70 ± 3)°
α	$= (88 \pm 3)^{\circ}$

Here and in the following: PRELIMINARY winter 2010 results

ANGLES vs NON-ANGLES

FIT PREDICTIONS vs INPUTS

	Prediction	Measurement	Pull (σ)
sin2β	0.750±0.033	0.655±0.027	2.2
α	(86±4)°	(91±6)°	<1
γ	(69±3)°	(74±11)°	<1
Δm_s	(17.6±1.4)ps⁻¹	(17.77±0.12)ps⁻¹	<1
V _{ub}	(36±1)10 ⁻⁴	(38.8±2.2)10 ⁻⁴	1.2
Β _κ	(0.853±0.070)	(0.731±0.036)	1.5
$BR(B \rightarrow \tau v)$	(82±8)10 ⁻⁶	(174±34)10 ⁻⁶	2.6

THE UUT & MFV MODELS

- Consider MFV models (Y_{u,d} only source of flavour & CPV)
 D'Ambrosio et al.,...
- Can define a Universal Unitarity Triangle using only observables unaffected by MFV-NP: R_b & angles Buras et al.
- UUT results starting point for modeldependent studies

UUT RESULTS

 $\bar{\rho} = 0.138 \pm 0.029$ $\bar{\eta} = 0.339 \pm 0.015$ $\beta = (22 \pm 1)^{\circ}$ $\gamma = (68 \pm 5)^{\circ}$ $\alpha = (90 \pm 5)^{\circ}$

$B \rightarrow \tau \nu$ in MFV models

Define BR as the prediction obtained assuming NO NP effect in the decay amplitude

We obtain:

 $R^{exp}_{UUT} = 2.1 \pm 0.5$ where $R^{exp}_{UUT} = BR_{exp} / BR_{UUT}$ to be compared with the $|V_{ub}|$ - and f_B -independent th. calculation of R_{UUT} in specific MFV models

Page 12

Two Higgs Doublet Model II

$$R_{\rm 2HDM} = \left(1 - \tan^2 \beta \frac{m_B^2}{m_{H^+}^2}\right)^2$$

 \rightarrow bounds on tan β/m_{H^+}

Two regions selected:

- 1. small $\tan\beta/m_{H^+}$: R < 1 disfavoured at ~2 σ
- 2. "fine-tuned" region for $\tan\beta/m_{H^+} \sim 0.3$: positive correction, $R \sim R_{exp}$ can be obtained incompatible with semileptonic decays $BR(B \rightarrow D\tau\nu)/BR(B \rightarrow D\ell\nu) = (49\pm10)\%$ Tijima @ LP09 Kamenik & Mescia $B \rightarrow X_s \gamma$ gives a lower bound on m_{H^+} : $m_{H^+} > 295$ GeV Luca Silvestrini for the UTfit Collaboration GGI, Firenze, 22/03/2010 Misiak et @ge 13

Luca Silvestrini for the UTfit Collaboration

GGI, Firenze, 22/03/2010

MFV-MSSM at large tanß

- * additional constraints exclude the "fine-tuned" region at very large $tan\beta$
- * bound similar to 2HDM

 $\tan \beta < 7.3 m_{H^+} / (100 \text{ GeV})$

In addition: BR(B_s $\rightarrow \mu\mu$) < 26x10⁻⁹ @95% prob.

Luca Silvestrini for the UTfit Collaboration

GGI, Firenze, 22/03/2010

The case $\mu < 0$ is similar...

$$R_{B\tau\nu} = \left[1 - \left(\frac{m_B^2}{m_{H^{\pm}}^2}\right) \frac{\tan^2\beta}{(1+\epsilon_0\tan\beta)}\right]^2$$

$$\epsilon_0 = -\frac{2\alpha_{\mathbf{s}}\mu}{3\pi M_{\tilde{g}}} H_2\left(\frac{M_{\tilde{q}_L}^2}{M_{\tilde{g}}^2}, \frac{M_{\tilde{d}_R}^2}{M_{\tilde{g}}^2}\right)$$

* for μ < 0 the region of positive interference at very large tan β is enlarged

* yet the combined bound is stronger than for $\mu > 0$

tanβ < 38 @95% prob.

In this case: BR(B_s $\rightarrow \mu\mu$) < 17x10⁻⁹ @95% prob.

UTfit beyond MFV

1. fit simultaneously for the CKM and

- the NP parameters (generalized UT fit)
 - add most general loop NP to all sectors
 - use all available experimental info
 - find out NP contributions to ΔF=2 Soares, Wolfenstein; Deshpande, Dutta, Oh; Silva, Wolfenstein;

transitions Cohen et al.; Grossman, Nir, Worah; Laplace et al; Ciuchini et al; Ligeti; CKMFitter; UTfit; Botella et al.; Agashe et al.; ...

- 2. perform a $\Delta F=2$ EFT analysis to
- put bounds on the NP scale
 - consider different choices of the FV and CPV couplings

1. Parameterization of generic NP contributions to the mixing amplitudes K mixing amplitude (2 real parameters): Re $A_{K} = C_{\Delta m_{K}} \text{Re } A_{K}^{SM} \quad \text{Im } A_{K} = C_{\varepsilon} \text{Im } A_{K}^{SM}$ B and B mixing amplitudes (2+2 real parameters): $A_{d} = C_{\Delta m_{K}} + S_{d} + 2i\phi^{SM} + 2i\phi^{SM}$

$$A_{q} = C_{B_{q}} e^{2i\varphi_{B_{q}}} A_{q}^{SM} e^{2i\varphi_{q}} = \left(1 + \frac{q}{A_{q}^{SM}} e^{2i(\varphi_{q} - \varphi_{q})}\right) A_{q}^{SM} e^{2i\varphi_{q}}$$

Observables:

$$\Delta m_{q/K} = C_{B_q/\Delta m_K} (\Delta m_{q/K})^{SM} \quad \varepsilon_K = C_{\varepsilon} \varepsilon_K^{SM}$$

$$A_{CP}^{B_d \to J/\psi K_s} = \sin 2(\beta + \phi_{B_d}) \qquad A_{CP}^{B_s \to J/\psi \phi} \sim \sin 2(-\beta_s + \phi_{B_s})$$

$$A_{SL}^q = \operatorname{Im} \left(\Gamma_{12}^q / A_q \right) \qquad \Delta \Gamma^q / \Delta m_q = \operatorname{Re} \left(\Gamma_{12}^q / A_q \right)$$

Luca Silvestrini for the UTfit Collaboration

GGI, Firenze, 22/03/2010

A FEW REMARKS

- The value of $C_{\epsilon K}$ extracted from the analysis potentially contains a mixture of $\Delta F=1$ & $\Delta F=2$ NP contributions
- For the B_s analysis, we use an improved theoretical prediction for $\Delta\Gamma$: $\Delta\Gamma_s/\Gamma_s=0.14\pm0.02$ and allow for NP penguin effects in Γ_{12}

RESULTS OF GENERALIZED UTA

I, Firenze, 22/03/20

21

We now use the combined **TeVatron** likelihood including frequentistic analysis of systematic errors (w. ~20 parameters varied at $\pm 5\sigma$). Using all data we are at 2.4σ (was 2.95). UTfit

Ratio of NP/SM contributions is $\langle 40\% @ 95\%$ prob. in B_d mixing, and $\sim 60\%$ in B_s mixing (but 2σ range is very large)

See also Lunghi & Soni, Buras et al.

- Large NP contributions to b ↔ s
 transitions are natural in nonabelian flavour
 models, given the large breaking of flavour
 SU(3) due to the top quark mass
 Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; ...
 GUTs can naturally connect the large
- mixing in v oscillations with a large $b \leftrightarrow s$ mixingBack et al.; Moroi; Akama et al.; Chang, Masiero, Murayama; Hisano, Shimizu; Goto et al.; ...
- Might show up also in $\Delta F=1$ transitions (b \rightarrow s γ , b \rightarrow sl⁺l⁻, B \rightarrow K π , B_s \rightarrow K^{*0}K^{*0}, ...) and/or LFV ($\tau \rightarrow \mu\gamma$, $\mu \rightarrow e\gamma$)

2. EFT analysis of
$$\Delta F=2$$
 transitions
The mixing amplitudes $A_q e^{2i\phi_q} = \langle \overline{M}_q | H_{eff}^{\Delta F=2} | M_q \rangle$
 $H_{eff}^{\Delta B=2} = \sum_{i=1}^5 C_i(\mu) Q_i(\mu) + \sum_{i=1}^3 \widetilde{C}_i(\mu) \widetilde{Q}_i(\mu)$
 $Q_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_L^{\alpha} \overline{q}_L^{\beta} \gamma^{\mu} b_L^{\beta}$ (SM/MFV)
 $Q_2 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_R^{\beta} b_L^{\beta}$ $Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$
 $Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_R^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
7 new operators beyond MFV involving quarks with different chiralities

Luca Silvestrini for the UTfit Collaboration

GGI, Firenze, 22/03/2010

H_{eff} can be recast in terms of the $C_i(\Lambda)$ computed at the NP scale

- $C_i(\Lambda)$ can be extracted from the data (one by one)

- the associated NP scale Λ can be defined from

$$C_{i}(\Lambda) = \frac{LF_{i}}{\Lambda^{2}} \quad \text{tree/strong interact. NP: } L \sim 1$$

perturbative NP: $L \sim a_{s}^{2}, a_{W}^{2}$

Flavour structures:

MFVnext-to-MFVgeneric $- F_1 = F_{SM} \sim (V_{tq}V_{tb}^*)^2$ $- |F_i| \sim F_{SM}$ $- |F_i| \sim 1$ $- F_{i\neq 1} = 0$ - arbitrary- arbitrary- arbitraryphasesphases- arbitrary

present	· lower boun	d on the NP :	scale (TeV):
Process	C ₄ (GeV ⁻²)	Λ_{GEN} (TeV)	$\Lambda_{_{NMFV}}$ (TeV)
ε _K	1.8 10 ⁻¹⁷	24 10 ⁴	62
B _d	1. 10 ⁻¹³	3.2 10 ³	20
B _s	1.5 10 -11	2.6 10 ²	8

* ΔF=2 chirality-flipping operators are RG enhanced and thus probe larger NP scales
* when these operators are allowed, the NP scale is easily pushed beyond the LHC reach
* suppression of the 1 <-> 2 transitions strongly weakens the lower bounds

CONCLUSIONS

- SM analysis displays good overall consistency but some tension in sin2 β and $B{\rightarrow}\tau\nu$
- The two tensions pull $|V_{ub}|$ in opposite directions
- Models predicting a suppression of $B{\to}\tau\nu$ disfavored by present data: 2HDM & MFV-MSSM @ large tanß

CONCLUSIONS

- General UTA provides a precise determination of CKM parameters and NP contributions to $\Delta F=2$ amplitudes
- $\epsilon_{\rm K}$ and $B_{\rm d}$ mixing give strong constraints on NP contributions, naively pushing the NP scale of several models beyond the LHC reach

CONCLUSIONS

- CPV in $B_{\rm s}$ mixing off from SM at ~2.5 σ
- Requires new sources of flavour & CPV, natural in many extensions of the SM
- Theoretical uncertainty negligible now (and in the future if central value confirmed)
- Wait for confirmation from TeVatron/LHCb, look for other NP signals in b→s transitions