Up-type flavor violation

Gilad Perez

Weizmann Institute

Indirect Searches for NP @ the time of LHC

Outline

- Brief Intro', the importance of uFCNC measurements.
- $lacktriangledown D \bar{D}$ mixing, data & the SM.
- Generic & model independent bounds, covariant formalism.
- Some model dependent info'.
- Third generation, covariant, flavor violation & the LHC.

Conclusions / outlook.

SM way to induce flavor conversion & CPV is unique.

♦ SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

SM way to induce flavor conversion & CPV is unique.

Absence of observed deviation from SM predictions implies severe bound on new physics (NP).

lack Most of precise information involves K, B mesons, linked to down type FCNC.

Most severe hierarchy problem is induced by the top sector, which is indeed extended in most of natural NP models.

Up flavor violation is interesting

lronically, top sector, which also dominates CPV & custodial breaking, is poorly probed (also charm till recently).

Up flavor violation is interesting

lronically, top sector, which also dominates CPV & custodial breaking, is poorly probed (also charm till recently).

Down type flavor violation can be shut off via alignment, where anarchic NP is diagonal in the down mass basis.

Up flavor violation is interesting

lronically, top sector, which also dominates CPV & custodial breaking, is poorly probed (also charm till recently).

Down type flavor violation can be shut off via alignment, where anarchic NP is diagonal in the down mass basis.

Up sector

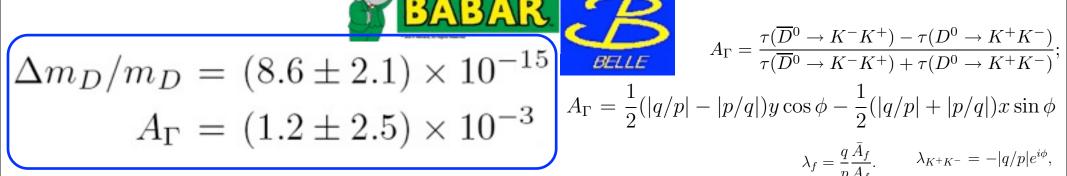
$D^0 - \bar{D}^0$ Mixing

Precision Measurements in D mixing

lacktriang Huge recent progress in measurement of mass splitting & CP violation (CPV) in the D system:

Precision Measurements in D mixing

lacktriangle Huge recent progress in measurement of mass splitting & CP violation (CPV) in the D system:



Precision Measurements in D mixing

lacktriang Huge recent progress in measurement of mass splitting & CP violation (CPV) in the D system:

$$\Delta m_D/m_D = (8.6 \pm 2.1) \times 10^{-15} \\ A_{\Gamma} = (1.2 \pm 2.5) \times 10^{-3} \\ A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^-K^+) - \tau(D^0 \to K^+K^-)}{\tau(\overline{D}^0 \to K^-K^+) + \tau(D^0 \to K^+K^-)}; \\ A_{\Gamma} = \frac{1}{2} (|q/p| - |p/q|) y \cos \phi - \frac{1}{2} (|q/p| + |p/q|) x \sin \phi \\ \lambda_f = \frac{q \, \overline{A}_f}{p \, A_f}. \quad \lambda_{K^+K^-} = -|q/p| e^{i\phi},$$

System parameters roughly determined (HFAG):

$$x = (1.00 \pm 0.25) \times 10^{-2},$$

$$y = (0.77 \pm 0.18) \times 10^{-2},$$

$$1 - |q/p| = +0.06 \pm 0.14,$$

$$\phi = -0.05 \pm 0.09,$$

$$m \equiv \frac{m_1 + m_2}{2}, \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2},$$
 $x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$

Absence of D CPV - Another SM Victory

SM: D system is controlled by 2 gen' physics \Rightarrow CP conserving

$$\mathcal{O}\left(\frac{m_c^2}{m_b^2} \times \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) = 10^{-4}$$

Absence of D CPV - Another SM Victory

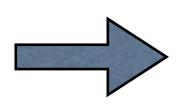
SM: D system is controlled by 2 gen' physics \Rightarrow CP conserving

Bottom contribution is down by:

$$\mathcal{O}\left(\frac{m_c^2}{m_b^2} \times \frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) = 10^{-4}$$

If x is due to NP then it missed a chance to revealed itself in $\mathcal{O}(1)$ CPV. (

What do we know about the NP flavor sector, model independently?



$\Delta F=2$ status Isidori, Nir, GP (10)

Operator	Bounds on	Λ in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$-\frac{1}{(\bar{s}_L \gamma^\mu d_L)^2}$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$-(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	1.1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	و	3.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

$\Delta F=2$ status sides

Isidori,	Nir,	GP	(10)
,	,		` '

Operator	Bounds on	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	3	3.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

$\Delta F=2$ status Isidori, N

Isidori, Nir, GP (10)

	Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on c	$_{ij} (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
X	$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
1	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
	$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(ar{b}_L \gamma^\mu s_L)^2$	1.1	$\times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7	$\times 10^2$	1.3 >	$\times 10^{-5}$	Δm_{B_s}
	$(\bar{t}_L \gamma^\mu u_L)^2$					

D-system falls only behind the K-one

Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	3.7	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$?		?	?

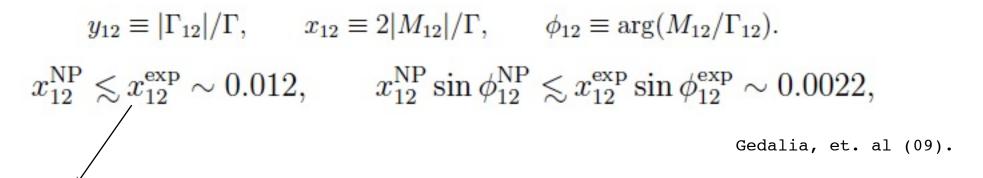
D-system fall

t-FCNC stay tuned!

ind the K-one

The power of CPV in the D system

Assuming no direct CP: [Golowich, Pakvasa & Petrov (07); Kagan and M. D. Sokolof (09)]

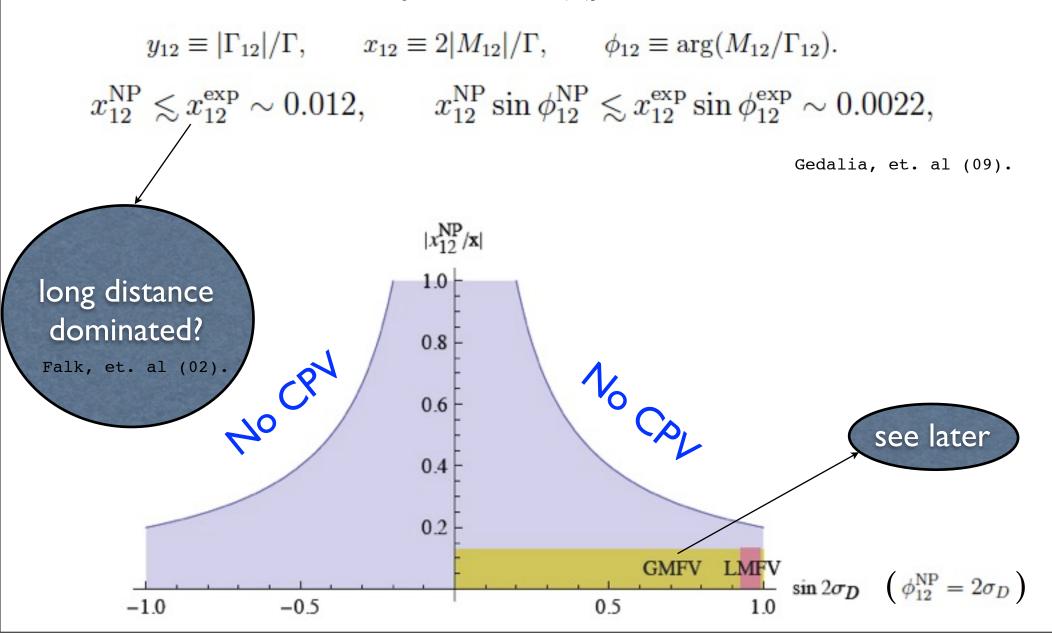


long distance dominated?

Falk, et. al (02).

The power of CPV in the D system

Assuming no direct CP: [Golowich, Pakvasa & Petrov (07); Kagan and M. D. Sokolof (09)]



Operator	Bounds on A	Λ in TeV $(c_{ij}=1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	${ m Im}$	Re	Im	
$\overline{(\bar{s}_L \gamma^\mu d_L)^2}$	9.8×10^2	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	$.1 \times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3	$.7 \times 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work?

Operator	Bounds on .	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$-(ar{s}_L\gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	$\boxed{5.1\times10^2}$	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	$.1 \times 10^{2}$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	3	$.7 \times 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work?

Operator	Bounds on A	Λ in TeV $(c_{ij}=1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(s_L\gamma, a_L)$	20102	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$-m_K$, ϵ_K
$(\overline{L})(S_L w_R)$	1.0 × 10 ⁺	3.2×10^5	6.9×10^{-9}	2.6×10	
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\sigma_{\Gamma} \mid \omega_{\Gamma})^2$	F 1 × 10 ²	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	\mathcal{L}_d , $\mathcal{S}_{\psi}K_S$
$(\overline{h} - J)/\overline{J}$	1.0 / 10	3.6×10^{3}	5.6×10^{-1}	1.7 × 10	K_S
(or or)	1	1×10^2	7.6	$\times 10^{-5}$	D_{S}
$(\bar{h}, \bar{h}, h$	ა.	$t \times 10^2$	1.3	X 10	Ama
$(\bar{t}_L \gamma^\mu u_L)^2$					

What if down alignment is at work?

Operator	Bounds on A	Λ in TeV $(c_{ij}=1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \ {\rm TeV})$	Observables
	Re	Im	Re	Im	
$(s_L\gamma, a_L)$	0.0102	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\underline{-}_{m_{\ell}K}, \epsilon_{K}$
$(\overline{L}_{L})(S_{L}\omega_{R})$	1.0 × 10 °	3.2×10^{5}	6.9×10^{-9}	2.6×10	
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(o_L \mid \omega_L)$	5.1×10^{2}	9.3×10^{2}	3.3×10^{-6}	1.0×10^{-6}	Δ \mathcal{D}_{a} , $\mathcal{Z}_{\psi}K_{S}$
$(\bar{h}, J)(\bar{l}, l)$	1.0 \ 1U	3.6×10^{3}	5.6×10^{-1}	1.7 × 10	K_S
(or 1 or)	1	1×10^2	7.6	$\times 10^{-5}$	Δ
$(\bar{h}_{-})(\bar{l}_{-})$	ე.	7×10^2	1.3	X 10	Ama
$(\bar{t}_L \gamma^\mu u_L)^2$					

u-FCNC data remove immunities!

Robust model independent bounds:

(i) robust (ii) LLRR - stronger, but model dependent.

Robust model independent bounds:

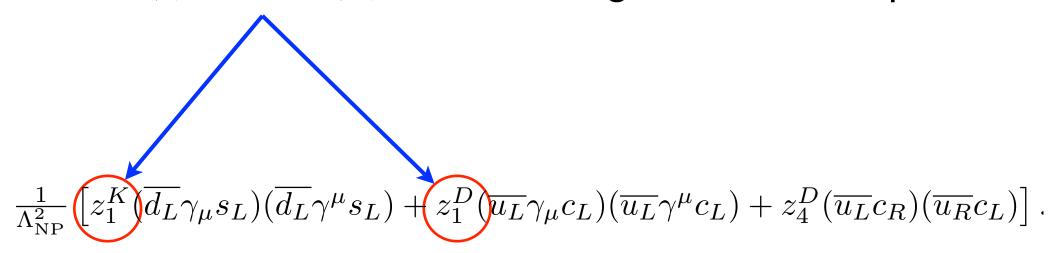
(i) robust (ii) LLRR - stronger, but model dependent.

$$\frac{1}{\Lambda_{\rm NP}^2} \left[z_1^K (\overline{d_L} \gamma_\mu s_L) (\overline{d_L} \gamma^\mu s_L) + z_1^D (\overline{u_L} \gamma_\mu c_L) (\overline{u_L} \gamma^\mu c_L) + z_4^D (\overline{u_L} c_R) (\overline{u_R} c_L) \right].$$

[More info' in Δc =1, Golowich, et. al (09), Kagan & Sokolof (09)]

Robust model independent bounds:

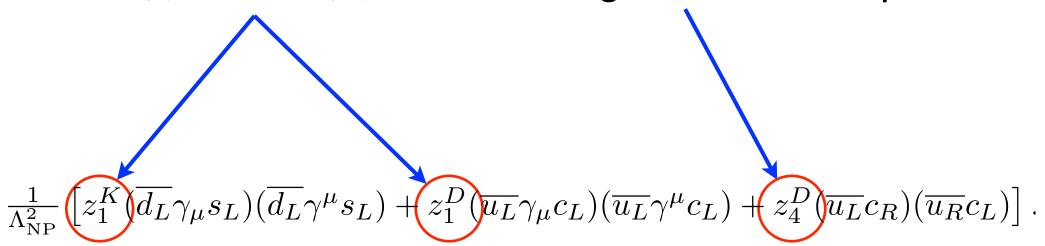
(i) robust (ii) LLRR - stronger, but model dependent.



[More info' in Δc =1, Golowich, et. al (09), Kagan & Sokolof (09)]

Robust model independent bounds:

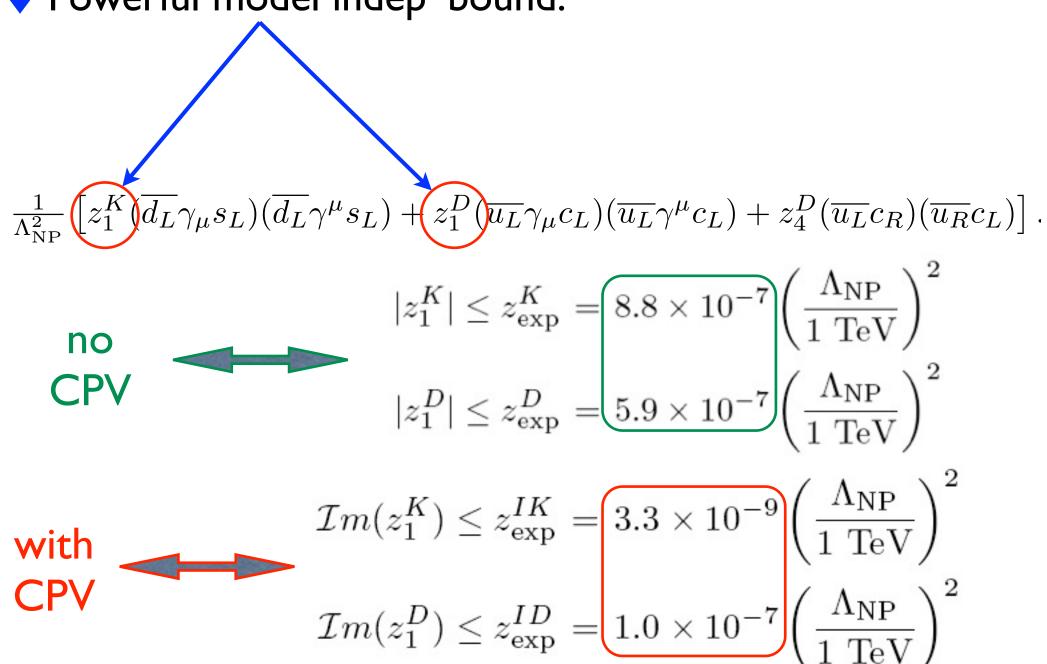
(i) robust (ii) LLRR - stronger, but model dependent.



[More info' in Δc =1, Golowich, et. al (09), Kagan & Sokolof (09)]

Combining $K^0 - \overline{K^0} \& D^0 - \overline{D^0}$ mixings

Powerful model indep' bound.



When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

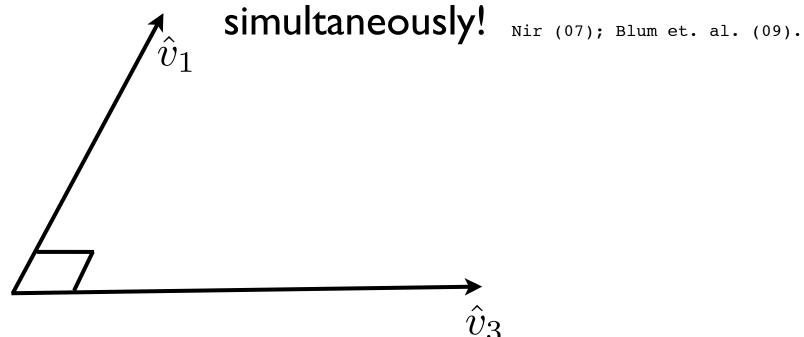
$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(\boldsymbol{X_Q})_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(\boldsymbol{X_Q})_{ij} \gamma^{\mu} Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems simultaneously! Nir (07); Blum et. al. (09).

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^{\mu} Q_{Lj}),$$

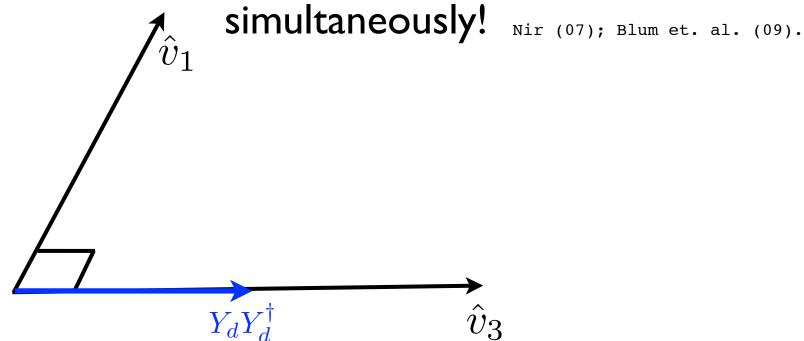
One cannot eliminate the constraint from $K\ \&\ D$ systems



When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^{\mu} Q_{Lj}),$$

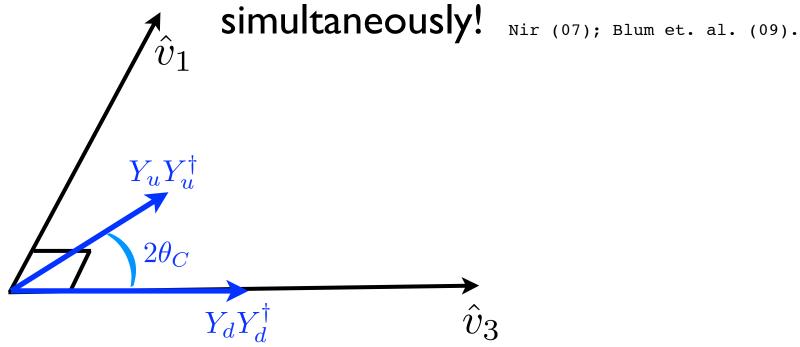
One cannot eliminate the constraint from $K\ \&\ D$ systems



When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^{\mu} Q_{Lj}),$$

One cannot eliminate the constraint from $K\ \&\ D$ systems

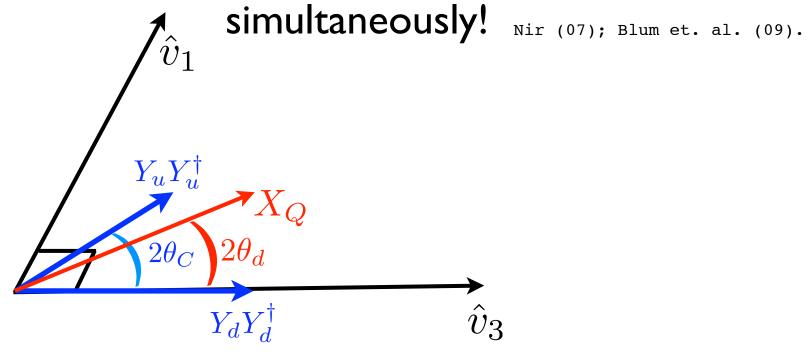


Two gen' flavor structure (no CPV)

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^{\mu} Q_{Lj}),$$

One cannot eliminate the constraint from $K\ \&\ D$ systems

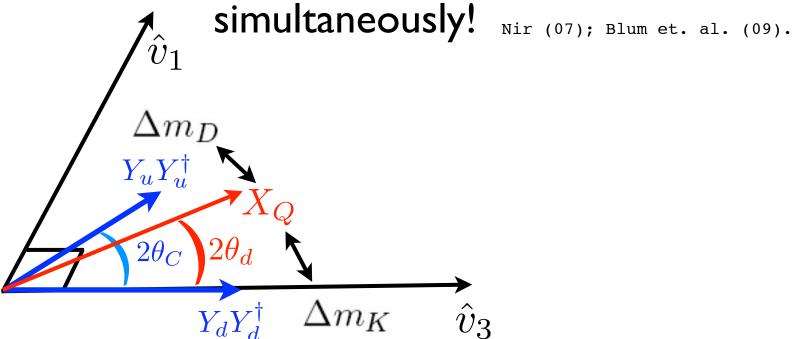


Two gen' flavor structure (no CPV)

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^{\mu} Q_{Lj}),$$

One cannot eliminate the constraint from K & D systems

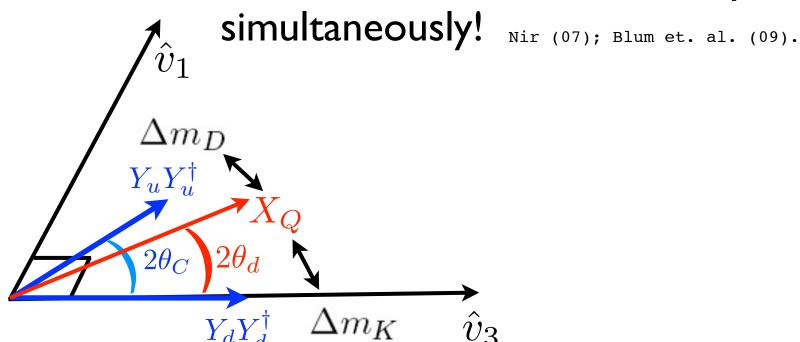


Two gen' flavor structure (no CPV)

When effects of $SU(2)_L$ breaking are small, the terms that lead to z_1^K and z_1^D have the form

$$\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij} \gamma_{\mu} Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij} \gamma^{\mu} Q_{Lj}),$$

One cannot eliminate the constraint from $K\ \&\ D$ systems

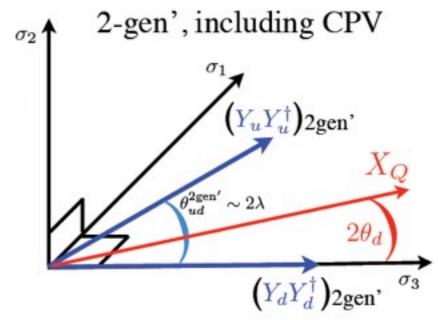


$$\lambda_Q = \text{diag}(\lambda_1, \lambda_2), \ \lambda_{12} = \frac{1}{2}(\lambda_1 + \lambda_2), \ \delta_{12} = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2}, \ \Lambda_{12} = \delta_{12}\lambda_{12}.$$

Constraining the flavor structure with CPV

CPV,
$$\gamma \sin \gamma = \hat{v}_2$$
), yield strong constraint on

$$\Lambda_{12} = \delta_{12} \lambda_{12}.$$

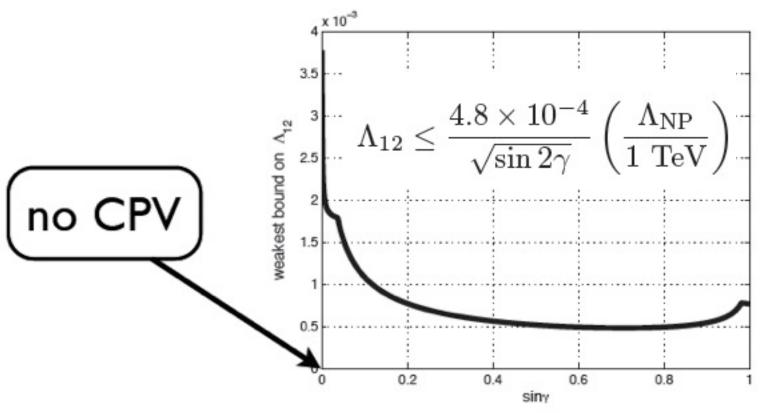


$$z_1^K = \Lambda_{12}^2 (\hat{v}_1 - i\hat{v}_2)^2,$$

$$z_1^D = \Lambda_{12}^2 (\cos 2\theta_c \hat{v}_1 - \sin 2\theta_c \hat{v}_3 - i\hat{v}_2)^2.$$

Constraining the flavor structure with CPV

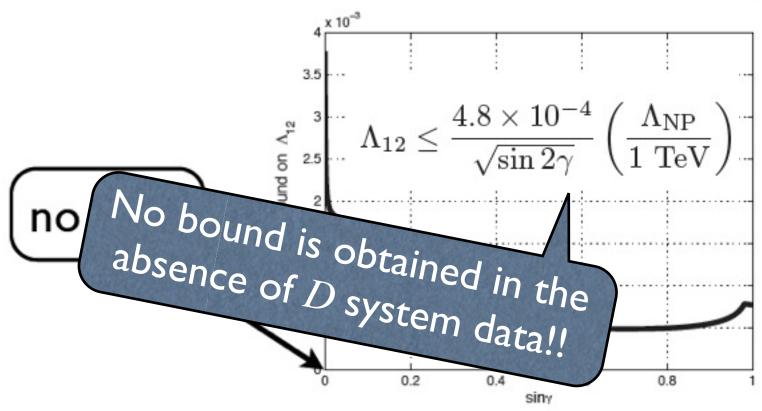
CPV, $\gamma \sin \gamma = \hat{v}_2$), strongly constrains $\Lambda_{12} = \delta_{12}\lambda_{12}$.



The weakest Λ_{12} -bound as function of $\sin \gamma$.

Constraining the flavor structure with CPV

CPV, $\gamma (\sin \gamma = \hat{v}_2)$, strongly constrains $\Lambda_{12} = \delta_{12} \lambda_{12}$.



The weakest Λ_{12} -bound as function of $\sin \gamma$.

Covariant, basis independent, description of flavor violation

2 x [Gedalia, Mannelli, GP (10)]

Can be understood in a covariant, basis independent manner (needed for 3gen')

Two generation case:

- \diamond Any Hermitian $2x^2$ matrix => expressed as sum of Pauli matrices.
- ♦ A matrix corresponds to a vector in SU(2) space.
- Can define set of operations, like scalar product and cross product:

$$|\vec{A}| \equiv \sqrt{\frac{1}{2} \operatorname{tr}(A^2)}, \quad \vec{A} \cdot \vec{B} \equiv \frac{1}{2} \operatorname{tr}(A B), \quad \vec{A} \times \vec{B} \equiv -\frac{i}{2} [A, B],$$

$$\cos(\theta_{AB}) \equiv \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{\operatorname{tr}(A B)}{\sqrt{\operatorname{tr}(A^2)\operatorname{tr}(B^2)}}.$$

lacklose The SM basic vectors: $\mathcal{A}_u \equiv (Y_u Y_u^\dagger)_{t\!\!/r}$, $\mathcal{A}_d \equiv (Y_d Y_d^\dagger)_{t\!\!/r}$.

Covariant basis, 2 gen'

Define a covariant, physical, basis using the SM basis vectors:

$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Up,down flavor violation is misalignment between SM mass basis unit vector & new sources of flavor breaking:

$$\left|z_1^{D,K}\right| = \left|X_Q imes \hat{\mathcal{A}}_{u,d}\right|^2$$
 . (say in $\frac{z_1}{\Lambda_{\mathrm{NP}}^2} O_1 = \frac{1}{\Lambda_{\mathrm{NP}}^2} \left(\overline{Q}_i(X_Q)_{ij}\gamma_\mu Q_j\right) \left(\overline{Q}_i(X_Q)_{ij}\gamma^\mu Q_j\right)$

Covariant basis, 2 gen'

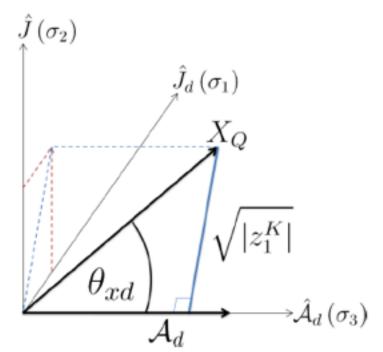
Define a covariant, physical, basis using the SM basis vectors:

$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

Up,down flavor violation is misalignment between SM mass basis unit vector & new sources of flavor breaking:

$$\left|z_1^{D,K}
ight| = \left|X_Q imes \hat{\mathcal{A}}_{u,d}
ight|^2$$
 . (say in $\frac{z_1}{\Lambda_{\mathrm{NP}}^2} O_1 = \frac{1}{\Lambda_{\mathrm{NP}}^2} \left(\overline{Q}_i(X_Q)_{ij} \gamma_\mu Q_j\right) \left(\overline{Q}_i(X_Q)_{ij} \gamma^\mu Q_j\right)$)

contribution of X_Q to $K^0-\overline{K^0}$ mixing, Δm_K , $\hat{J}(\sigma_2)$ given by the solid blue line.

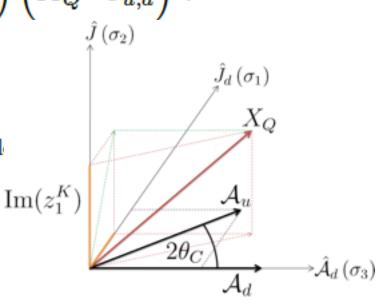


Covariant basis, CPV

• CPV in $\Delta F = 2$: Im $\left(z_1^{K,D}\right) = 2\left(X_Q \cdot \hat{J}\right)\left(X_Q \cdot \hat{J}_{u,d}\right)$.

 $\operatorname{Im}(z_1^K)$ is twice the product of the two solid orange lines.

Note that the angle between A_d and A_u is twice the Cabibbo angle

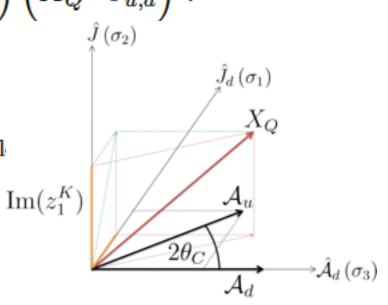


Covariant basis, CPV

• CPV in $\Delta F = 2$: Im $\left(z_1^{K,D}\right) = 2\left(X_Q \cdot \hat{J}\right)\left(X_Q \cdot \hat{J}_{u,d}\right)$.

 $\operatorname{Im}(z_1^K)$ is twice the product of the two solid orange lines.

Note that the angle between A_d and A_u is twice the Cabibbo angle



Deriving a robust bound:

In the covariant bases –
$$X_Q = X^{u,d} \hat{\mathcal{A}}_{u,d} + X^J \hat{J} + X^{J_{u,d}} \hat{J}_{u,d}$$
,

and the two bases are related through

$$X^{u} = \cos 2\theta_{\mathcal{C}} X^{d} - \sin 2\theta_{\mathcal{C}} X^{J_{d}}, \quad X^{J_{u}} = -\sin 2\theta_{\mathcal{C}} X^{d} - \cos 2\theta_{\mathcal{C}} X^{J_{d}},$$

Previous result reproduced- $X^J = \Lambda_{12} \sin \gamma \quad \tan \alpha = \frac{X^{J_d}}{X^J}$

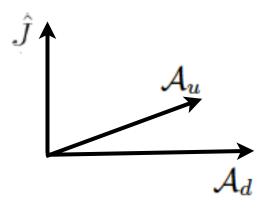
Covariant basis - physical interpretation

The axis \hat{J} is the 2-gen' "Jarlskog": $X^J \propto \operatorname{tr}(X_Q[\mathcal{A}_d, \mathcal{A}_u]) \neq 0$,

Covariant basis - physical interpretation

The axis \hat{J} is the 2-gen' "Jarlskog": $X^J \propto \operatorname{tr}(X_Q[\mathcal{A}_d, \mathcal{A}_u]) \neq 0$,

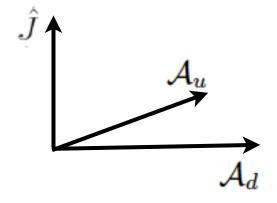
Note that - $A_{u,d} \cdot \hat{J} = 0 \Leftrightarrow \text{no CPV within SM.}$



Covariant basis - physical interpretation

The axis \hat{J} is the 2-gen' "Jarlskog": $X^{J} \propto \operatorname{tr}(X_{Q}[\mathcal{A}_{d}, \mathcal{A}_{u}]) \neq 0$,

Note that - $A_{u,d} \cdot \hat{J} = 0 \Leftrightarrow \text{no CPV within SM.}$



lacktriangle The axes $\hat{J}_{u,d}$ dials CPV in $\Delta F=2$ (new model indep' condition):

$$X^{J_{u,d}} \propto \operatorname{tr}\left(X_Q\left[\mathcal{A}_{u,d},\left[\mathcal{A}_d,\mathcal{A}_u\right]\right]\right) \neq 0$$

Gedalia, Mannelli, GP (10)

CPV in $D^0 - \bar{D}^0$ mixing, model dependent implications:

- (i) Minimal flavor violation (MFV);
- (ii) SUSY;
- (iii) Randall-Sundrum (RS).

Ciuchini, et al. (07); Csaki, et al. (08); Kagan, et al. (09); Gedalia, et al. (09,10,10); Blum, et al. (09); Buras et. al.; Csaki, et al. (09); Bauer, et al. (09); Bigi, et al. (09); Altmannshofer, et al. (09,10); Blanke, et al. (09); Crivellin & Davidkov (10).

Minimal flavor violation (MFV)

General MFV (GMFV) vs. Linear MFV (LMFV):

Volanksy, et. al (09); Gedalia, et. al (09).

Large $\tan \beta \Rightarrow \text{CPV}$.

LMFV: If dominated by $\sim Y_d Y_d^{\dagger}$ asym' is known.

GMFV: Otherwise $\sum_n y_b^n$ need to be resummed \Rightarrow loss of predictive power.

Minimal flavor violation (MFV)

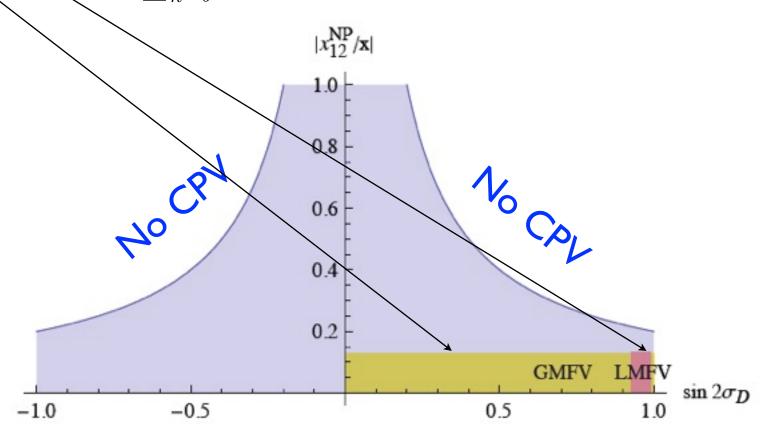
General MFV (GMFV) vs. Linear MFV (LMFV):

Volanksy, et. al (09); Gedalia, et. al (09).

Large $\tan \beta \Rightarrow \text{CPV}$.

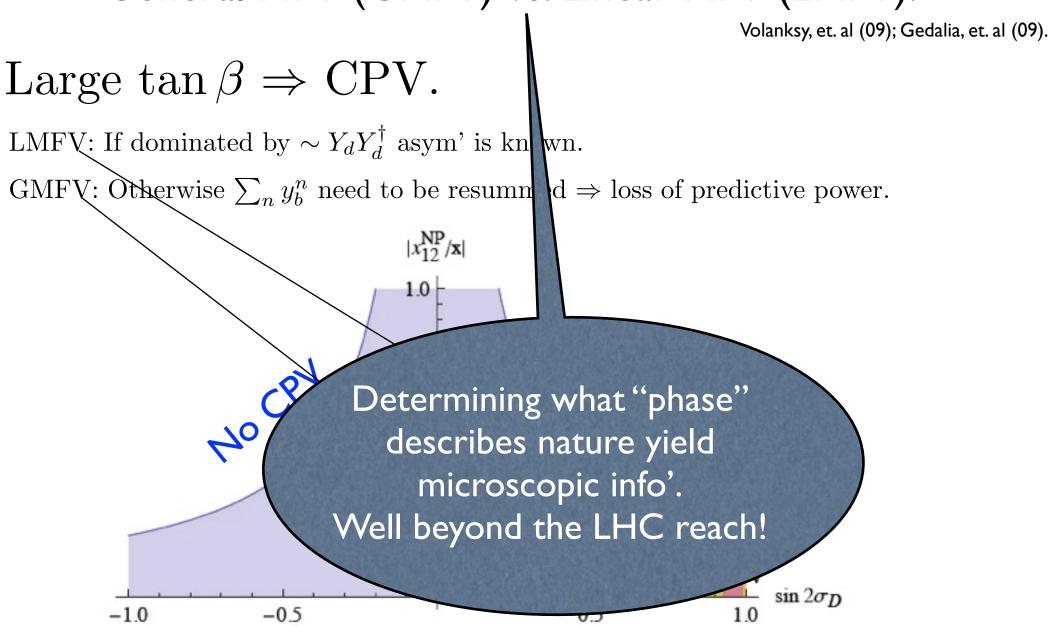
LMFV: If dominated by $\sim Y_d Y_d^{\dagger}$ asym' is known.

GMFV: Otherwise $\sum_{n} y_{b}^{n}$ need to be resummed \Rightarrow loss of predictive power.



Minimal flavor violation (MFV)

General MFV (GMFV) vs. Linear MFV (LMFV):



SUSY

♦ Alignment models [O(I) phase]: Nir & Seiberg (93).

$$\begin{split} \frac{m_{\tilde{Q}_2}-m_{\tilde{Q}_1}}{m_{\tilde{Q}_2}+m_{\tilde{Q}_1}} &\lesssim 0.05-0.14, \\ \frac{m_{\tilde{u}_2}-m_{\tilde{u}_1}}{m_{\tilde{u}_2}+m_{\tilde{u}_1}} &\lesssim 0.02-0.04. \end{split}$$
 First bound => up squark doublets, 1TeV; Second => average of the doublet & singlet mass splitting. Gedalia, et. al (09).

A "sweet spot" could exist where bounds are weaker:

$$x \sim 2.4$$
 $x = m_{\tilde{g}}^2/m_{\tilde{q}}^2$ Crivellin & Davidkov (10).

Possible correlation with EDM's:

$$d_n \gtrsim 10^{-(28-29)} e \text{ cm}$$

Altmannshofer, et. al (09).

Warped Models (RS) (see A. Weiler's talk)

Generic warped models (up-type anarchy): Agashe, et. al (04,06).

Observable	M_G^{\min}	[TeV]	$y_{\mathrm{5D}}^{\mathrm{min}} \text{ or } f_{Q_3}^{\mathrm{max}}$		
	IR Higgs	$\beta = 0$	IR Higgs	$\beta = 0$	
$CPV-B_d^{LLLL}$	$12f_{Q_3}^2$	$12f_{Q_3}^2$	$f_{Q_3}^{\rm max} = 0.5$	$f_{Q_3}^{\max} = 0.5$	
$CPV-B_d^{LLRR}$	$4.2/y_{ m 5D}$	$2.4/y_{5\mathrm{D}}$	$y_{\rm 5D}^{\rm min}=1.4$	$y_{\rm 5D}^{\rm min} = 0.82$	
$CPV-D^{LLLL}$	$0.73f_{Q_3}^2$	$0.73f_{Q_3}^2$	no bound	no bound	
$CPV-D^{LLRR}$	$4.9/y_{ m 5D}$	$2.4/y_{5D}$	$y_{\rm 5D}^{\rm min}=1.6$	$y_{\rm 5D}^{\rm min} = 0.8$	
ϵ_K^{LLLL}	$7.9f_{Q_3}^2$	$7.9f_{Q_3}^2$	$f_{Q_3}^{\rm max} = 0.62$	$f_{Q_3}^{\rm max} = 0.62$	
ϵ_K^{LLRR}	$49/y_{5D}$	$24/y_{5D}$	above (6.7)	$y_{\rm 5D}^{\rm min}=8$	

Gedalia, et. al (09); Isidori, et. al (10).

Warped Models (RS) (see A. Weiler's talk)

(09); (10).

♦ Generic warped models (up-type anarchy): Agashe, et. al (04,06).

_							
	Observable	$M_G^{\min}[{ m TeV}]$		$y_{ m 5D}^{ m min}$ or $f_{Q_3}^{ m max}$			
		IR Higgs	$\beta = 0$	IR Higgs	$\beta = 0$		
	$CPV-B_d^{LLLL}$	• •	• •		• •		
	$CPV-B_d^{LLRR}$	$4.2/y_{ m 5D}$	$2.4/y_{5D}$	$y_{\rm 5D}^{\rm min} = 1.4$	$y_{\rm 5D}^{\rm min} = 0.82$		
	$CPV-D^{LLLL}$	$0.73f_{Q_3}^2$	$0.73f_{Q_3}^2$	no bound	no bound		
	$ ext{CPV-}D^{LLRR}$	$4.9/y_{5D}$	$2.4/y_{5D}$	$y_{\rm 5D}^{\rm min} = 1.6$	$y_{\rm 5D}^{\rm min} = 0.8$		
	ϵ_K^{LLLL}	$7.9f_{Q_3}^2$	$7.9f_{Q_3}^2$	$f_{Q_3}^{\max} = 0.62$	$f_{Q_3}^{\text{max}} = 0.62$		
_	ϵ_K^{LLRR}	$49/y_{5D}$	$24/y_{5D}$	above (6.7)	$y_{5\mathrm{D}}^{\mathrm{min}} = 8$	Gedalia, e Isidori, e	

lacktriangledown RS alignment (via shining): $y_{5\mathrm{D}}^d\gtrsim 3y_{5\mathrm{D}}^u$ csaki, et. al (09).

$$\frac{1}{2} \lesssim y_{5\mathrm{D}} \lesssim \frac{2\pi}{N_{\mathrm{KK}}}$$
 for brane Higgs; $\frac{1}{2} \lesssim y_{5\mathrm{D}} \lesssim \frac{4\pi}{\sqrt{N_{\mathrm{KK}}}}$ for bulk Higgs,

Factor of few improvement exclude models.

3rd gen' Phys. @ the LHC

Top FCNC (tFCNC), $\Delta t = 1$

- LHC: study int' $\sim 10^{6-7} \ t\bar{t}/yr$
- Top FCNC: $t \to q, Z, \gamma, G$. (q = u + c) (also $t \to qh$ & single top production)
- 6 LHC (100fb $^{-1}$): $BR(t \to qZ, \gamma) \gtrsim 10^{-5}$. (Carvalho, et. al (05))

Fox, et. al (07).

Effective theory, dim' 6 operators:

$$\begin{split} O_{LL}^{u} &= i \left[\overline{Q}_{3} \tilde{H} \right] \left[\left(\not \! D \tilde{H} \right)^{\dagger} Q_{2} \right] - i \left[\overline{Q}_{3} \left(\not \! D \tilde{H} \right) \right] \left[\tilde{H}^{\dagger} Q_{2} \right] + \text{h.c.} \\ O_{LL}^{h} &= i \left[\overline{Q}_{3} \gamma^{\mu} Q_{2} \right] \left[H^{\dagger} \stackrel{\longleftrightarrow}{D}_{\mu} H \right] + \text{h.c.} , \\ O_{RL}^{w} &= g_{2} \left[\overline{Q}_{2} \sigma^{\mu\nu} \sigma^{a} \tilde{H} \right] t_{R} W_{\mu\nu}^{a} + \text{h.c.} , \\ O_{RL}^{b} &= g_{1} \left[\overline{Q}_{2} \sigma^{\mu\nu} \tilde{H} \right] t_{R} B_{\mu\nu} + \text{h.c.} , \\ O_{LR}^{w} &= g_{2} \left[\overline{Q}_{3} \sigma^{\mu\nu} \sigma^{a} \tilde{H} \right] c_{R} W_{\mu\nu}^{a} + \text{h.c.} , \\ O_{LR}^{b} &= g_{1} \left[\overline{Q}_{3} \sigma^{\mu\nu} \tilde{H} \right] c_{R} B_{\mu\nu} + \text{h.c.} , \\ O_{RR}^{u} &= i \overline{t}_{R} \gamma^{\mu} c_{R} \left[H^{\dagger} \stackrel{\longleftrightarrow}{D}_{\mu} H \right] + \text{h.c.} . \end{split}$$

Fox, et. al (07).

Fox, et. al (07).

	C^u_{LL}	C_{LL}^h	C_{RL}^w	C_{RL}^b	C_{LR}^w	C_{LR}^b	C_{RR}^u
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] [-0.005, 0.003]	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	_
$\Delta F = 2$	0.07	0.014	0.14	_	_	_	_
semileptonic	_	()			[0.3, 1.7]	()	-
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3\mathrm{TeV}$	$2.6\mathrm{TeV}$	$2.0\mathrm{TeV}$	$0.8\mathrm{TeV}$	$0.4\mathrm{TeV}$	$0.3\mathrm{TeV}$
$\mathcal{B}(t \to cZ) \; (\mathrm{max})$	7.1×10^{-6}	3.5×10^{-7}	3.4×10^{-5}	8.4×10^{-6}	4.5×10^{-3}	5.6×10^{-3}	0.14
$\mathcal{B}(t o c\gamma) \; (ext{max})$	_	r <u>—</u> 1	1.8×10^{-5}	4.8×10^{-5}	2.3×10^{-3}	3.2×10^{-2}	
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

Fox, et. al (07).

	C_{LL}^u	C_{LL}^h	C_{RL}^w	C_{RL}^b	C_{LR}^w	C_{LR}^b	C_{RR}^u
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] [-0.005, 0.003]	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	-
$\Delta F = 2$	0.07	0.014	0.14	_	_	_	_
semileptonic	_	_		s- 	[0.3, 1.7]	1	-
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3\mathrm{TeV}$	$2.6\mathrm{TeV}$	$2.0\mathrm{TeV}$	$0.8\mathrm{TeV}$	$0.4\mathrm{TeV}$	$0.3\mathrm{TeV}$
$\mathcal{B}(t \to cZ) \; (\mathrm{max})$	7.1×10^{-6}	3.5×10^{-7}	3.4×10^{-5}	8.4×10^{-6}	4.5×10^{-3}	5.6×10^{-3}	0.14
$\mathcal{B}(t\to c\gamma) \; (\mathrm{max})$			1.8×10^{-5}	4.8×10^{-5}	2.3×10^{-3}	$3.2\!\times\!10^{-2}$	_
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

Looks as if B-phys. strongly constraint LH operators!

Fox, et. al (07).

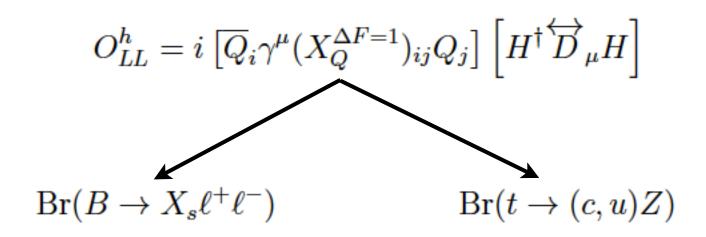
	C_{LL}^u	C_{LL}^h	C_{RL}^w	C_{RL}^b	C_{LR}^w	C_{LR}^b	C_{RR}^u
direct bound	9.0	9.0	6.3	6.3	6.3	6.3	9.0
LHC sensitivity	0.20	0.20	0.15	0.15	0.15	0.15	0.20
$B \to X_s \gamma, \ X_s \ell^+ \ell^-$	[-0.07, 0.036]	[-0.017, -0.01] [-0.005, 0.003]	[-0.09, 0.18]	[-0.12, 0.24]	[-14, 7]	[-10, 19]	-
$\Delta F = 2$	0.07	0.014	0.14	_	_	_	_
semileptonic	_	_		s- 	[0.3, 1.7]	1	-
best bound	0.07	0.014	0.15	0.24	1.7	6.3	9.0
Λ for $C_i = 1$ (min)	$3.9\mathrm{TeV}$	$8.3\mathrm{TeV}$	$2.6\mathrm{TeV}$	$2.0\mathrm{TeV}$	$0.8\mathrm{TeV}$	$0.4\mathrm{TeV}$	$0.3\mathrm{TeV}$
$\mathcal{B}(t \to cZ) \; (\mathrm{max})$	7.1×10^{-6}	3.5×10^{-7}	3.4×10^{-5}	8.4×10^{-6}	4.5×10^{-3}	5.6×10^{-3}	0.14
$\mathcal{B}(t\to c\gamma) \; (\mathrm{max})$			1.8×10^{-5}	4.8×10^{-5}	2.3×10^{-3}	$3.2\!\times\!10^{-2}$	_
LHC Window	Closed*	Closed*	Ajar	Ajar	Open	Open	Open

Looks as if B-phys transly constraint LH operators!

Not valid if down alignment is at work

2x Gedalia, et al. (10).

Robust bounds for $\Delta t = 1$



 3-gen' case the structure is much richer (8 Gell-Mann matrices), a covariant treatment is necessary.

Simplification: @ LHC light quark jets look the same.

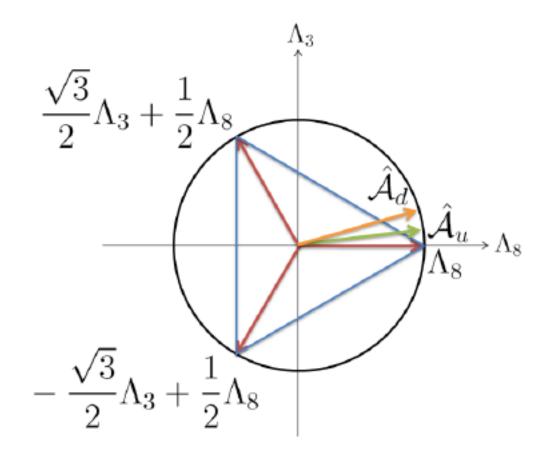
Approximate U(2) Limit of Massless Light Quarks

The approximate U(2)

Oth order question for a 3x3 adjoint: Is a residual U(2) conserved?

The approximate U(2)

Oth order question for a 3x3 adjoint: Is a residual U(2) conserved?



Covariant description of approx' U(2)

Without loss of generality:

$$\mathcal{A}_d = \frac{y_b^2}{3} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} , \qquad \mathcal{A}_u = y_t^2 \begin{pmatrix} \spadesuit & 0 & 0 \\ 0 & \spadesuit & \spadesuit \\ 0 & \spadesuit & \spadesuit \end{pmatrix} ,$$

CKM has a single phase:

$$\theta \cong \sqrt{\theta_{13}^2 + \theta_{23}^2},$$

SM massless quarks are broken to active & sterile states:

$$U(1)_Q \times U(1)_B$$

$$\uparrow V_{\text{CKM}}$$

$$U(2)_Q \times U(1)_{Q_3}$$

$$\uparrow \mathcal{A}_{u,d} \ (V_{\text{CKM}} \to \mathbb{1}_3)$$

$$U(3)_Q$$

Start as in 2 gen': $\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}$, $\hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}$, $\hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}$.

Add a Cartan:

$$\hat{\mathcal{A}}_{u,d}$$
 and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

or

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[\hat{J}_Q, \hat{\mathcal{A}}_{u,d}] = 0$

Start as in 2 gen': $\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}$, $\hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}$, $\hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}$.

 $\hat{\mathcal{A}}$ Add a Cartan: $\hat{\mathcal{A}}_{u,d}$ and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$, or

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[\hat{J}_Q, \hat{\mathcal{A}}_{u,d}] = 0$

Any adjoint can decompose according to:

$$X_Q^{\Delta F=1} = X'^{u,d} \hat{\mathcal{A}}'_{u,d} + X^J \hat{J} + X^{J_{u,d}} \hat{J}_{u,d} + X^{J_Q} \hat{J}_Q + X^{\vec{D}} \hat{\vec{\mathcal{D}}}.$$

Start as in 2 gen': $\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}$, $\hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}$, $\hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}$.

Add a Cartan:

$$\hat{\mathcal{A}}_{u,d}$$
 and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

or

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[\hat{J}_Q, \hat{\mathcal{A}}_{u,d}] = 0$

Any adjoint can decompose according to:

$$X_Q^{\Delta F=1} = \underbrace{X'^{u,d}\hat{\mathcal{A}}'_{u,d} + X^J\hat{J} + X^{J_{u,d}}\hat{J}_{u,d} + X^{J_Q}\hat{J}_Q} + X^{\vec{D}}\hat{\vec{\mathcal{D}}}.$$

"big" directions

Start as in 2 gen': $\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}$, $\hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}$, $\hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}$.

ightharpoonup Add a Cartan: $\hat{\mathcal{A}}_{u,d}$ and $\hat{C}_{u,d} \equiv 2\hat{J} \times \hat{J}_{u,d} - \sqrt{3}\hat{\mathcal{A}}_{u,d}$,

or

$$\hat{\mathcal{A}}'_{u,d} \equiv \hat{J} \times \hat{J}_{u,d}$$
 and $\hat{J}_Q \equiv \sqrt{3}\hat{J} \times \hat{J}_{u,d} - 2\hat{\mathcal{A}}_{u,d}$.

 \hat{J}_Q corresponds to the conserved $U(1)_Q$ generator, $[\hat{J}_Q, \hat{\mathcal{A}}_{u,d}] = 0$

Any adjoint can decompose according to:

$$X_Q^{\Delta F=1} = X'^{u,d} \hat{\mathcal{A}}'_{u,d} + X^J \hat{J} + X^{J_{u,d}} \hat{J}_{u,d} + X^{J_Q} \hat{J}_Q + X^{\vec{D}} \vec{\mathcal{D}}.$$
"big" directions "small" ones, beyond U(2)

Robust projected bound (assuming no signal) & t/b flavor violation

• Overall 3rd gen' flavor violation: $\frac{2}{\sqrt{3}} |X_Q \times \hat{A}_{u,d}|$,

which extracts
$$\sqrt{\left|(X_Q)_{13}\right|^2 + \left|(X_Q)_{23}\right|^2}$$
 in each basis.

♦ The bounds: $\operatorname{Br}(B \to X_s \ell^+ \ell^-) \longrightarrow \left| C_{LL}^h \right|_b < 0.018 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \, \mathrm{TeV}} \right)^2$, $\operatorname{Br}(t \to (c, u)Z) \longrightarrow \left| C_{LL}^h \right|_t < 0.18 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \, \mathrm{TeV}} \right)^2$,

$$\frac{4}{3} \left| X_Q^{\Delta F=1} \times \hat{\mathcal{A}}_{u,d} \right|^2 = (X^J)^2 + (X^{J_{u,d}})^2 , \quad X^{J_u} = \cos 2\theta \, X^{J_d} + \sin 2\theta \, X'^d ,$$

The bound

(i)
$$\alpha = 0$$
, $L < 2.5 \left(\frac{\Lambda_{\rm NP}}{1\,{\rm TeV}}\right)^2$; $\Lambda_{NP} > 0.63\,(7.9)\,{\rm TeV}$,
(ii) $\alpha = \frac{\sqrt{3}\,\theta}{1+r_{tb}}$, $L < 2.8 \left(\frac{\Lambda_{\rm NP}}{1\,{\rm TeV}}\right)^2$; $\Lambda_{NP} > 0.6\,(7.6)\,{\rm TeV}$,
 $\tan\alpha \equiv \frac{X^{J_d}}{X^d}$ $L \equiv \left|X_Q^{\Delta F=1}\right|$ $r_{tb} \equiv \left|C_{LL}^h\right|_t/\left|C_{LL}^h\right|_b$

alignment

alignment

$\Delta F = 2$, $\left[(\bar{t}, \bar{b})_L X_Q(u, d)_L \right]^2$

Operator	Bounds on	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	${ m Im}$	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	3.7×10^{2}		1.3×10^{-5}		Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$?		?		?

$\Delta F = 2$, $\left[(\bar{t}, \bar{b})_L X_Q(u, d)_L \right]^2$

Operator	Bounds on	Λ in TeV $(c_{ij}=1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	${ m Im}$	Re	Im	
$\overline{(\bar{s}_L \gamma^\mu d_L)^2}$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$-(\bar{c}_L\gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	$\boxed{5.1\times10^2}$	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^2		7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_Rs_L)(\bar{b}_Ls_R)$	3.7×10^{2}		1.3×10^{-5}		Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$	12		$7.1 \ 10^{-}3$		$uu \rightarrow tt$

However, CPV in D system is stronger

Despite $\mathcal{O}(\lambda_C^5)$ suppression:

$$\text{Im}(z_1^D) < 1.1 \times 10^{-7} \left(\frac{\Lambda_{\text{NP}}}{1 \text{ TeV}}\right)^2$$

$$L < 12 \left(\frac{\Lambda_{\mathrm{NP}}}{1 \, \mathrm{TeV}} \right) \; ; \quad \Lambda_{\mathrm{NP}} > 0.08 \, (1) \, \mathrm{TeV} \, ,$$

for $uu \to tt$ and

$$L < 1.8 \left(\frac{\Lambda_{\rm NP}}{1 \, {\rm TeV}} \right) \; ; \quad \Lambda_{\rm NP} > 0.57 \, (7.2) \, {\rm TeV} \, ,$$

for D mixing.

Also applied to SUSY & RS => weak but robust bounds.

Outlook, Flavor at the LHC Era

LHC era ~ up FCNC, however, regarding tFCNC, despite orders mag' improvement => constraints rather weak.

What if no deviation are observed including in *u*-FCNC (or any other low *E* observable)? Can bound NP.

Flavor diagonal NP (spectrum or couplings, say KK gluon BRs) could be exciting, especially deviation from U(2).

LMFV vs. GMFV could be next decade question:

LMFV lies on \mathcal{A}_u - \mathcal{A}_d plane; GMFV lies on large-axes sub-manifold.

