New Kaon projects

Augusto Ceccucci / CERN

Indirect Searches for New Physics at the time of LHC

Energy Frontier

- Produce heavy new particles directly
- Heavy particles need large colliders
- LHC Media Event: March 30, 2010!

Rarity Frontier

- Look for deviations from precise SM predictions, CKM, K, D, B Decays, Leptons
- Look for rare or forbidden processes
- Requires high precision & intensity

"New" Kaon Project "at the time of the LHC"

- There is some freedom in defining a "New Kaon" project when the framework is defined as the "time of the LHC"
- I take here a broad perspective considering projects that have been approved and in construction and also projects with a bit longer time-scale and an uncertainty.
- I will refrain from mentioning kaon projects for the 2030+, although one could argue that the exploitation of the LHC may well extend into those years.....

Motivation

- Physics motivation in Isidori's talk, in addition:
- Interplay between technology and science
 - Development of beyond state-of-the-art detectors for eventual use at future collided and other applications (e.g. time-stamping)
- Training ground for young experimentalists:
 - opportunities to educate the next generations of students giving them –if history is a guide– excellent opportunities

Outline

- CKM Unitarity (V_{us})
- Lepton Universality (R_κ)
- Ultra-Rare K decays $(K \rightarrow \pi v \overline{v})$
- Kaon Interferometry ($\phi \rightarrow K\overline{K}$)

CKM Unitarity: Vus

- Experiment: Flavianet average of K⁰_s /K⁰_L / K semi-leptonic modes: f₊(0) |V_{us}|= 0.21664 +/- 0.00048 → 0. 22 % relative error!
- Lattice QCD (RBC UKQCD):
 f₊(0) = 0.9644 +/- 0.0049
 →|V_{us}| =0.2246 +/- 0.0012
- Wait for Chris Sachrajda's talk for lattice QCD f₊(0) determination

R_{κ} : Lepton Universality Test with $K^+ \rightarrow l^+ v$

$$\mathbf{R}_{\mathbf{K}} = \frac{\Gamma(\mathbf{K}^{\pm} \to \mathbf{e}^{\pm} \nu)}{\Gamma(\mathbf{K}^{\pm} \to \mu^{\pm} \nu)} = \frac{\mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mu}^{2}} \cdot \left(\frac{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mu}^{2}}\right)^{2} \cdot (\mathbf{1} + \delta \mathbf{R}_{\mathbf{K}}^{\mathrm{rad.corr.}})$$

<0.1 % precision of the SM prediction

GGI March 24, 2010

Augusto Ceccucci

Comparison to world data NA62

R_K: sensitivity to new physics

R_K measurements are currently in agreementwith the SM expectation at ~1.5σ.100Any significant enhancement with respectto the SM value would be an evidenceof new physics.

For non-tiny values of the LFV slepton mixing Δ_{13} , the sensitivity to H[±] in R_K=K_{e2}/K_{µ2} is strong

"Maybe NA62 will find the first evidence for a charged Higgs exchange?" -- John Ellis (arXiv:0901.1120)

GGI March 24, 2010

Augusto Ceccucci

 $(M_H, \tan\beta)$ 95% exclusion limits

E. Goudzovski / Moriond EW, 10 March 2010

Ultra-rare K Decays

- The contribution to *V* these processes due to the Standard Theory is strongly suppressed (<10⁻¹⁰) and calculable with excellent precision (~%)
- They are very sensitive to possible contributions from New Physics

$K \rightarrow \pi \nu \overline{\nu}$: Current Status

Decay	Branching Ratio ($\times 10^{10}$)		
	Theory(SM)	Experiment	
$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15^{[2]}}_{-1.05}$	
$K_L^0 \to \pi^0 \nu \overline{\nu}$	$0.26 \pm 0.04^{[3]}$	<260 (90% CL) ^[4]	

[1] J.Brod, M.Gorbahn, PRD78, arXiv:0805.4119
[2] AGS-E787/E949 PRL101, arXiv:0808.2459
[3] M. Gorbahn
[4] KEK-E391a arXiv:0911.4789v1

Neutral Beams for $K^0_L \rightarrow \pi^0 v \bar{v}$

"Pencil"

- π^0 + "nothing"
- P_T cut for $\Lambda \rightarrow n\pi^0$ & $K^0_L \rightarrow 2\pi^0$ suppression
- hermetic calorimetry

"Microbunched"

- E_{K} from Time Of Flight
- Low(er) Kaon Energy
- KOPIO BNL Concept further elaborated for FNAL (Bryman@KAON09)

Ехр	Machine	UL 90% CL	Notes
KTeV	Tevatron	< 5.7 x 10 ⁻⁷ (π ⁰ →eeγ)	
E391a	KEK-PS	<2.6 x 10 ⁻⁸	
КОТО	J-PARC		Aim at 2.7 SM evts / 3 y
KLOD	U70		Excellent Design
KOPIO			Opportunity at Project X (IC2) ?

E391a @ KEK PS

E391a Final Result

- arXiv:0911.4789v1
- Based all full statistics (2004-2005) including reanalysis of already published data
- At these sensitivities backgrounds from kaon decays are negligible w.r.t. neutron induced ones

Background		Estimated # evt
Beam Halo neutron	CC02-π ⁰ CV-π ⁰ CV-η	0.66 0.39 <0.39 0.19 0.13
$K^0_L \rightarrow \pi^0 \pi^0$		(2.4 1.8) x 10 ⁻²
Other	Backward π^0	<0.05
Total		0.87 0.41

Signal Acceptance ~1% Flux 8.7 x $10^9 K_L^0$

 $B(K_{L}^{0} \rightarrow \pi^{0} \nu \nu) < 2.6 \times 10^{-8} 90\% \text{ CL}$

Factor of x3 improvement

KOTO (E14) @ JPARC

Aim for Flux x Run Time x Acceptance = 3000 x E391a

	КОТО	E391a (Run2)	
Proton energy	30 GeV	12 GeV	
Proton intensity	2e14	2.5e12	
Spill/cycle	0.7/3.3sec	2/4sec	
Extraction Angle	16 deg	4 deg	
Solid Angle	9µStr	12.6µStr	
KL yield/spill	7.8e6	3.3e5	x30 /sec
Run Time	3 Snowmass years =12 months.	1 month	x10
Decay Prob.	4%	2%	x 2
Acceptance	3.6%	0.67%	x5

Main Ring Parameters: L=1.6 Km 30 GeV 2 x 10¹⁴ ppp 0.3 MW 0.7 s spill / 3.3 s

GGI March 24, 2010

Details in H. Nanjo KAON'09

Augusto Ceccucci

KOTO @ JPARC

"Confirmation of neutral kaons in the KL beam line at Hadron Hall, J-PARC" Dec 7, 2009

Beam Survey

Plans for K_L^0 @ FNAL Project X

•KOPIO-like: TOF to determine Kaon Energy •Knowledge of E_{κ} allows rejection of

- two body decays
- Pointing Calorimeter
- •4 π veto for neutral and charged particles
- •Small Beam instead of flat beam

- •Project X (IC2): CW p LINAC ~3 GeV
- •Excellent bunch timing
- •High flux of low energy K^0_L

Techniques for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

"Stopped"

- Work in Kaon frame
- High Kaon purity (Electro-Magneto-static Separators)
- Compact Detectors

"In-Flight"

- Decays in vacuum (no scattering, no interactions)
- RF separated or Unseparated beams
- Extended decay regions

Ехр	Machine	Meas. or UL 90% CL	Notes
	Argonne	< 5.7 x 10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	< 5.6 x 10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4 x 10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787	AGS	(1.57 ^{+1.75} -0.82) x 10 ⁻¹⁰	Stopped
E949	AGS	(1.73 ^{+1.15} - _{1.05}) x 10 ⁻¹⁰	Stopped; PPN1+PPN2
NA62	SPS		In-Flight; Unseparated
P996	FNAL		Stopped; Tevatron as stretcher ring?

E787/E949: Final Result

 $B(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Augusto Ceccucci

E787/E949 Technique

"The entire AGS beam of 65 x 10¹² (Tp/ spill) at a momentum of 21.5 GeV/c was delivered to the E949 K⁺ production target"

•Duty Factor: 2.2 s / 5.4 s ~ 40%

- •1 int. length Pt target
- •Before separators: 500 π : 500 p : 1 K
- •After separators: Purity $K:\pi \sim 3-4:1$
- •Incoming **710 MeV/c** K⁺ identified by Č and slowed down by BeO and Active Degrader
- •~27% K⁺ stopped in the target (1.6 MHz)
- •1 T solenoid
- K+: Č x B4 x Target π^+ : Delayed CoincidenceK=: Č x B4 x TargetRange
Energy
Momentum
 $\pi^+ \rightarrow \mu^+ \rightarrow e^+$

GGI March 24, 2010

Augusto Ceccucci

Stopped Kaon Redux?

Can one improve significantly over the E949 PNN1 efficiency figures?

Selection	α	Notes
Κμ2	0.38	Beam,T, RS rec.
Κπ2	0.88	E, range, selection
Pscat	0.62	Rej. of beam scat.
π→µ→е	0.35	Decay chain
Trig	0.18	Trigger eff.
PS	0.36	Phase Space
nucl.	0.50	Pion interaction
T2	0.94	topology
fs	0.77	Stopping Fraction
"Standard"	1.7 x10 ⁻³	Total efficiency

•"Only" ~22% (.77 x .28) of kaons stopped in target

•The product of the red factors (1.5 x 10⁻²) Is a high price to pay: 1/(1.5 x 10⁻²) ~ 66x

Possible Improvements (Bryman@KAON09):

- 1. Lower Kaon Momentum to increase the stopped kaon fraction
- 2. Larger Beam acceptance
- \rightarrow 4-5x
- Detector Improvement: finer RS segmentation; LXe γ veto

 \rightarrow > 5x

Stopped Kaons at Fermilab: P996

- The status of P996 is that the Fermilab PAC has stated that "Proposal meets the criteria for Stage-I [scientific] approval".
- P996 as proposed requires 3-5 years of running the Tevatron after RunII as a 150 GeV Stretcher to reach a 1000 event SM sensitivity.
- Fermilab and the P996 collaboration are now in discussions with the Department of Energy exploring the possibility of running the Stretcher after Runll

(Update kindly provided by Bob Tschirhart from Fermilab)

K⁺ Decays in flight:NA62

NA62

The CERN proton Complex is unique

The SPS is needed as LHC proton injector only part-time

For the remainder of the time it can provide 400 GeV/c ALICE protons for fast or slow extraction

NA62:

Birmingham, Bratislava Bristol, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain, Mainz, Merced, Naples, Perugia, Pisa, Rome I, Rome II, San Luis Potosí, SLAC, Sofia, TRIUMF, Turin

Rudolf LEY, PS Division, CERN, 02:09.96 Revised and adapted by Antonella Del Rosso, ETT Divin collaboration with B. Desforges, SL Div., and D. Manglunki, PS Div. CERN, 23:05.01

GGI March 24, 2010

Augusto Ceccucci

NA62 Detectors

Total Length 270m

Drawing by Ferdinand Hahn

Background Rejection

NA6

4. Particle Identification

- K⁺ Positive identification (CEDAR)
- π/μ separation (RICH)
- π/e separation (E/P)

NA62 Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \overline{\nu} SM[flux = 4.8 \times 10^{12}]$ decay/year]	55 evt/year
K ⁺ →π ⁺ π ⁰ [η _{π0} = 2×10 ⁻⁸ (3.5×10 ⁻⁸)]	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
K^+ →e ⁺ (μ ⁺) π ⁰ ν, others	negligible
Expected background	≤13.5% (≤17%)

Definition of "year" and running efficiencies based on NA48 experience: ~100 days/year; 60% overall efficiency

NA62 Focused R&D

- Gigatracker (GTK) : Beam tracker (10⁹ part/s) based on Si micro pixels with ~100 ps time resolution; thickness of one station ~0.5% X₀
- Straw Tracker (STRAW) : To be operated in the vacuum tank: total thickness for 16 views ~1 % X₀
- P.I.D. (π/µ) up to P = 35 GeV/c Neon RICH with 17 m focal length spherical mirrors
- Hermetic Coverage: π⁰ suppression factor ~ 10⁸ Employ high performance calorimeters as photon vetoes: Liquid Krypton (NA48) + Lead Glass (OPAL)

31

NA62 Beam & GTK

Sensitivity is NOT limited by protons flux but by beam (GigaTracKer (GTK))
Similar amount of protons on target as NA48 (~5 10¹² / pulse)

GGI March 24, 2010

Augusto Ceccucci

First Results from GTK Tests

 taking into account the energy distribution of particle hits in the Gigatracker, one can extract a weighted average value for the jitter on T₁ "We come from Research to working Prototype"

We come from Research to working Prototype" Flavio Marchetto

LAV ANTI-A1

- In summer 2009 the first station A1 was built at LNF and shipped to CERN. It is now mounted on the blue tube
- A test beam run with the complete system • including prototype front-end electronics (FEE) was performed at the end of October 2009

OnLineMonitoring
Start Monitoring Stop Monitoring 154 03.18.28 342

LAV Time resolution

NA62

RICH 2009 prototype test beam

- 12.5.-27.6.2009: test beam
- 1 mirror with f=17m, 50 cm wide
- 414 PMT + full electronics chain

2009 test beam

20 GeV/c: 3 positrons and 1 pion events

20

30

40

10

Hits Number Entries

50

Mean

RMS

572190

17.19

7.311

0.2

0.15 0.1

RICH Test, June 2009, Preliminary

64 Straw technology Prototype

The straws are installed in vertical position
Pretension is 1.5 kg
Spacer validated over 2.1 m.

GGI March 24, 2010

Augusto Ceccucci

Straw straightness Nominal

STRAW Prototype: Beam Test Residuals

NA62 Planning

Preliminary (by Ferdinand Hahn)

GGI March 24, 2010

NA62 Physics Handbook CERN, December 10-11, 2009

Secretariat: veronique.wedlake@cern.ch

http://na62pb.ph.tum.de/

Kaon Interferometry

The KLOE-2 strategy (Slides by F. Bossi)

We have proposed, and the Laboratory has accepted, an installation plan based on a two-step strategy

<u>Step 0</u>: Preparation ongoing now. Start of data taking, spring 2010. Use of the present detector with the minimal upgrades required to run it safely and efficiently. Use also of newly built taggers for γγ physics.

• <u>Step 1</u>: Start of installation work, summer 2011. Insertion of the more demanding upgrades with the goal of a longer data taking campaign (2012-13)

Thanks to crab waist upgrade, expect DAΦNE to deliver≥ 300 pb⁻¹/month

The upgraded interaction region

New sub-detectors will be installed around the interaction region

KLOE-2: physics motivations

There are several physics topics that can benefit of an acquired luminosity of order10 fb⁻¹ with an upgraded detector

- Studies on CPT and QM violation with neutral kaons interferometry
- Tests of Lepton Flavor Violation with K_{e2} decays
- Studies on C, P, CP violation using rare η and K_s decays
- Tests of Chiral Perturbation Theory with η , η ', and K_s decays
- Searches for signals of a Secluded Gauge Symmetry

Quantum Interferometry

The most specific (and intriguing) feature of the neutral kaon system produced in Φ decays is that it is subject to quantum entanglement

This means that the decay probability of each one of the kaons depends also on what the other particles does

$$I(f_{1},t_{1};f_{2},t_{2}) = C_{12} \left\{ \eta_{1} \right|^{2} e^{-\Gamma_{L}t_{1}-\Gamma_{S}t_{2}} + \left| \eta_{2} \right|^{2} e^{-\Gamma_{S}t_{1}-\Gamma_{L}t_{2}} - 2\left| \eta_{1} \right| \left| \eta_{2} \right| e^{-(\Gamma_{S}+\Gamma_{L})(t_{1}+t_{2})/2} \cos\left[\Delta m(t_{2}-t_{1}) + \phi_{1} - \phi_{2} \right] \right\}$$

Quantum Gravity and CPT violation

Hawking suggested that at the microscopic level, in a QG picture, non trivial space-time fluctuation could give rise to decoherence effects, which would necessarily entail CPT violation

This idea has been applied, for instance, in a model by Ellis and collaborators, specifically for the neutral kaon system, introducing 3 CPTV parameters, α , β and γ , distorting the above mentioned decay intensity. Naively, one expects:

$$\alpha, \beta, \gamma = O\left(\frac{M_{K}^{2}}{M_{Plank}}\right) \approx 2 \times 10^{-20} GeV$$

KLOE-2 and QG

KLOE-2 becomes competive on γ and β with a few fb⁻¹ collected, and also On α with ≥ 20 fb⁻¹

The use of a inner tracker (blue points in figure) improves on the reachable limits by a factor ~ 3 (note the logarithmic scale!)

Summary

- A World-Wide endeavor to corner the Standard Model in ultra-rare decays (CERN, J-PARC, possibly FNAL) is in place
- The Theory-Experiment interplay is pushing precision tests (e.g. V_{us}, Ke2) below 0.5% precision
- There is a stream of results coming from last round of experiments....
-and new data are expected from OKA (Protvino) and KLOE-2 (Frascati) very soon
- The experimental programme in Kaon Physics "in the time of the LHC" is alive and kicking

Spare Material

ππ Scattering Lengths from Ke4 Decays

Combination of Ke4 and cusp measurements:

Ed Blucher @KAON09

KTeV Result: $\text{Re}(\epsilon'/\epsilon) = [19.2 \pm 1.1(\text{stat}) \pm 1.8(\text{syst})] \times 10^{-4}$ = $(19.2 \pm 2.1) \times 10^{-4}$

(KTeV 2003: $\text{Re}(\epsilon'/\epsilon) = [20.7 \pm 1.5(\text{stat}) \pm 2.4 \text{ (syst)}] \times 10^{-4}$)

Augusto Ceccucci

27

Kaon Rare Decays and NP

(courtesy of Christopher Smith)

C. The Z penguin (and its associated W box)

-
$$SU(2)_L$$
 breaking: $SM : v_u^2 Y_u^{*32} Y_u^{31} \sim m_t^2 V_{ts}^* V_{td}$
 $MSSM : v_u^2 A_{\tilde{u}}^{*32} A_{\tilde{u}}^{31} \sim m_t^2 \times O(1)?$
 $MFV : v_u^2 A_{\tilde{u}}^{*32} A_{\tilde{u}}^{31} \sim m_t^2 V_{ts}^* V_{td} |A_0 a_2^* - \cot \beta \mu|^2.$

- Relatively slow decoupling (w.r.t. boxes or tree).

GGI March 24, 2010

Augusto Ceccucci

Tevatron in Stretcher Mode

Jack Ritchie @ Fermilab PAC

Stretcher operating scenario

- With NOvA, n pulses to NuMI beam (1.33 s ramp to 120 GeV) + 2 pulses to Tevatron (1.67 s ramp to 150 GeV); $n \approx 18$

10% hit in protons to NOvA; no effect on µBooNE, mu2e, g-2, ...

- 96 Tp (1 TP = 10^{12} p) with 27.3 s cycle; duty factor = 94% (high duty factor is key to P996)
- Extraction hardware exists; 150 GeV is the normal Tevatron injection energy; 150 GeV extraction has been done before.
- If NOvA is off, higher intensity to P996 is possible.

Why here, why now?

- Existing Fermilab facilities (MI and Tevatron) provide an opportunity to make a decisive measurement.
 - Either New Physics will manifest, or severe constraints result.
- To be timely, this should compete head-to-head with CERN's NA-62 experiment.
- Tevatron stretcher operation is only viable if done soon after collider running ends.
- This measurement can provide important input for planning the Project-X Intensity Frontier program.
- This experiment will be a nucleation site for rebuilding the U.S. kaon-physics community, which is needed for Project-X.

D. Jaffe @ Fermilab PAC

Projected Timescale

Milestone/Activity	Time Period
Stage One Approval	Fall 2009
DOE Approval of Mission Need (CD-0)	Spring 2010
Approve Alt. Selection/Cost Range (CD-1)	Fall 2010
Baseline Review (CD-2)	End of 2011
Start Construction (CD-3)	Spring 2012
Begin Installation	Mid-2013
First Beam/Beam Tests	End of 2013
Complete Installation	Mid-2014
First Data (CD-4)	End of 2014

Stage-1 approval is necessary to build a strong collaboration, make progress on the design, compete with NA62 (run start mid-2012) and use the Tevatron in stretcher mode.

David E. Jaffe (BNL)

FNAL PAC Meeting

Stopped Kaon @ FNAL?

D. Bryman @ KAON09

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	FNAL "Booster" (20 kW)	FNAL Tevatron Stretcher 12%MI	FNAL Project- X
Events/yr*	40	200	325
Events/5yr Precision**	200 8	1000 3.6	1600 3

*Estimates based on extrapolation of BNL E949.

** Includes separate estimates of backgrounds in Regions I (10%) and 2 (75%).

Precise Measurement of $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$

Also limit on direct CP violation:

$$\frac{\mathrm{Br^+ - Br^-}}{\mathrm{Br^+ + Br^-}} = (-2.1 \pm 1.5 \pm 0.6)\%$$

GGI March 24, 2010

Augusto Ceccucci

Measurement of $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

