Implications of the positron/electron excesses on Dark Matter properties

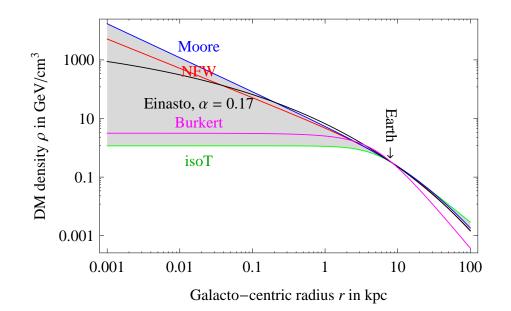
- 1) The data
- 2) DM annihilations?
- 3) γ and ν constraints
- 4) DM decays?

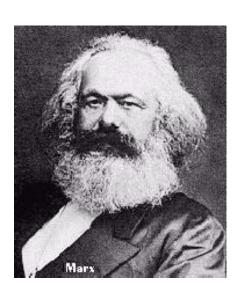
Alessandro Strumia, GGI, March 23, 2010

Indirect signals of Dark Matter DM DM annihilations in our galaxy might give detectable $\gamma,\ e^+,\ \bar p,\ \bar d.$

Mark A. Garlick / space-art.co.uk

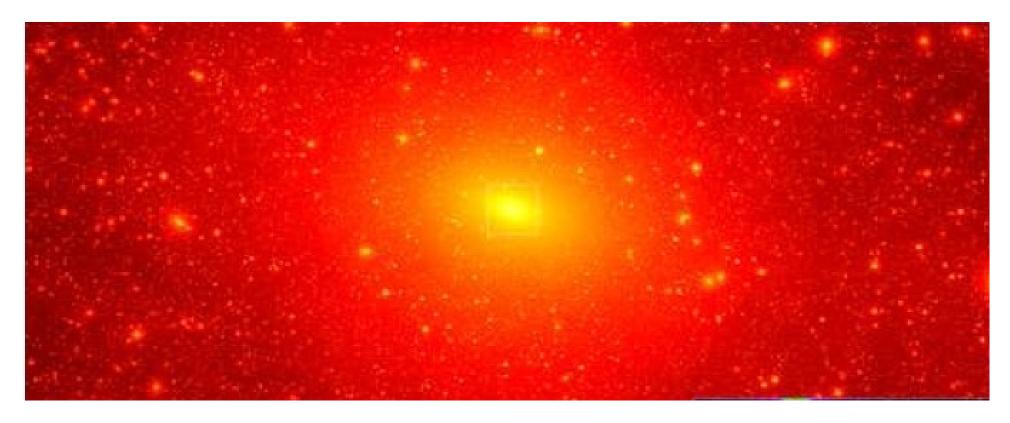
The galactic DM density profile


DM velocity: $\beta \approx 10^{-3}$. DM is spherically distributed with uncertain profile:


$$\rho(r) = \rho_{\odot} \left[\frac{r_{\odot}}{r} \right]^{\gamma} \left[\frac{1 + (r_{\odot}/r_s)^{\alpha}}{1 + (r/r_s)^{\alpha}} \right]^{(\beta - \gamma)/\alpha}$$

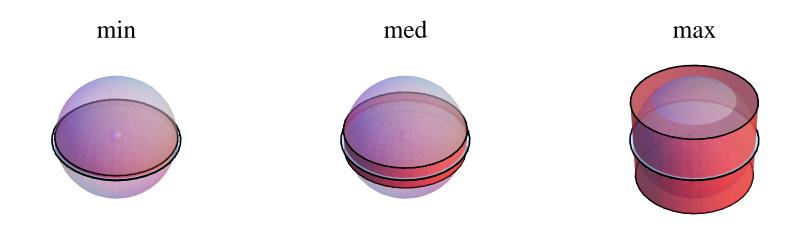
 $r_{\odot}=8.5\,\mathrm{kpc}$ is our distance from the Galactic Center, $\rho_{\odot}\equiv\rho(r_{\odot})\approx0.38\,\mathrm{GeV/cm^3}$,

DM halo model			eta	γ	r_s in kpc
Isothermal	'iso⊤'	2	2	0	5
Navarro, Frenk, White	'NFW'	1	3	1	20


 $\rho(r)$ is uncertain because DM is like capitalism according to Marx: a gravitational system (slowly) collapses to the ground state $\rho(r) = \delta(r)$. Maybe our galaxy, or spirals, is communist: $\rho(r) \approx$ low constant, as in isoT.

DM DM signal boosted by sub-halos?

N-body simulations suggest that DM might clump in subhalos:


Annihilation rate $\propto \int dV \ \rho^2$ increased by a boost factor $B=1 \leftrightarrow 100 \sim$ a few Simulations neglect normal matter, that locally is comparable to DM.

Propagation of e^{\pm} in the galaxy

$$\Phi_{e^+} = v_{e^+} f/4\pi$$
 where $f = dN/dV dE$ obeys: $-K(E) \cdot \nabla^2 f - \frac{\partial}{\partial E} (\dot{E}f) = Q$.

- Injection: $Q=\frac{1}{2}\left(\frac{\rho}{M}\right)^2\langle\sigma v\rangle\frac{dN_{e^+}}{dE}$ from DM annihilations.
- **Diffusion** coefficient: $K(E) = K_0(E/\text{GeV})^{\delta} \sim R_{\text{Larmor}} = E/eB$.
- Energy loss from IC + syn: $\dot{E} = E^2 \cdot (4\sigma_T/3m_e^2)(u_\gamma + u_B)$.
- **Boundary**: f vanishes on a cylinder with radius $R = 20 \,\mathrm{kpc}$ and height 2L.

Propagation model	δ	K_0 in kpc ² /Myr	L in kpc	V_{conv} in km/s
min	0.85	0.0016	1	13.5
med	0.70	0.0112	4	12
max	0.46	0.0765	15	5

Small diffusion in a small volume, or large diffusion in a large volume? Main result: e^{\pm} reach us from the Galactic Center only in the max case

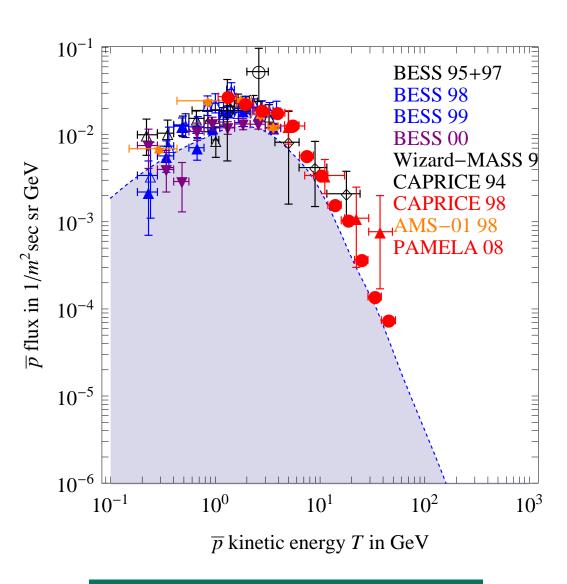
1

The data

ABC of charged cosmic rays

 e^{\pm} , p^{\pm} , He, B, C... Their directions are randomized by galactic magnetic fields $B\sim \mu {\rm G}$. The info is in their energy spectra.

We hope to see DM annihilation products as excesses in the rarer e^+ and \bar{p} .


Experimentalists need to bring above the atmosphere (with balloons or satellites) a spectrometer and/or calorimeter, able of rejecting e^- and p.

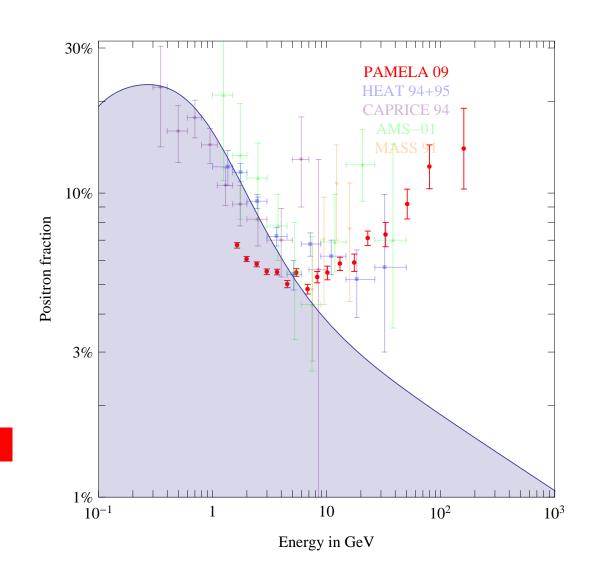
This is difficult above 100 GeV, also because CR fluxes decrease as $\sim E^{-3}$.

Energy spectra below a few GeV are \sim useless, because affected by solar activity.

\bar{p}/p : PAMELA

Consistent with background

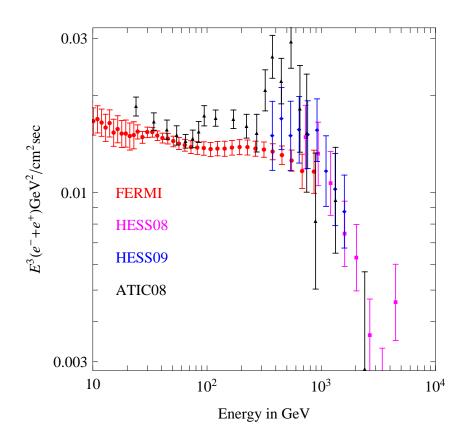
Future: PAMELA, AMS


$$e^{+}/(e^{+}+e^{-})$$
: PAMELA

PAMELA is a spectrometer + calorimeter sent to space. It can discriminate $e^+, e^-, p, \bar{p}, \ldots$ and measure E up to ~ 200 GeV.

 e^- are primaries and e^+ secondaries, so e^+/e^- decreases as the containment time $\tau \sim E^{-\delta}$.

Spectra below 10 GeV distorted by the present solar polarity.


Growing excess above 10 GeV

The PAMELA excess suggest that it might manifest in other experiments: if e^+/e^- continues to grow, it reaches $e^+ \sim e^-$ around 1 TeV...

$e^+ + e^-$: FERMI, ATICs, HESS, BETS

These experiments cannot discriminate e^{+}/e^{-} , but probe higher energy.

Hardening at 100 GeV + softening at 1 TeV

Are these real features? Likely yes. Hardening also in ATICs.

Systematic errors, not yet defined, are here incoherently added bin-to-bin to the smaller statistical error, allowing for a power-law fit.

... Just astrophysics?

- 1) Maybe secondaries are produced in the acceleration region: then e^+/e^- can grow with E, but also \bar{p}/p , B/C, Ti/Fe...
- 2) A pulsar is a neutron star with a rotating intense magnetic field. The resulting electric field ionizes and accelerates $e^- \to \gamma \to e^+ e^-$, that are presumably further accelerated by the pulsar wind nebula (Fermi mechanism).
- $E_{\text{pulsar}} = I\omega^2/2$, $\dot{E}_{\text{pulsar}} = -B_{\text{surface}}^2 R^2 \omega^4/6c^3 = \text{magnetic dipole radiation}$.
- The guess is $\Phi_{e^-} \approx \Phi_{e^+} \propto \epsilon \cdot e^{-E/M}/E^p$ where $p \approx 2$ and M are constants.

Known nearby pulsars (B0656+14, Geminga, ?) would need an unplausibly (?) large fraction ϵ of energy that goes into e^{\pm} : $\epsilon \sim 0.3$.

Test: angular anisotropies (but can be faked by local $B(\vec{x})$, pulsar motion).

2

Model-independent theory of DM indirect detection

Model-independent DM annihilations

Indirect signals depend on the DM mass M, non-relativistic σv , primary BR:

$$\mathsf{DM} \; \mathsf{DM} \to \left\{ \begin{array}{ll} W^+W^-, \quad ZZ, \quad Zh, \quad hh \quad \mathsf{Gauge/higgs} \; \mathsf{sector} \\ e^+e^-, \quad \mu^+\mu^-, \quad \tau^+\tau^- \quad \mathsf{Leptons} \\ b\bar{b}, \quad t\bar{t}, \quad q\bar{q} \quad \mathsf{quarks}, \; q = \{u,d,s,c\} \end{array} \right.$$

No γ because DM is neutral. Direct detection bounds suggest no Z.

The energy spectra of the stable final-state particles

$$e^{\pm}, \qquad p^{\mp}, \qquad (\overline{\nu}_{e,\mu,\tau}), \qquad \overline{d}, \qquad \gamma$$

depend on the polarization of primaries: $W_{L \text{ Or } T}$ and $\mu_{L \text{ Or } R}$.

The γ spectrum is generated by various higher-order effects:

$$\gamma = (Final State Radiation) + (one-loop) + (3-body)$$

We include FSR and ignore the other comparable but model dependent effects

The DM spin

Non-relativistic s-wave DM annihilations can be computed in a model-independent way because they are like decays of the two-body $\mathcal{D} = (DM DM)_{L=0}$ state.

If DM is a fundamental weakly-interacting particle, its spin J can be 0, 1/2 or 1, so the spin of \mathscr{D} can only be 0, 1 or 2:

$$1 \otimes 1 = 1$$
, $2 \otimes 2 = 1_{asymm} \oplus 3_{symm}$, $3 \otimes 3 = 1_{symm} \oplus 3_{asymm} \oplus 5_{symm}$
So:

• \mathscr{D} can have spin 0 for any DM spin. It couples to vectors $\mathscr{D}F_{\mu\nu}^2$ and to higgs $\mathscr{D}h^2$, not to light fermions: $\mathscr{D}\ell_L\ell_R$ is m_ℓ/M suppressed.

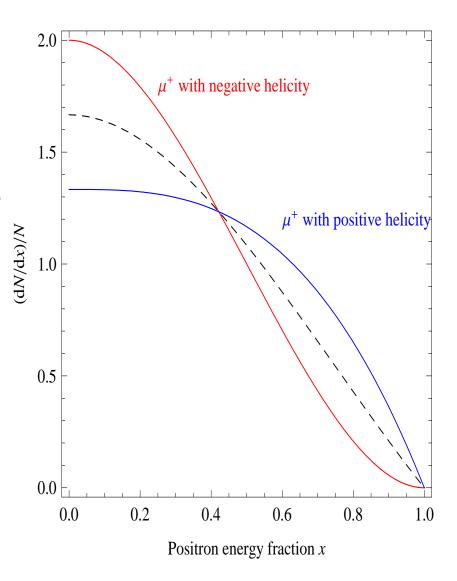
• \mathscr{D} can have spin 1 only if DM is a Dirac fermion or a vector. PAMELA motivates a large $\sigma(\text{DM DM} \to \ell^+\ell^-)$: only possible for $\mathscr{D}_{\mu}[\bar{\ell}\gamma_{\mu}\ell]$.

DM annihilations into fermions f

Scalar an only couple as

$$\mathscr{D}f_Lf_R+\text{h.c.}=\mathscr{D}\bar{\Psi}_f\Psi_f$$

with $\Psi_f=(f_L,\bar{f}_R)$ in Dirac notation. It means zero helicity on average, and is typically **suppressed by** m_f/M . Huge weak corrections if $M\gg M_W$.


• Vector \mathscr{D}_{μ} can couple as

$$\mathscr{D}_{\mu}[ar{f}_L\gamma_{\mu}f_L]$$
 or $\mathscr{D}_{\mu}[ar{f}_R\gamma_{\mu}f_R]$

i.e. fermions with Left or Right helicity. Decays like $\mu^+ \to \bar{\nu}_{\mu} e^+ \nu_e$ give e^+ with

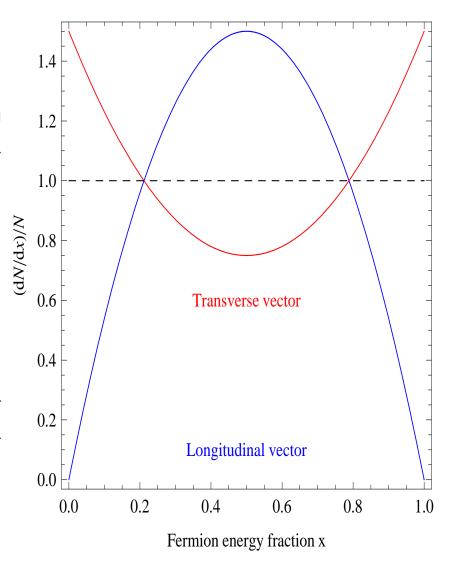
$$dN/dx|_L = 2(1-x)^2(1+2x)$$

$$dN/dx|_R = 4(1-x^3)/3$$

DM annihilations into W, Z

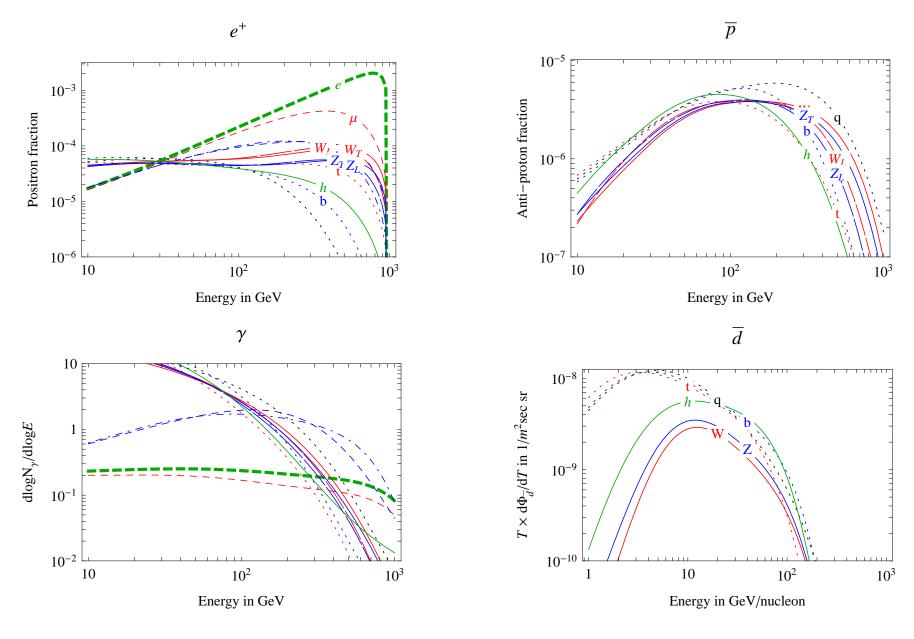
The effective interactions

$$\mathscr{D}F_{\mu\nu}\epsilon_{\mu\nu\rho\sigma}F_{\rho\sigma}$$
 and $\mathscr{D}F_{\mu\nu}^2$


give vectors with Tranverse polarization (with different unobservable helicity correlations), that decay in $f\bar{f}$ with $E=x\,M$ as:

$$dN/d\cos\theta = 3(1+\cos^2\theta)/8$$

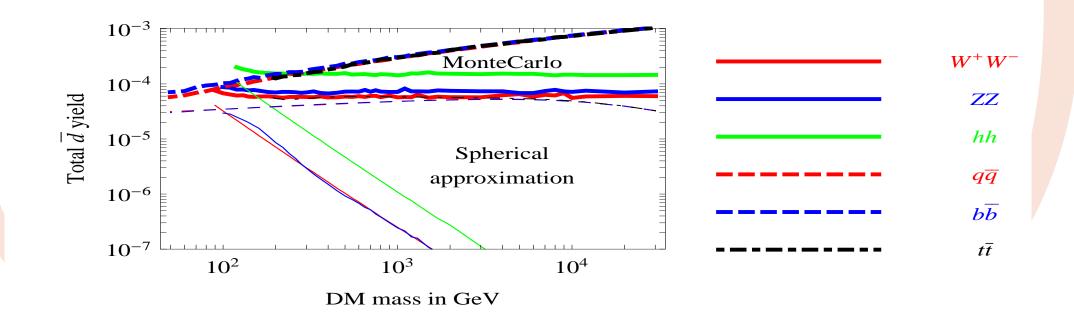
$$dN/dx = 3(1 - 2x + 3x^2)/2,$$


• $\mathcal{D}A_{\mu}^2$ gives Longitudinal vectors (acconting for DM annihilations into Higgs Goldstones), that decay as

$$dN/d\cos\theta = 3(1 - \cos^2\theta)/4$$
$$dN/dx = 6x(1 - x).$$

Final state spectra for M = 1 TeV

Two-body primary channels: $e, \mu_L, \mu_R, \tau_L, \tau_R, W_L, W_T, Z_L, Z_T, h, q, b, t$.


Annihilations into leptons give qualitatively different energy spectra.

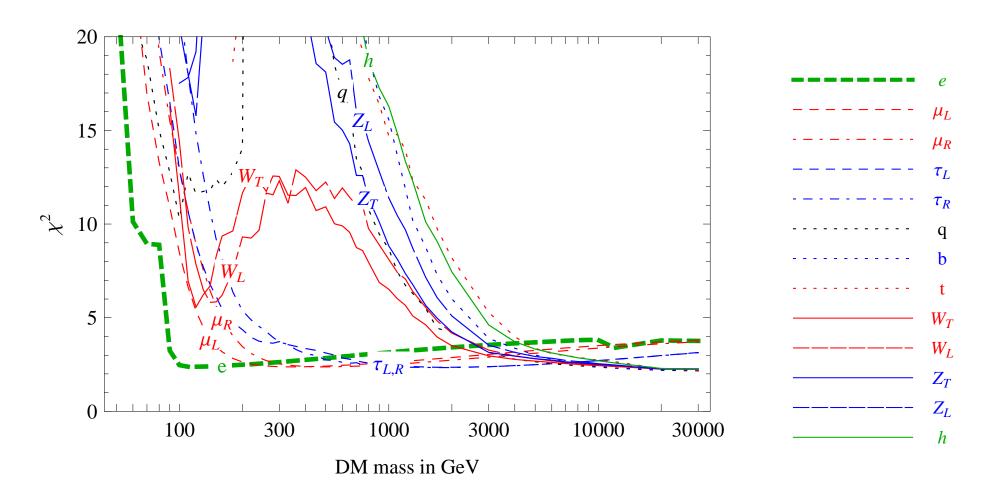
Anti-deuterium

 \bar{d} forms when DM produces a \bar{p} and a \bar{n} with momentum difference below $p_0 \approx 160\,\mathrm{MeV}$. The analytical appoximation assuming spherical-cow events

$$\frac{dN_{\bar{d}}}{dT_{\bar{d}}} = \frac{p_0^3}{3k_{\bar{d}}m_p} \left(\frac{dN_{\bar{n},\bar{p}}}{dT}\right)_{T=T_{\bar{d}}/2}^2$$

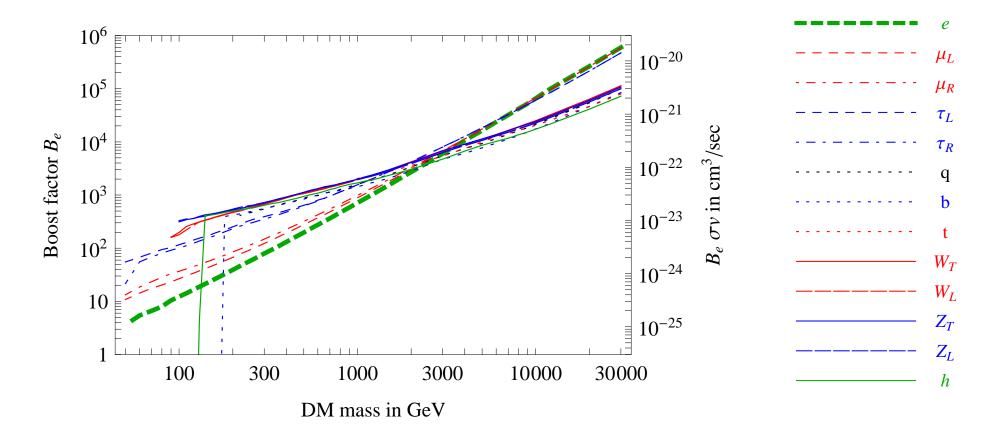
misses the jet structure of events, such that $N_{\bar d} \propto 1/M^2$ is very wrong. Relativity demands that higher M boosts $\bar p, \bar n, \bar d$, leaving $N_{\bar d} \sim$ constant. Running PYTHIA on GRID we find orders of magnitude enhancement:

3


Implications of the data

Fitting procedure

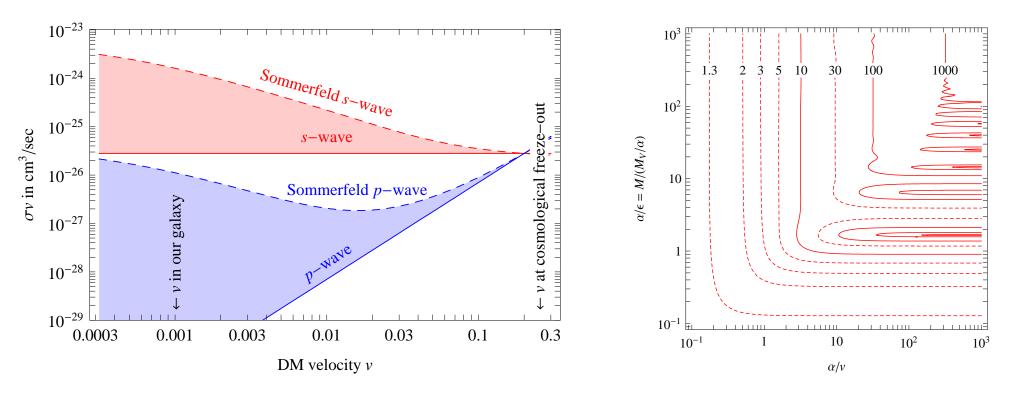
• PAMELA and FERMI systematic uncertainties?


- multiply each expected e^+ , e^- , p^+/p^- backgrounds times $A_i E^{p_i}$ with free A_i and $p_i = 0 \pm 0.05$, and marginalize over A_i , p_i .
- **solar modulation** as uncorrelated uncertainty below 20 GeV: $\pm 6\%$ at 10 GeV, $\pm 30\%$ at 1 GeV.
- DM halo: marginalize over isoT/NFW/Moore with flat prior.
- **Propagation**: marginalize over MIN/MED/MAX with flat prior. (MED is favored?).
- Statistical techniques: as reviewed in appendix B of hep-ph/0606054.

Fitting PAMELA positron data

If M > TeV everything fits. At smaller M only annihilations into leptons or W.

The σv needed for PAMELA



 σv larger than what suggested by cosmology by a factor B_e

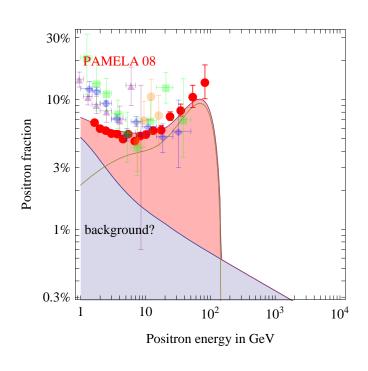
The cosmological σv

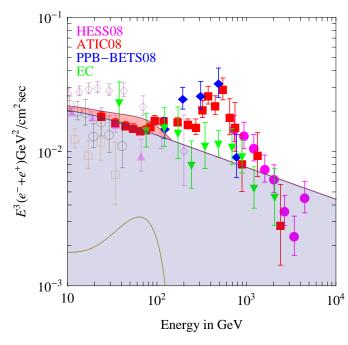
Thermal DM reproduces the cosmological DM abundance $\Omega_{\rm DM}h^2\approx 0.11$ for $\sigma v\approx 3\times 10^{-26}\,{\rm cm}^3/{\rm sec} \qquad {\rm around\ freeze-out,\ i.e.}\ v\sim 0.2.$

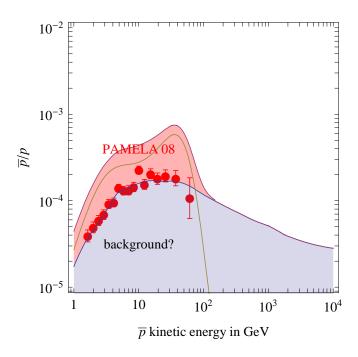
up to co-annihilations and resonances. Possible extrapolations to $v \sim 10^{-3}$:

The Sommerfeld effect is the quantum analogous of this classical effect: the sun attracts slower bodies, enhancing its cross section: $\sigma = \pi R_{\odot}^2 (1 + v_{\rm escape}^2/v^2)$

If DM is thermal PAMELA needs s-wave + Sommerfeld and/or a boost factor (DM in sub-halos has small velocity dispersion: Sommerfeld boosts the boost)

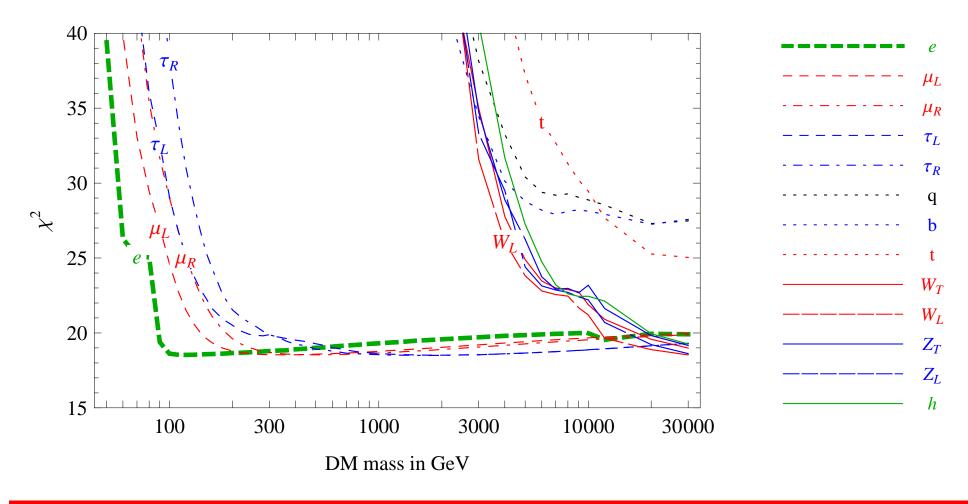

Non thermal DM


E.g. a wino that with $M \approx 100 \, \text{GeV}$ annihilates into $W_T^+ W_T^-$ with the correct


$$\sigma v = \frac{g_2^4 (1 - M_W^2 / M^2)^{3/2}}{2\pi M^2 (2 - M_W^2 / M^2)^2}$$

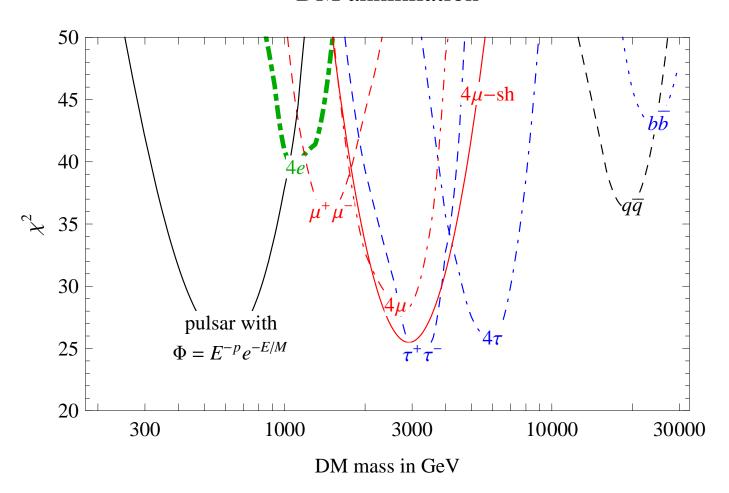
Problematic with PAMELA \bar{p} , reconsidered by Kane et al., excluded by FERMI.

DM with M = 150 GeV that annihilates into W^+W^-



Fitting PAMELA e^+ anti \bar{p} data

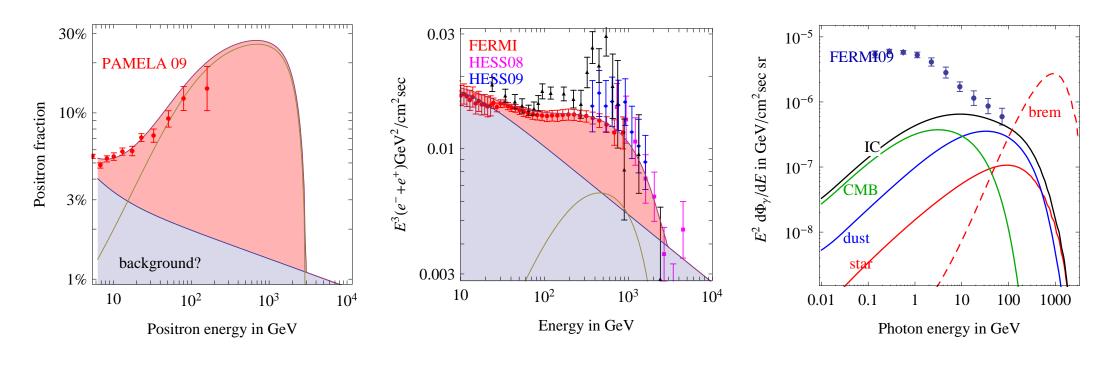
Assuming equal boost & propagation for e^+ and \bar{p} (otherwise everything goes):



DM must annihilate into leptons or into W, Z with $M \gtrsim 10$ TeV

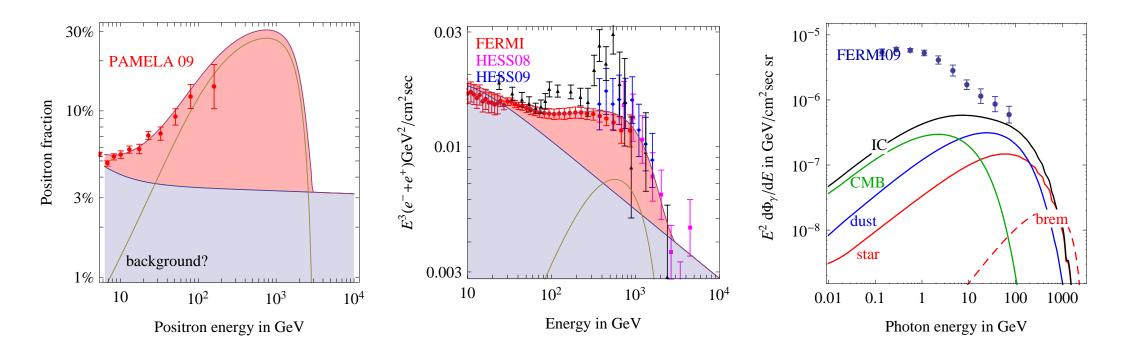
Indeed a W at rest gives \bar{p} with $E_p > m_p$. So a W with energy E = M gives $E_p > M m_p / M_W$, above the PAMELA threshold for $M > 10 \, \text{TeV}$.

Fitting PAMELA e^+ and FERMI $e^+ + e^-$



Compatible if DM has few TeV mass and annihilates into some leptons

Dark Matter best fit


DM with M = 3. TeV that annihilates into $\tau^+\tau^-$ with $\sigma v = 1.8 \times 10^{-22}$ cm³/s

New DM theories

(Neutralinos and standard DM models can hardly fit the e^{\pm} excesses). DM is charged under a dark gauge group, to get the Sommerfeld enhancement. DM annihilates into the new vector. If light, $m \lesssim$ GeV, it can only decay into the lighter leptons. Large $\sigma({\rm DM} \ {\rm DM} \to \ell^+\ell^+\ell^-\ell^-)$ obtained.

DM with M = 3. TeV that annihilates into 4μ with $\sigma v = 7.7 \times 10^{-23}$ cm³/s

Smoother e^\pm spectrum good for FERMI γ brehmstralung reduced from $\ln M/m_\ell$ to $\ln m/m_\ell$

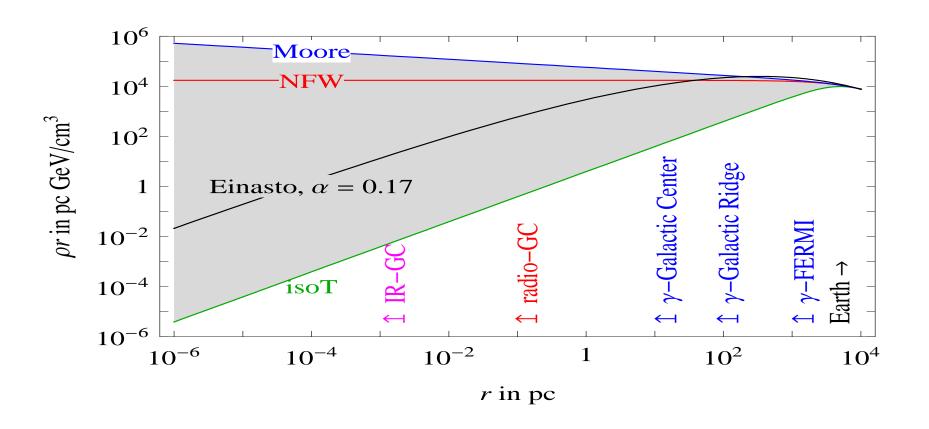
 γ has a mixing θ with the new light vector, giving a $\sigma({\sf DM}\ N)$ which is too large if elastic or invisible or consistent with DAMA if inelastic thanks to a $\Delta M \gtrsim 100$ keV splitting among Re DM and Im DM induced by the dark higgs.

Sensitivity to θ , m can be best improved by e beam-dump experiments.

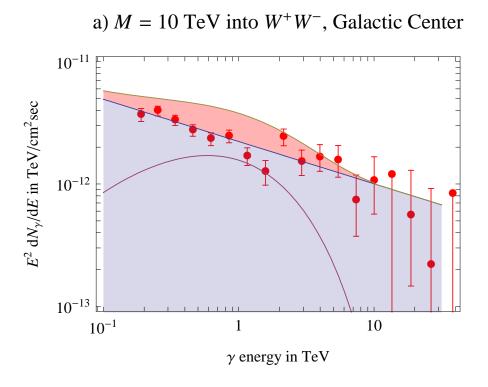
3

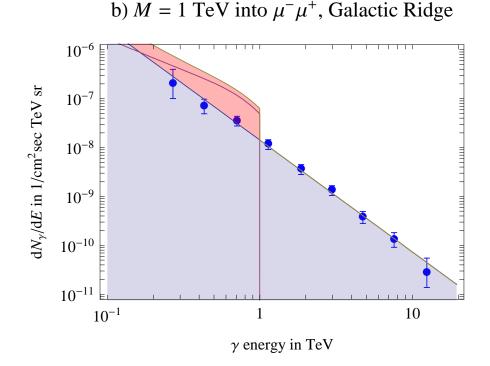
Bounds from γ, ν indirect detection

Bounds on DM from γ and ν


DM DM $\rightarrow \ell^+\ell^-$ is unavoidably accompanied by photons:

- Bremstrahlung from ℓ^{\pm} (if $\ell = \tau$ also $\tau \to \pi^0 \to \gamma \gamma$). Largest $E_{\gamma} \sim M$, probed by HESS.
- Inverse Compton: $e^{\pm}\gamma \to e^{\pm}\gamma'$ scatterings on CMB and star-light: $\dot{E} \propto u_{\gamma}$. Intermediate $E_{\gamma'} \sim E_{\gamma}(E_e/m_e)^2 \sim$ 50 GeV being probed by FERMI.
- Synchrotron: e^{\pm} in the galactic magnetic fit: $\dot{E} \propto u_B = B^2/2$. Small $E_{\gamma} \sim 10^{-6}\,\text{eV}$, probed by radio-observations: Davies, VLT, WMAP.


γ from bremstrahlung


$$\frac{d\Phi_{\gamma}}{d\Omega\,dE} = \frac{1}{2} \frac{r_{\odot}}{4\pi} \frac{\rho_{\odot}^2}{M_{\rm DM}^2} \mathbf{J} \langle \sigma v \rangle \frac{dN_{\gamma}}{dE}, \qquad \mathbf{J} = \int_{\rm line-of-sight} \frac{ds}{r_{\odot}} \left(\frac{\rho(r)}{\rho_{\odot}}\right)^2$$

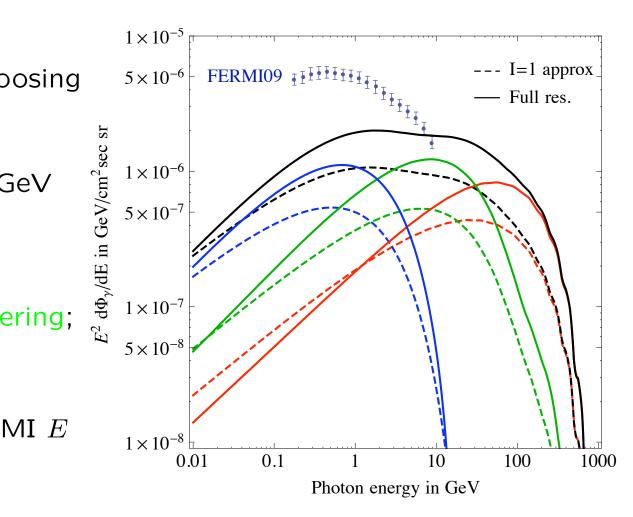
$$\langle \textbf{\textit{J}} \rangle_{\Delta\Omega} = \begin{cases} \text{NFW Einasto isoT region} & \Delta\Omega \\ 14700 & 7600 & 14 & \text{Galactic Center } 1 \cdot 10^{-5} \\ 2400 & 3000 & 14 & \text{Galactic Ridge } 3 \cdot 10^{-4} \end{cases}$$

HESS observations

DM signals computed for NFW and $\sigma v = 10^{-23} \, \text{cm}^3/\text{sec.}$ We **conservatively** impose that no point is exceeded at 3σ : so the 1st example above is allowed.

Other bounds from DM-dominated dwarf spheroidals around the Milky Way.

Inverse Compton


Galactic e^{\pm} diffuse $(I \neq 1)$ while loosing most of their energy as

$$e\gamma
ightarrow e'\gamma'$$
 $E_{\gamma'} \sim E_{\gamma} \frac{E_e^2}{m_e^2} \sim 30 \, {\rm GeV}$

Initial γ :

- i) $E_{\gamma} \sim \text{ eV from star-light};$
- ii) $E_{\gamma} \sim 0.1 \, \mathrm{eV}$ from dust rescattering;
- iii) $E_{\gamma} \sim \text{meV from CMB}$.

 $IC\gamma$ dominate over FSR γ at FERMI E

FERMI full-sky observations

Point sources and hadron contamination (around 100 GeV) still present. **No clear excess**. Robust bounds imposing DM < exp in all sky and energy regions:

IC bound on $\sigma v(DM DM \rightarrow \mu^+ \mu^-)$ in $10^{-23} \text{cm}^3/\text{sec}$ for M = 1.3 TeVisothermal DM profile with L = 4 kpc Galactic latitude b in degrees 14 13 15 17 $-\bar{1}\bar{0}$ -20-45 -90

global fit:
$$\chi^2 = \sum_{i}^{\text{all bins}} \frac{(\Phi_i^{\text{DM}} - \Phi_i^{\text{exp}})^2}{\delta \Phi^2} \Theta(\Phi_i^{\text{DM}} - \Phi_i^{\text{exp}}) < 9$$

 $-20-100\ 10\ 20$

Galactic longitude ℓ in degrees

-45

-180

-135

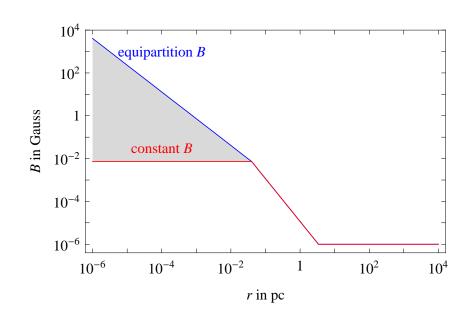
-90

ν observations

 $^{(}\overline{
u}_{\mu}^{)}$ scattering in the rock below the detector produce trough-going μ^{\pm}

$$\Phi_{\mu} \approx \frac{r_{\odot} \langle \sigma v \rangle}{8\pi} \frac{\rho_{\odot}^2}{M^2} \frac{3G_{\mathsf{F}}^2 M^2 p}{\pi \alpha_{\mu}} \cdot J \cdot \Delta \Omega \cdot \int_0^1 dx \ x^2 \frac{dN_{\nu}}{dx}$$

where $p\sim 0.125$ is the momentum fraction carried by each quark in the nucleon and $\alpha_{\mu}=0.24\,\text{TeV/kmwe}=-dE/d\ell$ is the μ^{\pm} energy loss.


The total μ^{\pm} rate negligibly depends on the DM mass M.

SuperKamiokande got the dominant bounds in cones up to 30° around the GC

$$\Phi_{\mu} < 0.02/{\rm cm}^2 {\rm s}$$

Radio observations

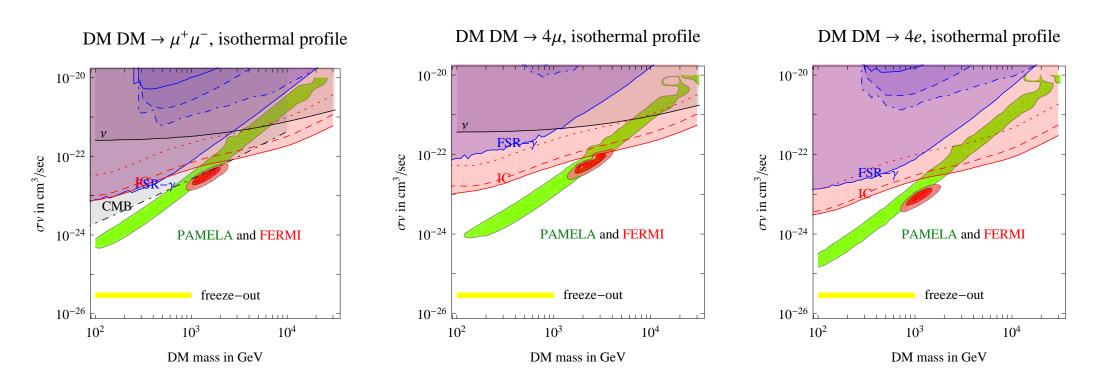
Around the GC magnetic fields B contain more energy than light, diffusion and advection seem negligible, so all the e^{\pm} energy E goes into synchrotron radiation. The unknown B only determines the maximal $\nu_{\rm syn}$:

$$\frac{dW_{\rm syn}}{d\nu} \approx \frac{2e^3B}{3m_e} \delta(\frac{\nu}{\nu_{\rm syn}} - 1) \qquad \text{where} \qquad \nu_{\rm syn} = \frac{eBE^2}{4\pi m_e^3} = 1.4 \, {\rm MHz} \frac{B}{\rm G} \left(\frac{p}{m_e}\right)^2.$$

Davies 1976 oservations at the lower $\nu = 0.408\,\text{GHz}$ give the robust and dominant bound as the observed GC radio-spectrum is harder than synchrotron:

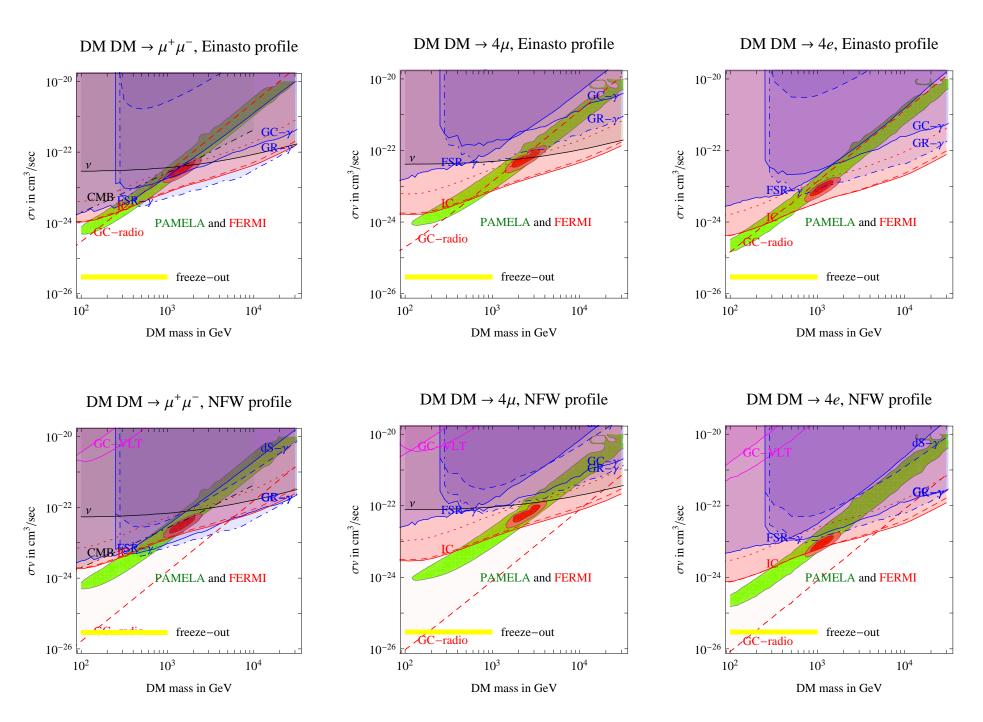
$$\nu \frac{dW_{\rm syn}}{d\nu} = \frac{\sigma v}{2M^2} \int_{\rm 4''\ cone} dV\ \rho^2\ E(\nu)\ N_e(E(\nu)) < 4\pi r_{\odot}^2 \times 2 \cdot 10^{-16} \, \frac{\rm erg}{\rm cm^2\,s}$$

BIG uncertainty in the DM density ρ at 1pc from the GC: NFW or ...?


Bounds from cosmology

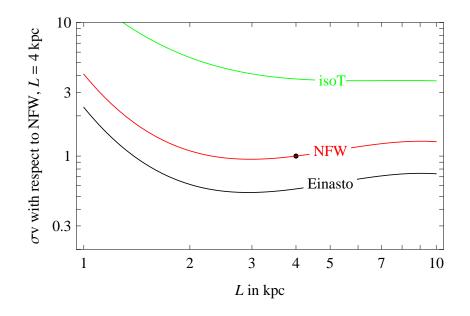
DM annihilation rate $\propto
ho^2$ is enhanced in the early universe: its products can

- 1. affect BBN at $T \sim \text{MeV}$ fragmenting ⁴He, D, ³He... Primordial abundances are not safely known.
- 2. affect CMB reionizing H after matter/radiation decoupling, $z \lesssim 1000$. $13.6 \,\mathrm{eV} \times n_e \ll u_\gamma$ ionizes all H changing CMB anisotropies
- 3. heat gas after structure formation $z\sim 10$. Depends on unknown non-linear small-scale DM clustering.
- 1, 2 and 3 give comparable constraints at the PAMELA-level, $\sigma v \sim 10^{-23} \, \text{cm}^3/\text{sec.}$ 2 is stronger and robust and can be improved by PLANCK.


e^\pm signals vs bounds

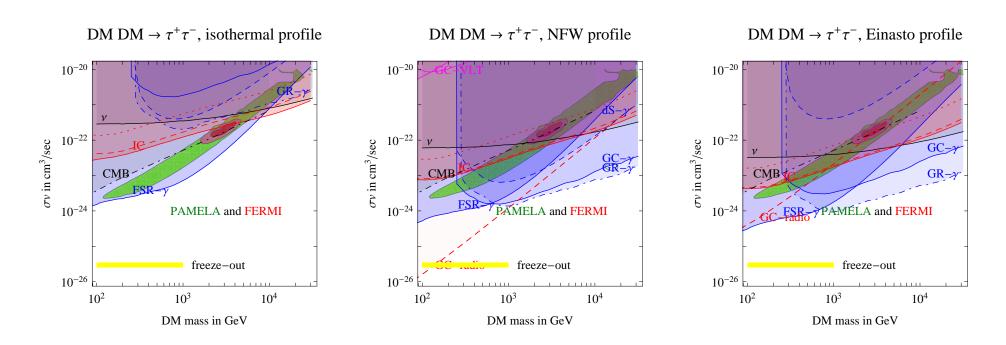
All at 3σ : region allowed by PAMELA e^+ and FERMI $e^+ + e^-$ vs bounds on: • FSR- γ from FERMI full sky, HESS Galactic Center, Ridge, Dwarf Spheroidals; • IC- γ for L=4,2,1 kpc; • CMB; • ν ; • radio observations of the GC

 e^{\pm} excesses can be DM DM $ightarrow 2\mu, 4\mu, 4e$ if $\overline{
ho}$ is isothermal


not if Einasto or NFW

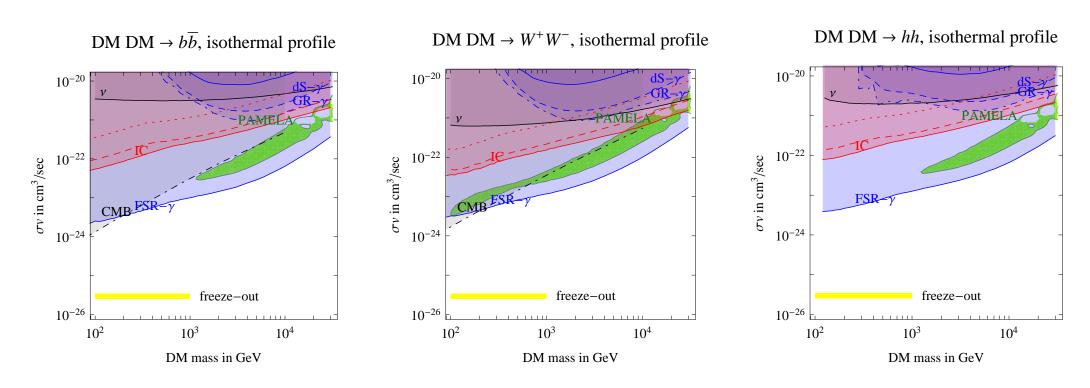
The problem is no longer only at small scales not tested by N-body simulations

Caveats


 $L=1~{\rm kpc}$ at the GC (ok?) would relax NFW or Einasto down to isoT: DM annihilations outside the diffusion volume contribute to FSR, but not to IC:

Disavored by a) global fits of charged CR; b) abundances of CR with $\tau \sim \tau_{\text{diff}}$; c) FERMI sees γ away from the GC. d) realistic smooth growth of K(z).

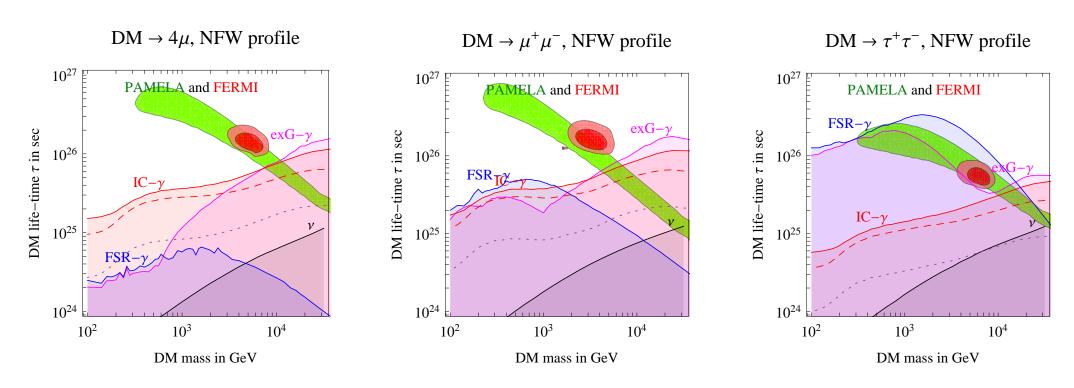
Can synchrotron dominate over IC? Only around the GC.


not if τ channels

Too many $\tau \to \pi^0 \to \gamma$: FSR direct exclusion for any reasonable profile.

not if non-leptonic channels

Non-leptonic channels give many $FSR-\gamma$ and can at most be subdominant:


The SUSY wino or Minimal Dark Matter no longer can fit PAMELA

4

DM decays

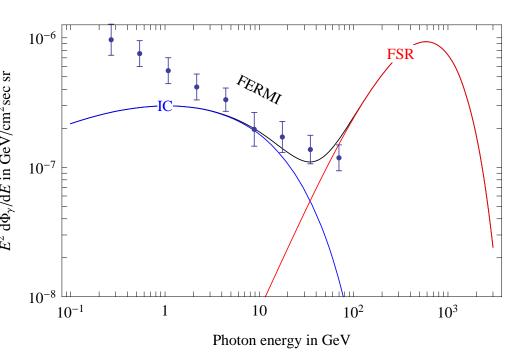
DM decays are compatible with NFW

If instead DM **decays** with life-time τ , replace $\rho^2 \sigma v / 2M^2 \to \rho^1 / M \tau$:

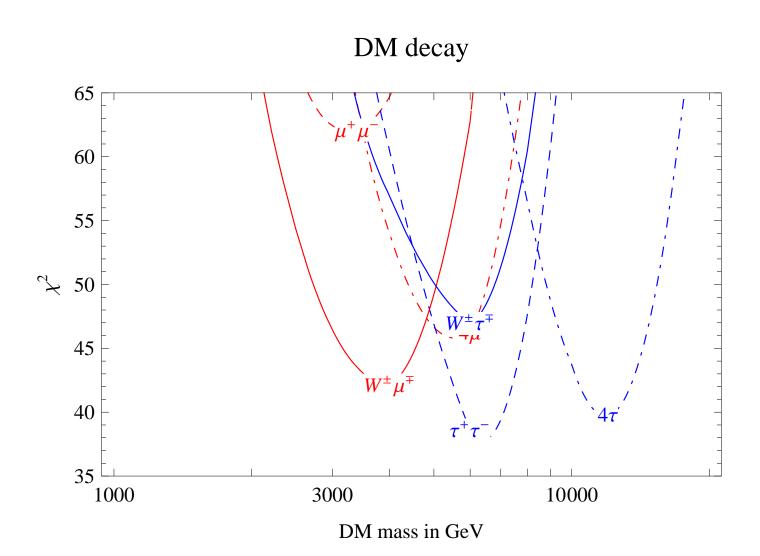
With DM decay PAMELA/FERMI are allowed for all DM density profiles

DM decays are compatible with cosmology

Weak bounds from BBN and CMB, again due to $\rho^2(t) \to \rho^1(t)$.


The extra-galactic γ flux is significant:

$$rac{\Phi_{
m cosmo}}{\Phi_{
m galactic}} \sim rac{
ho_{
m cosmo} R_{
m cosmo}}{
ho_{\odot} R_{\odot}} \sim 1$$


and can be computed reliably: no dependence on small-scale DM clustering.

The 'exG- γ ' bound on FSR+IC is competitive, helped by FERMI who already extracted (?) the diffuse γ flux, a few times below the less bright sky.

DM
$$\rightarrow \tau^+ \tau^-$$
 with $M = 6$. TeV and $\tau = 5.4 \times 10^{25}$ sec

PAMELA and FERMI as DM decay

e^{\pm} excesses suggest SU(2) technicolor!?

DM decays suggests $M \sim \text{few TeV}$, which naturally implies the observed

$$5\sim rac{
ho_{
m DM}}{
ho_b}\sim rac{M}{m_p}\left(rac{M}{T_{
m dec}}
ight)^{3/2}e^{-M/T_{
m dec}}$$

if the DM density is due to a baryon-like asymmetry kept in thermal equilibrium by weak sphalerons down to $T_{\rm dec}\sim 200\,{\rm GeV}$.

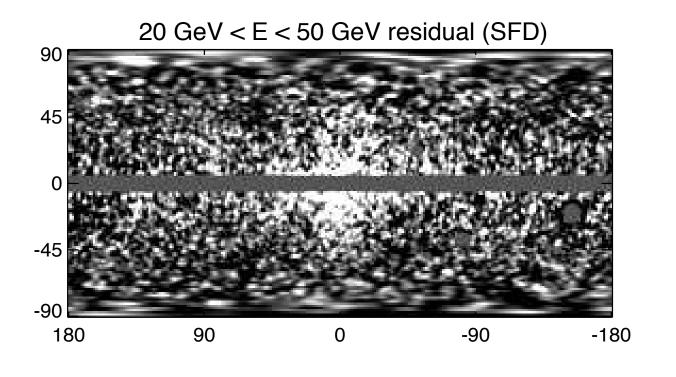
Possible if DM is a chiral fermion or is made of chiral fermions.

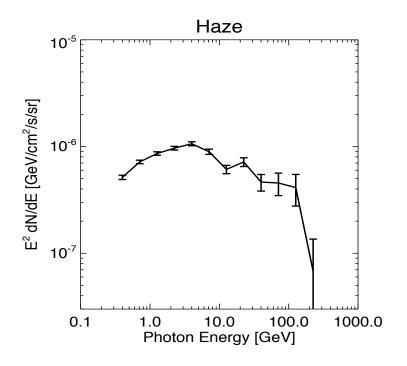
The DM mass is $M \sim \lambda v \sim 2$ TeV for $\lambda \sim 4\pi$: strong dynamics a-la technicolor. GUT-suppressed dimension 6 4-fermion operators give $\tau \sim M_{\rm GUT}^4/M^5 \sim 10^{26}\,\rm s$. If the technicolor group is SU(2) with techni-q Q=(2,0) under SU(2) $_L\otimes$ U(1) $_Y$

- DM is a QQ bound state, scalar and SU(2)-singlet as suggested by data.
- A 4-fermion $QQ\bar{L}L$ operator allows a slow $DM \to \ell^+\ell^-$: no $\Pi \simeq W_L$ involved.
- ullet Usual problems of technicolor: minimal correction to the S parameter...

Conclusions

The PAMELA, FERMI-ATIC, HESS e^{\pm} excesses attracted most attention. They could be due to astrophysics or to unexpected DM as follows:


- \times 2e channel gave the ATIC peak, not the FERMI $e^+ + e^-$ excess.
- \times τ channels give too much γ .
- \times W, Z, q, b, h, t channels can only fit PAMELA e^+ and give too much γ .
- 3 TeV DM that annihilates in 2μ , 4μ , 4e. But only if the injection term is quasi constant: i) Isothermal profile; ii) DM decays.


DM predicts that the e^+ fraction must grow. DM IC- γ must be in FERMI sky.

Next: FERMI, PAMELA, AMS, PLANCK

The FERMI haze?

Some theorists claim they see a quasi-spherical 'FERMI haze' excess:

FERMIons disagree [arXiv:1003.0002]