M. Chanowitz LBNL

What is the precision electroweak data trying to tell us?

Workshop on indirect searches for new physics at the time of LHC Galileo Institute for Theoretical Physics Firenze, March 2010 <u>More precisely</u>: what is the combination of the PEW data and the LEPII limit on m_H trying to tell us?

Canonical: SM fit is great, Higgs boson is light — could be...

But SM fit has a 3.2σ problem, which suggests NP whether 3.2σ problem is genuine or not:

If due to systematic error (e.g., theoretical), fit predicts m_H much too light \longrightarrow NP with T > 0 to raise m_H

Many NP models with custodial SU(2) breaking can then fit PEW data much better than usual SM fit.

Bonus: increased m_H alleviates little hierarchy fine-tuning problem that is generic for light Higgs.

Canonical view might be correct, but the non-canonical interpretation is also worth considering.

Topics

SM fit: implications of $A_{LR} - A_{FB}^{b}$ anomaly

- interpretations of the anomaly
- Higgs mass predictions

New Physics with SU(2)_{Custodial} breaking

- generic
- examples: Z', fourth family

<u>SM Fit</u>

Fits alla EWWG:

- $m_Z, m_t, \Delta \alpha_5, \alpha_S, m_H \longrightarrow O_{Z-Pole} + m_W + ...$
- Zfitter with 2 loop x_W, m_W
- biggest experimental correlations
- $\Delta \alpha_5$ from BES (Burkhart-Pietryzyk) (omit Γ_W – 2.5% error, not part per mil)

Diminished $CL(\chi^2) = 0.14$, primarily from 3.2 σ difference between $x_W(A_{LR})$ vs. $x_W(A_{FB}^{b})$

Very slight tension with LEPII: $m_H = 89 \text{ GeV}$ $CL(m_H > 114 \text{ GeV}) = 0.23$

	Experiment	SM Fit	Pull
A_{LR}	0.1513 (21)	0.1480	1.6
A^l_{FB}	0.01714 (95)	0.01644	0.7
$A_{e, au}$	0.1465 (32)	0.1480	-0.5
A^b_{FB}	0.0992 (16)	0.1038	-2.9
A^c_{FB}	0.0707 (35)	0.0742	-1.0
Q_{FB}	0.23240 (120)	0.23139	1.0
m_W	80.399 (23)	80.378	0.9
Γ_Z	2495.2 (23)	2495.7	-0.2
R_l	20.767 (25)	20.739	1.1
σ_h	41.540 (37)	41.481	-1.6
R_b	0.21629 (66)	0.21582	0.7
R_c	0.1721 (30)	0.1722	-0.04
A_b	0.923 (20)	0.935	-0.6
A_c	0.670 (27)	0.668	0.07
m_t	173.1 (1.3)	173.3	0.1
$\Delta lpha_5(m_Z^2)$	0.02758 (35)	0.02768	0.3
$lpha_S(m_Z)$		0.118	
$\chi^2/{ m dof}$		17.3/12	
$\mathrm{CL}(\chi^2)$		0.14	
m_H		89	
$\mathrm{CL}(m_H > 114)$		0.23	
$m_H(95\%)$		151	

$X_W^{l,eff}$: most important observable for m_H fit

$$\begin{array}{c} A_{LR} & 0.23098 \ (26) \\ A_{FB}^{\ \ell} & 0.23099 \ (53) \\ A_{e,\tau} & 0.23159 \ (41) \end{array} \right\} \begin{array}{c} x^{\ell}[A_{L}] = 0.23113 \ (21) \\ \chi^{2}/N = 1.6/2 \quad CL = 0.44 \end{array} \right\} \begin{array}{c} 0.23153 \ (16) \\ 3.2\sigma \\ CL = 0.0014 \\ \chi^{2}/N = 0.23220 \ (81) \\ Q_{FB} & 0.23240 \ (120) \end{array} \right\} \begin{array}{c} x^{\ell}[A_{H}] = 0.23222 \ (27) \\ \chi^{2}/N = 0.02/2 \quad CL = 0.99 \end{array} \right\} \begin{array}{c} 0.23153 \ (16) \\ CL = 0.0014 \\ \chi^{2}/N = 0.02/2 \quad CL = 0.99 \end{array}$$

Dominated by $x[A_{LR}] \oplus x[A_{FR}^{b}] = 0.23153$ (19) 3.2σ CL = 0.0016

Combining all six: $\chi^2/N = 11.8/5$ CL = 0.037

M. Chanowitz

Firenze March 2010

M. Chanowitz

Three generic options...

 $A_{FB}^{b} - A_{LR}$ anomaly could be

- Statistical fluctuation
- New physics
- Underestimated systematic error

Briefly consider each:

Statistical Fluctuation

Significance depends on how question is framed.

• Global CL's fairly reflect likelihood that *any* of a set of measurements might fluctuate to become an outlyer:

E.g., $\chi^2/N = 17.3/12$ \longrightarrow CL = 0.14 Cf., Probability of at least one $\geq 2.86\sigma$ outlyer (A_{FB}^b) among 12 independent measurements: P = 0.05

- IF we ask for the consistency of the measurements that determine m_H, the answer is χ^2 , N = 14.2, 7 CL = 0.05 {Omits σ_H , R_{b,c}, A_{b,c}
- IF we ask for the consistency of the two highest precision asymmetry measurements that determine m_H , the answer is the nominal CL for 3.2 σ , **P** = 0.0014

Most conservative assessment: there is an O(10%) problem.

New Physics in A_b ? — the R_b constraint

- 1998± : $3\sigma R_b$ anomaly understood as systematic error.Today: $R_b[expt] / R_b[SM] = 1.003$ (3) $\longrightarrow \delta g_{bL}^2 + \delta g_{bR}^2 \sim 0.0005$ (5)
- A_{FB}^b anomaly: $A_b[A_{FB}^{b}] / A_b[SM] = 0.942 (18)$ $\delta g_{bL}^2 - \delta g_{bR}^2 \sim -0.009 (3)$
 - $δg_{bL}/g_{bL}^{SM} ≈ -0.005/-0.42 ≈ 0.01$ $δg_{bR}/g_{bR}^{SM} ≈ 0.03/0.08 ≈ 0.4$ HUGE

Huge δg_{bR} probably requires tree level NP, hard to find in plausible extensions of the SM but not impossible:
e.g., b-Q mixing (Choudury-Tait-Wagner, Morrissey-Wagner) or Z-Z' mixing (He-Valencia, Djouadi-Moreau-Richard)

Systematic uncertainty

 $\mathbf{x}_{\mathbf{W}}(\mathbf{A}_{\mathbf{LR}}, \mathbf{A}_{\mathbf{FB}}{}^{\ell}, \mathbf{A}_{\mathbf{e},\tau})$: $\chi^2/N = 1.6/2$ $\mathsf{CL} = 0.44$ 3 very different techniquesCommon systematic errors very unlikely

 $\mathbf{x}_{W}(\mathbf{A}_{FB}^{\mathbf{b}}, \mathbf{A}_{FB}^{\mathbf{c}}, \mathbf{Q}_{FB}^{\mathbf{c}})$: $\chi^{2}/N = 0.02/2$ CL = 0.99Challenging and complex measurements and analysisMany shared systematic issues, e.g.,

- •14 parameter heavy flavor fit
- Disentangling $b \rightarrow e^-, \overline{c} \rightarrow e^-, \overline{b} \rightarrow \overline{c} \rightarrow e^-$
- QCD and hadronization

although quoted error for A_{FB}^b is predominantly statistical

14 parameter Heavy Flavor fit

x_W(A_{FB}^{b} , A_{FB}^{c} , Q_{FB}) are very tightly clustered: $\chi^2/N = 0.02/2$ CL = 0.99

 A_{FB}^{b} , A_{FB}^{c} extracted from 14 parameter HF fit, $\chi^2/N = 53/91$ CL = 0.9995

suggests possibility of imperfectly understood systematics

EWWG: systematic errors too conservative? Suppose all HF fit sys errors $\rightarrow 0$

$$\rightarrow \chi^2/N = 92/91$$
 CL = **0.45**

But: $CL \{ x[A_{LR}] \oplus x[A_{FB}^{b}] \} = 0.0016$ $\longrightarrow 0.0007$ $\bigcirc CL \{ x_W^{\ell, eff} \} = 0.04$ $\longrightarrow 0.02$ $\bigcirc Stat. errors only for A_{FB}^{b,c}, A_{FB}^{b,c}, A_{b,c}, R_{b,c}$ $CL \{ SM \} = 0.14$ $\longrightarrow 0.03$ $\bigcirc 0.03$ $\bigcirc 0.03$

b and c quark identification

b → e⁻ and \overline{c} → e⁻ are backgrounds for one another: b <—> \overline{c} mistags are consistent with signs of both the A_{FB}^b and A_{FB}^c anomalies.

Mistags due to primary charm, Z —> $\overline{c}c$, and secondary charm, \overline{b} —> \overline{c} —> e^-

Mistags are highly leveraged in A_{FB}^{b} : 1% mistag for primary charm would shift A_{FB}^{b} by +1 σ

Cuts specific to the A_{FB}^{b} measurement (which favor high thrust) might affect the mistag rate relative to the rate in the R_{b} measurement.

To understand the mistag rate in the A_{FB}^b measurement, it could be interesting to extract R_b with A_{FB}^b analysis cuts and compare with expectation.

Μ.	Chanc	witz
IVI.	Chanc	JWILZ

QCD and hadronization

• QCD corrections (1 + 2 loop) are large:

 $\Delta_{\text{QCD}} \sim 3\Delta_{\text{EXPT}}$

Altarelli-Lampe, Catani-Seymour, Ravindranvan Neerven

- Hadronization contributes to systematic uncertainty
 - hadronic thrust axis differs from partonic
- event selection and analysis cuts favoring high thrust introduce a bias in event topologies which diminishes QCD correction by an amount that cannot be precisely determined. For $B \rightarrow \ell + X$, bias correction ~ 1/2 $\Delta_{OCD} \sim \Delta_{EXPT}$ (from JETSET)

EWWG estimate, based on comparing diff JETSET tunes: QCD/hadronization error ~ $1/4 \Delta_{EXPT}$

but uncertainty of the uncertainty estimate is difficult to quantify

Systematic error: summary

- $x^{\ell}[A_{L}]: A_{LR}, A_{FB}^{\ell}, A_{e,\tau}$ $\chi^{2}/N = 1.6/2$ CL = 0.44
 - relatively simple & clean experimentally
 - no QCD or hadronic Monte Carlo corrections
 - 3 very different techniques: common sys error very unlikely
- x^{ℓ} [A_H]: A_{FB}^b, A_{FB}^c, Q_{FB} $\chi^2/N = 0.02/2$ CL = 0.99
 - experimentally challenging: flavor tag & charge
 - big QCD corr'ns with detector-dependent bias, estimated with hadronic Monte Carlo + detector simulation.

Unique, correlated experimental & theoretical systematics which may be difficult to quantify

If A_{FB}^{b} , A_{FB}^{c} , Q_{FB}^{c} have underestimated sys. error, x_{W}^{ℓ} is most reliably obtained from A_{LR}^{c} , A_{FB}^{ℓ} , $A_{e,\tau}^{c}$

Consequences of underestimated systematic error

Without excluding the possibility of statistical fluctuation or new physics, we explore the implications of underestimated systematic error as the explanation of the anomaly.

Assume A_{FB}^b, A_{FB}^c, Q_{FB} have underestimated systematic errors and remove from fit.	
➡ SM fit improves	
CL: 0.14 —> 0.77	
but tension with LEPII increases:	
m _H : 89 —> 61	
CL(m _H > 114): 0.23 —> 0.03	
m _H (95%): <151 —> <105	

	Experiment	SM Fit	Pull
A_{LR}	0.1513 (21)	0.1498	0.7
A^l_{FB}	0.01714 (95)	0.01684	0.3
$A_{e, au}$	0.1465 (32)	0.1498	-1.0
m_W	80.399 (23)	80.400	-0.001
Γ_Z	2495.2 (23)	2496.4	-0.5
R_l	20.767 (25)	20.743	1.0
σ_h	41.540 (37)	41.480	-1.6
R_b	0.21629 (66)	0.21581	0.7
R_c	0.1721 (30)	0.1724	-0.05
A_b	0.923 (20)	0.935	-0.6
A_c	0.670 (27)	0.669	0.03
m_t	173.1 (1.3)	173.3	0.1
$\Delta lpha_5(m_Z^2)$	0.02758 (35)	0.02754	0.1
$lpha_S(m_Z)$		0.118	
$\chi^2/{ m dof}$		5.7/9	
$\mathrm{CL}(\chi^2)$		0.77	
m_H		61	
$\operatorname{CL}(m_H > 114)$		0.03	
$m_H(95\%)$		105	

Consequences of underestimated systematic error

Without excluding the possibility of statistical fluctuation or new physics, we explore the implications of underestimated systematic error as the explanation of the anomaly.

Assume A_{FB}^b, A_{FB}^c, Q_{FB} have underestimated systematic errors and remove from fit.

CL: 0.14 ---> 0.77

but tension with LEPII increases:

 $m_{\rm H}$:89 ---> 61---> 61 $CL(m_{\rm H} > 114)$:0.23 ---> 0.03---> 0.05 $m_{\rm H}(95\%)$:< 151 ---> < 105</td>--> < 114</td>

δm_{t EXPT} x 2

Consequences of underestimated systematic error

Without excluding the possibility of statistical fluctuation or new physics, we explore the implications of underestimated systematic error as the explanation of the anomaly.

Assume A_{FB}^b, A_{FB}^c, Q_{FB} have underestimated systematic errors and remove from fit.

Dissecting the Higgs mass prediction

The m_H prediction in the SM fit, with CL(17.3,11) = 0.14,

m_H = 89 GeV, < 151 GeV (95%)

is dominated by three observables, $\textbf{A}_{\textbf{LR}}\textbf{,} \textbf{A}_{\textbf{FB}}\textbf{^b}\textbf{,} \textbf{m}_{\textbf{W}} (+ m_t, \Delta \alpha_5 \,)$

m_H = 89 GeV, < 156 GeV (95%)

with a poor fit, **CL(11.6,2) = 0.003**, casting doubt on reliability of the SM m_H prediction, regardless of the anomaly's origin.

Separately:

A _{LR} :	m _H = 37 GeV,	< 110 GeV (95%)
m _w :	m _H = 61 GeV,	< 126 GeV (95%)
A _{FB} ^b :	m _H = 187 GeV,	187 < m _H < 1+ TeV

 $A_{LR} - m_W$ alliance explains why A_{FB}^{b} has biggest pull in SM fit

New Physics with Custodial SU(2) breaking

At $m_H = 520$ GeV, oblique NP fit has CL(8.4,8) = 0.40

But not really so easy: oblique NP typically comes with other corrections (S \neq 0 or non-oblique effects) that can degrade the fit.

T≠0 fit to full data set

CL of oblique fit at large m_H is ~ CL(16.2,11) = 0.13, similar to SM fit with CL(17.3,12) = 0.14

Example 1: a fourth family

If a 4'th family is discovered the consequences would be at least as profound as those which emerged from the discovery of the 3'rd family, including the possibility of a role in EWSB.

Contrary to popular urban legend, a 4'th family can be consistent with PEW data. (Only please tell me why $m_v > m_Z/2 \dots$)

He *et al.* 2001 Novikov *et al.* 2002 Tait *et al.* 2007

Mass splitting in 4'th family quark and lepton doublets provides SU(2)_{Custodial} breaking, T > 0, which raises m_H and can remove tension with LEPII bound for data set without A_{FB}^{b} , A_{FB}^{c} , Q_{FB} , as first shown by Novikov *et al.*

Mixing between 3'rd and 4'th families of order $\theta_{Cabibbo}$ is allowed and can further increase m_H prediction. MC. 2009

<u>Setup</u>

Choose
$$m_{b'} = m_{t'} - 55 \text{ GeV}$$

 $m_{\nu_4} = 100$ $m_{l_4} = 145$ Little effect on fit
CDF: $m_T > 311$, $m_B > 338$

Assume predominantly 3-4 mixing,
$$s_{34} = \sin \theta_{34}$$

$$T_{4} = \frac{1}{8\pi x_{W}(1-x_{W})} \left\{ 3 \left[F_{t'b'} + s_{34}^{2} (F_{t'b} + F_{tb'} - F_{tb} - F_{t'b'}) \right] + F_{l_{4}\nu_{4}} \right\}$$
$$F_{12} = \frac{x_{1} + x_{2}}{2} - \frac{x_{1}x_{2}}{x_{1} - x_{2}} \ln \frac{x_{1}}{x_{2}} \qquad \qquad x_{i} = m_{i}^{2}/m_{Z}^{2}$$

Include other non-decoupling effects: S₄ and Zbb

Results: reduced data set

Example: $m_T = 500 \text{ GeV}$

Resolves tension with LEPII

$$\theta_{34} = 0$$
:
 $m_H = 89$
 $CL(m_H > 114) = 0.28$
 $CL(\chi^2) = 0.36$

At 95% CL limit for θ_{34} ,

$$s_{34} = 0.11$$

 $m_H = 280$
 $CL(m_H > 114) = 1.0$
 $CL(\chi^2) = 0.13$

	Experiment	SM	Pull	SM_4	Pull	$s_{34}[95\%]$	Pull
A_{LR}	0.1513(21)	0.1503	0.5	0.1483	1.4	0.1474	1.8
A_{FB}^{l}	0.01714(95)	0.01694	0.2	0.1649	0.7	0.01630	0.9
$A_{e,\tau}$	0.1465(32)	0.1503	-1.2	0.1483	-0.6	0.1474	-0.3
m_W	80.398 (25)	80.403	0.03	80.423	-1.0	80.425	-1.1
Γ_Z	2495.2 (23)	2496.0	-0.3	2498.5	-1.4	2499.2	-1.7
R_{ℓ}	20.767 (25)	20.741	1.0	20.729	1.5	20.725	1.7
σ_h	41.540 (37)	41.482	1.6	41.489	1.4	41.491	1.3
R_b	0.21629(66)	0.21584	0.7	0.21586	0.6	0.2157	1.0
R_c	0.1721(30)	0.1722	-0.04	0.1722	-0.03	0.1722	-0.05
A_b	0.923(20)	0.935	-0.6	0.935	-0.6	0.935	-0.6
A_c	0.670(27)	0.669	0.03	0.668	0.06	0.668	0.08
m_t	172.6 (1.4)	172.3	0.2	172.3	0.2	172.3	0.2
$\Delta \alpha_5(m_Z)$	0.02758(35)	0.02754	0.1	0.02747	0.3	0.2732	0.7
$\alpha_S(m_Z)$		0.1174		0.1162		0.1168	
$m_{t'}$				500		500	
\$34				0.0		0.11	
T_4				0.20		0.35	
S_4				0.15		0.15	
$x_{t'}$				0.0		0.00028	
m_H		50		89		280	
$CL(m_H > 114)$		0.03		0.28		1.0	
$m_H(95\%)$		105		174		480	
χ^2/dof		5.6/9		9.8/9		13.7/9	
$CL(\chi^2)$		0.78		0.36		0.13	

Table 5: Global fits for the data set without the hadronic asymmetry measurements: the SM, the 4 family SM with $m_{t'} = 500$ GeV and $s_{34} = 0$, and again with s_{34} at the 95% confidence level.

March 2010

Results: full data set

 $m_T = 500 \text{ GeV}$

Resolves (slight) tension with LEPII

$$\begin{array}{l} \theta_{34} = 0; \\ m_{H} = 139 \\ CL(m_{H} > 114) = 0.67 \\ CL(\chi^{2}) = 0.15 \end{array}$$

At 95% CL limit for θ_{34} ,

$$\begin{split} s_{34} &= 0.15 \\ m_{H} &= 1000 + \\ CL(m_{H} > 114) &= 1.0 \\ CL(\chi^{2}) &= 0.05 \end{split}$$

Summary: m_T = 300 —> 1000 GeV

$m_{t'}$	T_4	$m_H(\text{GeV})$	$ s_{34}^{(1)} $	$ s_{34}^{(2)} \pm \Delta_{tb'}^{(2)}$	$ c_{34}^{(2)} $
300	0.46	760	0.32	0.35 ± 0.001	0.94
326	0.47	760	0.28	0.30 ± 0.002	0.95
389	0.48	760	0.21	0.23 ± 0.004	0.97
400	0.47	800	0.20	0.22 ± 0.005	0.98
500	0.48	810	0.15	0.17 ± 0.007	0.99
600	0.48	800	0.12	0.14 ± 0.010	0.99
654	0.48	820	0.11	0.13 ± 0.013	0.99
1000	0.49	820	0.07	0.11 ± 0.10	0.99

400	0.35	290	0.15	0.16 ± 0.0016
500	0.35	270	0.11	0.12 ± 0.0027
600	0.35	290	0.087	0.095 ± 0.0033
654	0.35	280	0.078	0.086 ± 0.0033
1000	0.35	270	0.048	0.059 ± 0.007
	-			

 $m_H(\text{GeV})$

300

280

270

 T_4

0.35

0.35

0.35

 $\frac{m_{t'}}{300}$

326

389

 $|s_{34}^{(1)}|$

0.25

0.21

0.16

 $|s_{34}^{(2)}| \pm \Delta_{tb'}^{(2)}$

 0.26 ± 0.0008

 0.22 ± 0.0010

 0.17 ± 0.0016

 $|c_{34}^{(2)}|$

0.97

0.98

0.99 0.99 0.99 0.995 0.996 0.998

All data

Without A_{FB}^{b} , A_{FB}^{c} , Q_{FB}

 T_4 and m_H at 95% CL upper limits on θ_{34}

Fits at $\theta_{34} = 0$ for all m_T are similar to fits for $m_T = 500 \text{ GeV}$

 $s_{34}^{(2)}/s_{34}^{(1)}$ indicates reliability of perturbation theory, showing breakdown at $m_T = 1$ TeV, especially for "all data" fit.

 $\pm \Delta_{tB}^{(2)}$ indicates reliability of two loop results (which are not completely known)

Example 2: anomaly-free Z'

Consider U(1) extensions of the SM which are anomaly-free without extending fermion sector beyond known quarks & leptons

$$Q_X = \cos\theta_X \frac{Y}{2} + \sin\theta_X \frac{B-L}{2}$$
 MC Ellis Gaillard Appelquist *et al.*

Z - Z' mixing decreases m_Z , equivalent to T > 0

$$\alpha T_X = -\frac{\delta m_Z^2}{m_Z^2} = \frac{r^2 \cos^2 \theta_X}{\hat{m}_{Z'}^2} \qquad r = \frac{g_{Z'}}{g_Z}$$
$$Z - Z' \text{ mixing angle:} \qquad \theta_M = \frac{r \cos \theta_X}{\hat{m}_{Z'}^2} \qquad \hat{m}_{Z'} = \frac{m_{Z'}}{m_Z}$$

Zff couplings are then modified by Z' admixture,

$$\mathcal{L}_f = g_Z \left(1 + \frac{\alpha T_X}{2} \right) g'_f \overline{f} Z f \qquad \qquad g'_f = g_f + r \theta_M q_X^f$$

while x_W and m_W are corrected by T_X

<u>Z' fits</u>

- Horizontal dashed line: upper limit from LEPII contact interactions Carena et al.
- Right axis: $G_{Z'}/G_Z = g_{Z'}^2/g_Z^2 \cdot m_Z^2/m_{Z'}^2$

 m_H reach to 300 GeV at 95% CL (little change in central value – diamond) E.g., for $g_{Z'} = g_Z$, $m_{Z'} \approx 2 - 5$ TeV, probably within reach of LHC

arXiv:0806.0890

<u>vvnat about inu i ev ?</u>		Experiment	Δ	Pull	B	Pull
	ALD	0.1513(21)	0 1476	1.8	0 1494	0.9
	A_{LR}^l	0.01714(95)	0.01634	0.8	0.1454 0.1674	0.4
SM fits with NuTeV	$A_{e\tau}$	0.1465(32)	0.1476	-0.3	0.1494	-0.9
	A^b_{FB}	0.0992(16)	0.1035	-2.7		
	A^c_{FB}	0.0707 (35)	0.0739	-0.9		
A) With A _{EB} ^b , A _{EB} ^c	m_W	80.398 (25)	80.369	1.2	80.391	0.3
, FD, FD	Γ_Z	2495.2 (23)	2495.7	0.2	2496.1	-0.4
m _H = 94	R_l	20.767(25)	20.743	1.0	20.743	1.0
O(1) (max 114) 0.00	σ_h	41.540 (37)	41.477	1.7	41.479	1.7
$OL(m_{\rm H} > 114) = 0.33$	R_b	0.21629(66)	0.21586	0.7	0.21584	0.7
$C_{1}(\sqrt{2}) = 0.02$	R_c	0.1721(30)	0.1722	-0.04	0.1722	-0.04
$OL(\chi) = 0.02$	A_b	0.923(20)	0.935	-0.6	0.935	-0.6
	A_c	0.670(27)	0.668	0.07	0.669	0.04
B) Without Arp ^b , Arp ^c	g_L^2	0.30005(137)	0.30396	-2.9	0.30423	-3.1
	g_R^2	0.03076 (11)	0.03009	0.6	0.03004	0.7
$m_{\mu} = 64$	$x_W(ee)$	0.23339(140)	0.23145	1.4	0.23122	1.55
	$x_W(Cs)$	0.22939(190)	0.23145	-1.1	0.23122	-1.0
$CL(m_{H} > 114) = 0.07$	m_t	172.6(1.4)	172.3	0.2	172.3	0.2
C(4,2) = 0.10	$\Delta \alpha_5(m_Z)$	0.02758(35)	0.02768	-0.3	0.02754	0.1
$CL(\chi^2) = 0.12$	$\alpha_S(m_Z)$		0.1186		0.118	
	m_H		94		64 0.07	
I ension with LEP II	$CL(m_H > 114)$		0.33		0.07	
moderated but not	$\frac{m_H(95\%)}{2\sqrt{2}/4}$		1/2		124	
	χ^{-}/dol		20.4/10		19.0/13	
eliminated	$\operatorname{CL}(\chi^{-})$		0.02		0.12	

Table 1: SM fits with (A) and without (B) A^b_{FB} and A^c_{FB} .

March 2010

Z' fits: NuTeV

arXiv:0903.2497

- •Status unclear: $3\sigma \longrightarrow 2\sigma$ from $\overline{s}s$ sea asymmetry measurement?
- •Z' models raise m_H central value and 95% limit in fits with NuTeV

For fits without A_{FB}^{b} , A_{FB}^{c} , Q_{FB}^{c} :

- m_H central value increases by factor ~2
- χ² decreases and in some cases CL(χ²) improves modestly

Model	T_X	χ^2	$\operatorname{CL}(\chi^2)$	m_H	$\operatorname{CL}(m_H > 114)$	$m_{H}^{95\%}$ (Freq.)
\mathbf{SM}		19.0	0.12	64	0.07	124
$\theta_X = 0$	0.052	17.9	0.12	120	0.56	215
$\theta_X = \pi/12$	0.052	17.4	0.14	126	0.58	224
$\theta_X = \pi/6$	0.048	16.9	0.15	126	0.59	223
$\theta_X = \pi/4$	0.046	16.5	0.17	126	0.60	230
$\theta_X = \pi/3$	0.037	16.1	0.19	126	0.60	223

Original (NO A_{FB}^b, A_{FB}^c, Q_{FB})

Model	T_X	χ^2	$\operatorname{CL}(\chi^2)$	m_H	$\mathrm{CL}(m_H > 114)$	$m_{H}^{95\%}(\text{Freq.})$
\mathbf{SM}		14.3	0.35	58	0.06	118
$\theta_X = 0$	0.043	13.7	0.32	104	0.42	189
$\theta_X = \pi/12$	0.044	13.3	0.35	109	0.42	197
$\theta_X = \pi/6$	0.043	13.0	0.37	114	0.50	203
$\theta_X = \pi/4$	0.039	12.7	0.39	114	0.50	202
$\theta_X = \pi/3$	0.033	12.4	0.42	109	0.45	201

Revised per s̄s sea asymmetry measurement (NO A_{FB}^b, A_{FB}^c, Q_{FB})

<u>Conclusion</u>

More than one way to read the PEW oracle bones:

- data may favor a light Higgs boson ...
- or maybe it presages NP with custodial SU(2) breaking

PEW data provides important constraints on NP today and will continue to be important to interpret discoveries at LHC

- e.g., discovery of a Z' and measurement of its parameters would imply a prediction for m_H from the PEW fit
- discrepancies between LHC observations and the PEW fit could imply additional, still unobserved NP
- interplay of LHC and PEW data can help us to formulate next steps after LHC has run at initial design parameters

To realize the potential of PEW probes, a next generation Z factory could be an important facility, perhaps at the front end of a future LC.