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Quantum Mechanics with Indefinite Metric

Pauli



Indefinite Metric Quantization

〈i|j〉 = ηij

•Hamiltonian is self-adjoint but not hermitian

•H  eigenvalues are either of
•real with non-zero norm

•complex, in c.c. pairs, with zero norm

•H  self-adjoint implies S -matrix is pseudo-unitary

•LW condition: all eigenstates with real eigenvalues have positive norm
•restriction of S -matrix to states with real eigenvalues gives a unitary S-matrix

H̄ = ηH†ηH̄ = H

〈+|−〉 = 1〈+|+〉 = 〈−|−〉 = 0E± = ER ± iEI

〈r|r〉 #= 0E∗
r = Er

〈r|r〉 > 0

S†ηS = η

S†S = 1



Lorentz metric is indefinite

Gauge fields have a negative metric component

Combined with the longitudinal mode give pairs of zero norm states

S-matrix is unitary because they are not allowed as
external asymptotic states (and current conservation)

Likewise in string theory (X0 component has negative norm)

Don’t be afraid of indefinite metric:



TD Lee 
and 

Giancarlo Wick

Basic idea: unitary S-matrix possible if negative metric states are unstable



Basic idea: unitary S-matrix possible if negative metric states are unstable

•Strategy (arranging for real eigenvalue states to have positive norm automatically):
•In absence of interactions have “heavy” (n) negative metric states  and “light” (p) positive 

metric states
•Turn on interactions;  a pp state is degenerate with an n state;  n unstable
•n and pp states mix;  complex eigen-energy (c.c. pair), zero norm

•all negative metric states have disappeared 

|±〉 =
|pp〉± |n〉√

2
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Three equivalent Lagrangians:

L =
1
2
(∂µφ̂)2 − 1

2M2
(∂2φ̂)2 − V (φ̂)

L′ =
1
2
(∂µφ̂)2 − χ(∂2φ̂) +

1
2
M2χ2 − V (φ̂)

- Indefinite metric problem explicit

L′′ =
1
2
(∂µφ)2 − 1

2
(∂µχ)2 +

1
2
M2χ2 − V (φ− χ)

φ = φ̂ + χ

Consider an example



To explain basic ideas consider toy model for simplicity: gφ3

L′′ =
1
2
(∂µφ)2 − 1

2
(∂µχ)2 +

1
2
M2χ2 − V (φ− χ)

L =
1
2
(∂µφ̂)2 − 1

2M2
(∂2φ̂)2 − V (φ̂)

Recall, equivalent lagrangians

i

p2 −m2

−i

p2 −M2

= −ig = ig

→ g(φ− χ)3gφ3

Scattering:
+ = −ig2

(
1

p2 −m2
− 1

p2 −M2

)

⇒ Im Afwd = πg2
[
δ(p2 −m2)− δ(p2 −M2)

]

This is a disaster: optical theorem is violated Im Afwd = π
√

s(s− 4m2)σT > 0



= + + · · ·1PI

iG(2) i∆ iΠi∆ i∆

⇒ iG(2) =
i

∆−1 + Π

very familiar, but now use i∆ =
−i

p2 −M2 to get the surprising

iG(2) =
−i

p2 −M2 −Π iG(2) =
i

p2 −m2 + ΠCompare this with normal case:

 Π itself is very “normal,” it is the same for normal and LW fields:

=
1PI + +

1PI = + +

Reorganize perturbation theory (old school, resonances, think W/Z):
(i) Replace all propagators by dressed propagators (old well known way to deal with resonances)
(ii) Define amplitude by analytic continuation from positive and large Im(p2)



Pole  in the scattering amplitude!

iA = −ig2

[
1

p2 −m2 + Π
− 1

p2 −M2 −Π

]

4m2 Re p2

Im p2

4m2

M̂2

M̂∗2

Im p2

Re p2

so in fact, the LW propagator is G(2) = − A

p2 − M̂2
− A∗

p2 − M̂∗2
+

∫ ∞

4m2
dµ2 ρ(µ2)

p2 − µ2

properties: ρ(µ2) ≥ 0

Imaginary part of forward amplitude: complex dipole cancels out 

ImAfwd = πg2
[
ρnormal(µ2) + ρLW(µ2)

]

This is a positive discontinuity. 
You can see it is  precisely the total cross section (to the order we have carried this out)

−A−A∗ +
∫

dµ2ρ(µ2) = −1



Above calculation ok  because single LW-resonance in intermediate state can never go “on-shell” when energies of 
incoming particles are real

Subtleties first encountered in 1-loop amplitude: 
with real energy may still produce two LW-resonances with masses M and M*
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opposite side of the real axis. However, the self energy is the same and so
the cut piece is the same as for an ordinary resonance. Hence,

Dφ̃(p2) =
−i

p2 −M2
c

+
−i

p2 −M∗2
c

+
i

π

∫ ∞

4m2
ds

ρ(s)
p2 − s + iε

, (9)

where M2
c = M2 + iMΓ. To get a unitary theory Lee and Wick advocate

treating the poles at M2
c and M∗2

c as resonances that are not in the spectrum
of the theory. They correspond to negative norm states and so if they were
in the spectrum the theory would not be unitary. However, they are poles in
the φ̃ propagator so how can we have a unitary S-matrix when we exclude
the LW particles from the initial and final states?

To begin with, consider tree level φφ scattering through a virtual φ̃
resonance. The complex poles do not destroy unitarity since the incoming
particles have real energies and momentum and so we cannot produce an
on shell intermediate state with complex mass. Their contribution to the
scattering amplitude is real and it is easy to verify that tree level exchange
satisfies the optical theorem.

The real subtleties first occur at one loop in Feynman diagrams that
have two LW massive particles in the intermediate state. One can get an
intermediate LW two particle on shell state produced with real incoming
momentum and energy . For these diagrams one must provide a definition
for loop integrations of the form

I =
∫

d4p

(2π)4
−i

(p + q)2 −M2
1

−i

p2 −M2
2

, (10)

where M1 and M2 are the complex LW masses. The p0 integration has four
poles. For time like q0 we can go to the frame where q = 0 and the poles
are located at, p0 = ±

√
p2 + M2

2 and p0 = −q0 ±
√

p2 + M2
1 . At g = 0

the widths for the LW resonances vanish and the masses M1 and M2 are
real. Then the cotour of p0 integration is the usual Feynman contoura . As g
increases the contour is defined so that the poles do not cross the contour; a
pole which was initially below the contour remains below for example. This
leads to a well defined contour that can be Wick rotated unless poles pinch
the contour. Pinching can occur because we could have M2

2 = M∗2
1 and

then for some q0 two poles overlap. In this case Cutkowsky et. al. define
the integral by taking the masses M1 and M2 to be unrelated complex mass
parameters so the poles don’t overlap. At the end of the calculation M2

2 is

aSince the contour can be Wick rotated the scattering amplitudes are Lorentz invariant.
Some ways of defining the amplitudes are not Lorentz invariant.7
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has poles at and

Lee & Wick: 
Start from g = 0, masses real, take usual Feynman contour.
Turn on interaction. As M develops imaginary part deform contour to avoid crossing poles

CLOP:
Issue when contour is pinched, which can only happen when M1* = M2

Take M1 and M2 independent,
After integration complete take 

M2 −M1 = iδ
δ → 0
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Clearly works at one loop. How about all orders?

- Lee & Wick made general arguments, but not a proof

- Cutkosky et al (CLOP) analyzed analytic structure (particularly including the so far ignored 
two intermediate LW lines case) of large classes of complicated graphs

-Tomboulis solved N spinors coupled to Einstein-gravity. At large N the fermion determinant 
gives HD gravity. He shows explicitly theory remains unitary (no need to use LW-CLOP)

- We have solved the O(N) model in large N limit. The width or LW resonance is O(1/N), so 
positivity of spectral function easily shown. Hence example exists for which
	 i) used LW-CLOP prescription 

 ii) unitary shown explicitly (directly checked optical theorem)
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Indefinite metric quantization: Dirac, Pauli, ...



Peculiar effects:
 Non-locality?



Recall “response theory”
t

x

source f(k)

detector g(k),
localized at yμ

proper time τ

 f(k), g(k) concentrated about k = k0

〈detector|source〉 ∝ g∗(my/τ)f(my/τ)
1

τ3/2
e−imτθ(y0)

stable particle



Recall “response theory”
t

x

source f(k)

detector g(k),
localized at yμ

proper time τ

 f(k), g(k) concentrated about k = k0

and for narrow resonance, production and decay, (pole in second sheet)

“source” can be from collision of two normal (non-LW) particles
“detector” from decay into normal particles

〈detector|source〉 ∝ g∗(my/τ)f(my/τ)
1

τ3/2
e−imτe−Γτ/2θ(y0)

〈detector|source〉 ∝ g∗(my/τ)f(my/τ)
1
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Now for LW resonance

(And for LW virtual “dipole” ) 〈detector|source〉 ∼ g∗(−my/τ)f(−my/τ)
1
τ3

e−2iRe(M)τ

t

x

source f(k)

proper time τ

 f(k), g(k) concentrated about k = k0

〈detector|source〉 ∝ g∗(−my/τ)f(−my/τ)
1

τ3/2
eimτe−Γτ/2θ(−y0)

detector g(k),
localized at yμ

decay of LW resonance
particle beam

target

decay of normal resonance



LW-SM: Introduction
Lore: 
Symmetry+Field Content+Renormalizability+Unitarity = SM

Higher Derivative (HD) terms:

can be made of same fields and preserve symmetries

renormalizability preserved

unitarity?? Lee-Wick says yes 

Should be explored



Minimalistic presentation of six results:
No ”big” fine-tuning problem
No flavor problem
EW precision OK, if mass of new resonances few TeV 
Renormalization and GUTs 
High energy vector-vector scattering: the special operators
LHC examples

Outline



The LW SM (or HD SM)

L = LSM + LHD

LHD =
1

2M2
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(DµFµν)a (
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ν
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2M2
2

(DµDµH)† (DνDνH) − 1
M2
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ψ̄L(i /D)3ψL
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The LW SM (or HD SM)

L = LSM + LHD

LHD =
1

2M2
1

(DµFµν)a (
DλFλ

ν
)a − 1

2M2
2

(DµDµH)† (DνDνH)

LGF =
1
2ξ

(∂ · A)2

LGF =
1
2ξ

(∂ · A)(1 +
∂2

M2
3

)(∂ · A)

Gauge fixing can be as usual

or can include HD’s, eg,
(convenient for power counting) 

(one for each gauge group factor)

− 1
M2

3

ψ̄L(i /D)3ψL



Naive degree of divergence, naively done (but correct!)

∼ i

p2 − p4/M2propagators

vertices

1
2

n

∼ p6−n (leading)

L =
Vn =
I =
E =

# of loops
# of vertices with n lines
# of internal propagators
# of external lines

D = 4L +
∑
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(6− n)Vn − 4I

L = I −
∑

n

Vn + 1
∑

n

nVn = 2I + E

naive degree of divergence:

topological identities

⇒ D = 6− 2L− E



Naive degree of divergence, naively done (but correct!)

∼ i

p2 − p4/M2propagators

vertices

1
2

n

∼ p6−n (leading)

L =
Vn =
I =
E =

# of loops
# of vertices with n lines
# of internal propagators
# of external lines

D = 4L +
∑

n

(6− n)Vn − 4I

L = I −
∑

n

Vn + 1
∑

n

nVn = 2I + E

naive degree of divergence:

topological identities

⇒ D = 6− 2L− E

D =

{
4− E L = 1
2− E L = 2

possible divergences:
quadratic only for L=1, E=2 

Note: renormalizability straightforward
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1. Quadratic divergences?
(i) Gauge fields: gauge invariance decreases divergence to D = 0

µ ν = i(pµpν − gµνp2)Π(p2)

Notes:
1. Physical mass is gauge independent. Quadratic divergences found in unphysical quantities
2. Result checked by explicit calculation (arbitrary ξ-gauge)

(ii) Higgs field: quadratic divergence from vertex with 2/3 derivatives
(D2H)†(D2H) D2H = [∂2 + 2igA · ∂ + ig(∂ · A)]H

∂ · A = 0Choose gauge and integrate by parts:
there are at least two derivatives on external field

⇒ δm2
H ∼M2 ln Λ2



2. FCNC’s
This is of particular interest at this meeting on “Flavor Physics”
What is interesting is that there is no need for additional 
restrictions artificially imposed (eg, MFV couplings for the HDs)
nor an additional huge superstructure to deal with this (like
in SUSY with gauge mediation).

I think this merits more study.



Notation: SM Yukawas:

LSM ⊃ λUHq̄LuR + λDH∗q̄LdR + λEH∗"̄LeR

1
M2

rij q̄
i
L(i /D)3qj

L =
1

M2
(λ†

UrλU )ij ūi
RH∗i /D(Huj

R)

For low energy FCNCs treat HDs as small.
Use EOM on HD terms:

:: There are off-diagonal tree level Z couplings, but suppressed

j

i

Z

∼ δij + ∆ij ∆ij ∼
mimjrij

M2
∆bs ∼

mbmsrbs

M2
∼ 10−6

Even for LFV, this mass suppression is sufficient

So, for example, with M = 1 TeV

completely arbitrary matrix (order(1))

(HD-2HDM at large tan β ?  not done)



3.  EW precision
Alvarez, Da Rold, Schat & Szynkman, JHEP 0804:026,2008 
Underwood & Zwicky, Phys. Rev. D79:035016,2009 
Carone & Lebed, Phys. Lett.B668: 221-225,2008
S. Chivukula et al, arXiv:1002.0343 (this reported below)
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FIG. 4: Left: Exclusion plot for the LW gauge-field masses M2 and M1. These bounds are due to the constraints on Y and

W , as shown by Eq. (25) and Eq. (26). For a light Higgs (mh = 115 GeV) the striped region to the left of both curves is

excluded. For a heavy Higgs (mh = 800 GeV) the additional yellow strip between the curves is excluded as well. Right:

95% C.L. ellipses in the (Y ,W ) plane, and the LW prediction for degenerate masses, M1 = M2. The parametric plot is for

0.5 TeV < M1 = M2 < 10 TeV and the dots are equally spaced in mass. The lower bound on M1 = M2 is approximately 2.4

TeV for a light Higgs.

Next, we seek constraints on the masses of the LW partners of the top quark. The previous subsection found that

the post-LEP parameters sensitive to the LW fermion masses are Ŝ and T̂ , which do not depend on the LW gauge

masses at the one-loop level. We should also note that, for a light Higgs, the LW prediction of Ŝ is very close to its

central value, Ŝ ! 0. Furthermore from the global fit to the experimental data in Ref. [15], we conclude that T̂ is

only mildly correlated to Y and W , the parameters that are most sensitive to the LW gauge boson masses in the LW

SM. This confirms that the bounds on the LW fermions should be essentially independent of the LW gauge masses,

and should come almost entirely from T̂ .

In Fig. 5 we show the experimental mean value for T̂ (red thick line), the ±2σ allowed region, the all-order (in

v2/M2
q ) LW prediction (solid blue curve), the leading order LW prediction from Eq. (30) (dashed blue curve), and

the leading-log approximation (dotted blue curve), as functions ofMq, in the degenerate case. This figure reveals the

bound Mq = Mt
>∼ 1.6 TeV on the LW fermion masses in the degenerate case. Note that although Eq. (30) appears

to predict a positive T̂ for small Mq (dashed blue curve), the complete numerical evaluation (solid blue curve) shows

that T̂ is always negative, as Fig. 5 shows explicitly; below Mq = 1 TeV the perturbative diagonalization of the mass

matrix is no longer valid, rendering the leading-order LW prediction unreliable in that mass regime.

If we relax the requirement of degenerate LW fermion masses, we obtain the 95% C.L. bounds on Mq and Mt

shown in Fig. 6 (left). For a light Higgs the striped region in Fig. 6 (left) is excluded, while for a heavy Higgs the

whole (yellow) region is excluded. Note from Figs. 4 and 6 (left) that the mildest constraints on the LW masses are

obtained in the fully degenerate case, M = M ′ and Mq = Mt.

Returning to the case of degenerate LW fermion masses, we show in Fig. 6 (right) the values of Ŝ and T̂ as a

function of Mq = Mt for 0.5 TeV < Mq < 10 TeV; the dots representing different values of Mq are placed at regular

intervals. The 95% C.L. ellipses from the global fit to the data [15] confirm the constraint Mq
>∼ 1.5 TeV for a light

Higgs, while a heavy Higgs scenario is disfavored for any LW fermion mass. In fact for a heavy Higgs the T̂ parameter

is expected to be positive, while the LW SM predicts a negative T̂ . This is a direct consequence of the negative sign

Gauge bosons
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FIG. 5: T̂ as a function of Mq in the degenerate case, Mq = Mt. The experimental mean value for T̂ is shown by the thick red

line, along with the ±2σ allowed region. Also shown are the all-order (in v2/M2
q ) LW prediction (solid blue curve), the leading

order LW prediction, Eq. (30) (dashed blue curve), and the leading-log curve, Eq. (15) (dotted blue curve), as functions of

Mq , in the degenerate case. Note that the leading-order prediction is not valid below Mq ∼ 1 TeV. (See text for details.)
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FIG. 6: Left: 95% C.L. exclusion plots for the LW fermion masses Mq and Mt. These bounds come almost entirely from the

experimental constraints on T̂ . For a light Higgs the striped region to the left of the curve is excluded, while a heavy Higgs

is completely excluded. Right: 95% C.L. ellipses in the (Ŝ,T̂ ) plane, and the LW prediction for degenerate masses, Mq = Mt.

The parametric plot is for 0.5 TeV < Mq < 10 TeV and the dots are equally spaced in mass. The lower bound on Mq is

approximately 1.5 TeV for a light Higgs.

in the LW fermion propagators, which results in an overall negative sign from the (dominant) diagrams involving a

single LW fermion in the loop.

Our results disagree with those of [12, 17] in two ways: their bounds on the LW fermion masses appear more

stringent for a light Higgs and their limits appear to depend on the masses of the LW gauge boson partners. The

disagreement arises because their study of one-loop electroweak corrections in the LW SM assumes the corrections

Bounds, quark or gauge bosons, largely decouple:
enter into (S,T), or (W, Y)

Light higgs favored

Quarks, q & t 
yellow is for mh = 800 GeV

Mq = Mt line



4. YM-beta function
Background-Field Gauge

1-loop, normal

1-loop, HD2 theory

1/6 is easy to understand: doubling obvious only when longitudinal and transverse modes
all have same power counting. Need HD GF. But then get determinant from exponentiation trick:

back on plan:

β = − g3

16π2
C2

(
10
3

+
1
3

)

β = − g3

16π2
C2

(
2× 10

3
+

1
3

+
1
6

)

√
det(1 + D2/M2)

∫
[dα]e

i
2ξ

R
d4x α

“
1+ D2

M2

”
α
δ(∂ · A− α)

This det is, for UV, same as usual ghosts in BFG. The sqrt gives an additional 1/2

1-loop, HD3 theory β = − g3

16π2
C2

(
2× 10

3
+

1
3

+
1
6

+ 1
)

C. Carone, arXiv:0904.2359



More generally, in HD2 L = LA + Lψ + Lφ,

LA = −1
2
Tr(FµνFµν) +

1
m2

Tr(DµFµν)2 − iγg

m2
Tr(Fµν [Fµλ, F λ

ν ])

Lψ = ψ̄Li /DψL +
i

m2
ψ̄L

[
σ1 /D /D /D + σ2 /DD2 + igσ3F

µνγνDµ + igσ4(DµFµν)γν

]
ψL

Lφ = −φ∗D2φ− 1
m2

φ∗ [
δ1(D2)2 + igδ2(DµFµν)Dν + g2δ3F

µνFµν

]
φ

β(g) = − g3

16π2

[(
43
6
− 18γ +

9
2
γ2

)
C2 − nψ

(
σ2

1 − σ2σ3 + 1
2σ2

3

(σ1 + σ2)2

)
− nφ

(
δ1 + 6δ3

3δ1

)]

γψ(g) = − g2

16π2

3
4
C1

(
2σ1(2σ2 + σ3 − 2σ4) + σ2(2σ2 + 2σ3 − σ4)− σ2

3 − σ2
4 + σ3σ4

σ1 + σ2

)

γφ(g) = − g2

16π2

3
8
C1

(
8δ2

1 − δ2
2 − 4δ1δ2

δ1

)

µ
∂γ

∂µ
= 0 µ

∂(g2σi)
∂µ

= 2(g2σi)γψ(g) and µ
∂(g2δi)

∂µ
= 2(g2δi)γφ(g).

This is for general HD terms, but not all have good high energy behavior (next section)



GUT (Carone): some fields have HD2, others HD3

TABLE I: Predictions for α−1
3 (mZ) assuming one-loop unification. The experimental value is

8.2169 ± 0.1148 [10]. The abbreviations used are as follows: H=Higgs doublets, gen.=generation,

LH=left handed.

model N =3 fields (b3, b2, b1) α−1
3 (mZ) error

SM - (−7,−19/6, 41/10) 14.04 +50.8σ

MSSM - (−3, 1, 33/5) 8.55 +2.9σ

N =2 1H LWSM none (−19/2,−2, 61/5) 14.03 +50.6σ

N =3 1H LWSM all (−9/2, 25/6, 203/10) 13.76 +48.3σ

N =2 8H LWSM none (−19/2, 1/3, 68/5) 7.76 −4.01σ

N =3 6H LWSM all (−9/2, 20/3, 109/5) 7.85 −3.16σ

N =2 1H LWSM, gluons (−25/2,−2, 61/5) 7.81 −3.55σ

N =2 1H LWSM gluons, 1 gen. quarks (−59/6, 0, 41/3) 8.40 +1.55σ

N =2 1H LWSM 1 gen. LH fields (−49/6, 2/3, 191/15) 8.03 −1.66σ

N =2 2H LWSM LH leptons (−19/2, 1/3, 68/5) 7.76 −4.01σ

N =2 2H LWSM gluons, quarks, 1H (−9/2, 9/2, 169/10) 8.21 −0.06σ

LW extension, respectively. Finally, the Higgs field contribution is multiplied by either 2 or

3, since each LW partner is also complex scalar. Ref. [8] notes that the LWSM does not unify

at one loop, unless multiple Higgs doublets are included. As Table I indicates, we find this is

the case if 8 Higgs doublets are included in the N =2 theory, or 6 in N =3. However, we can

now consider models in which each field has at least one LW partner, with some having two.

These models solve the hierarchy problem since they are at least as convergent as the N =2

theory. This provides a wide range of possibilities for achieving more accurate unification.

In Table I we give some of the simpler successful models, with the SM and MSSM one-loop

results provided for comparison. The experimental central values of α−1
1 (mZ) = 59.00 and

α−1
2 (mZ) = 29.57 [10] are taken as inputs, unification is assumed and α−1

3 (mZ) is then pre-

dicted. Of course, Table I does not represent an exhaustive list of the possible variations

on the LWSM. It illustrates that models with improved gauge coupling unification at the

one-loop level can be achieved in the higher-derivative LW theories of Ref. [7] by choosing

an appropriate set of higher-derivative terms, beyond the minimally required set, without
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but MGUT low, proton decay a problem. Fermions at orbifold fixed points in Higher-dim’s where wave-function vanishes?



5.  Massive V V-scattering: Special HD terms
Consider VV-scattering,  first in non-HD case:
- if described by massive vector boson lagrangian,
 unitarity violated (perturbatively)
- growth could be E4, 
but approximate GI at large E reduces growth  by E2, since
- HD: 
	 + Gauge Invariance (GI) is maintained,  exact ward identities
 	 + Use LW-form (2-fields): amplitude has no inverse powers of M

A ∼ E2 E >> m

⇒ A ∼ E0

  Unacceptable growth is controlled by GI and absence of 1/M terms in lagrangian.

- HD with no LW-form, like F3, does have E2 growth at tree level (verified by explicit calculation)

εµ
L(p) = 1/M(p, 0, 0, E)

εµ
L(p) = pµ/M + (M/2E)nµ

(n2 = 0)



6. LHC examples
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Figure 1: Transverse mass distributions for W ′ in various models at the LHC assuming a W ′

mass of 1.5TeV as described in the text. The upper(lower) panel assumes a luminosity of 10(100)
fb−1; the yellow histogram in both cases is the anticipated SM background. A cut of |η!| < 2.5
has been applied and the distribution has been smeared by δMT /MT = 2% to simulate the ATLAS
resolution for the electron final state.

of PWW ′ , when weighted with the relevant coupling factors, differs in sign in these two

cases. This can be traced back to the negative decay width of WLW. However the size of

this particular term is quite small in comparison to all others due to the relatively narrow

widths of the W and WLW and is essentially impossible to dig out from the MT distribution.

Is such a conspiratorial model realistic? Consider a 5D, S1/Z2 model of flat, TeV-scale

extra dimensions [8] taking R−1 ! 1.5 TeV with leptons located at the origin of the extra

dimension, y = 0, and the quarks localized at y = πR. Such a model has been suggested to

avoid proton decay constraints [13]. Then the lowest W Kaluza-Klein(KK) excitation, due

to its 5D wavefunction ∼ cos y/R, is found to have C!
W ′ = −Cq

W ′ =
√

2, hW ′ = 1, which

is not very different from the toy model above. Brane kinetic terms [14] at y = 0,πR can

– 5 –
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Figure 2: Dilepton pair mass distributions at the LHC for the two models as described in the text.
The upper(lower) panel assumes a luminosity of 10(100) fb−1; the yellow histogram in both cases
is the anticipated SM background. A cut of |η!| < 2.5 has been applied to both final state leptons
and the mass distribution has been smeared by δM/M = 1% to simulate the ATLAS resolution for
the electron final state.

easily reduce the
√

2 →# 1 producing the above toy model while simultaneously reducing

the couplings of the second and higher W KK states making them difficult to observe.

Thus it seems that with not much effort one can construct an example of a semi-realistic

model which is difficult to distinguish from the LW one considered here, at least in this

particular channel.

At this point the reader may say that the reason that the LW and C!
W ′ = −Cq

W ′ =

1, hW ′ = 1 models are apparently indistinguishable is due to the presence of the smeared

out Jacobian peak structure in the MT distribution instead of a true dilepton mass peak

which might be much cleaner. To that end we turn to the case of W 0
LW, BLW production

in dilepton pairs; in order to reduce the number of parameters and to keep the statistics

– 6 –

LW-Zboson
M=1.5TeV

ATLAS-like cuts
10 fb-1 (14TeV)

(LW=green)

T. Rizzo, JHEP 06:070(2007)



The End

There exist unitary HD theories (at least large N to all orders g)

HDSM Solves big fine tuning, flavor OK, EWP fine (M > 3 TeV)

GUT trouble... open questions on completion and gravity

Acausal (non-local?) at short distances, but does not build 
macroscopic acausality (at least not in thermal equilibrium) 

Other applications? Cosmology?



fin



Extra slides



3.  EW precision, very rough
Use perturbation theory in HD operators, again because E << M
Then from operator analysis (eff theory; eg, Han and Skiba) know that T and S are, respectively

Alvarez, Da Rold, Schat & Szynkman, JHEP 0804:026,2008 Global analysis constraints M to 3 TeV’ish. 

(H†DµH)2 and H†τaW a
µνHBµν

Neither of these are HD ops, but we generate them using EOM. 

(DF )µ = g(H†←→∂ µH) ⇒ g2

M2
(H†DµH)2

Bound on boundary of total naturalness:

T = −π
g2
1 + g2

2

g2
2

v2

M2 ⇒M ! 3 TeV

δm2
H ∼

g2

16π2
M2 ! m2

H ⇒M ! 3 TeVwhile



(ii) O(N) model

L =
1
2
(∂µφa)2 − 1

2
m2(φa)2 − 1

2
(∂µΦa)2 +

1
2
M2(Φa)2 − 1

8
λ[(φa − Φa)2]2

use auxiliary field fixed

iA =

1PI 1PI1PI= ++
+ · · ·

1PI = + +
+ O(1/N)

same story as above, this does not satisfy optical theorem, need to dress propagators

σ, Lint =
1
2
σ2 +

1
2
gσ(φa − Φa)2, g2N = g2

0



4 N = ∞ as the limit N → ∞: unitarity recovered

In order to implement the program of Lee-Wick one must introduce the effects of a finite
width of the LW particle. In the previous section we saw that neglecting the width resulted
in a non-unitary theory. In this section we study how unitarity resurges when the lowest
order contribution to the width of the LW particle is reatined in the propagators.

1PI = + +

+ + + +

Figure 4: The σ 1PI two-point function with full internal propagators. Except for the
O(g2) corrections to propahators, only the leading order in 1/N is retained. The hashed
blub denotes the full propagator Dij of Eq. (4)

The idea is that one uses in the perturbative expansion full propagators for the internal
lines of Feynman diagrams. For example, the computation of Πσ is now shown diagramat-
ically in Fig. 4. While in principle one should retain the full propagator, we will simplify
the computation by retaining only the leading terms in the φ-Φ propaator that drastically
modifies tha analyitic structure of the theory. In fact, since it is the change of the analytic
structure that matters, we will be able to take the limit N → ∞ (g2 → 0, g2N fixed)
at the end of the calculation. Although this is the N → ∞ theory, it is not the same as
that of the previous section which ignored the modifications to the analytic properties of
propagators from subleading effects.

Note: that the N = ∞ and N → ∞ theories differ is not a novel phenomena. For
example, in the ’tHooft model (QCD in 1+1 dimensions) the N = ∞ theory exhibits chiral
symmerty breaking and associated Goldstone bosons (pions), but that is not the case of
the N → ∞ theory since for any finite N symmetry breaking is forbidden by Elitzur’s
theorem. End Note.

In this approximation we can take

D(p2) ≈

(

1
p2−m2+Π11

0

0 −1
p2−M2−Π22

)

(30)

Let us consider the three different contributions to Πσ separately.
The first one is from two φ particles in the loop, the first term on the RHS of the

equation in Fig. 4. This is just as in the standard (non-LW) case and there are no surprises
here. This will result in a contribution to the imaginary part of Πσ just like the first term
in (28),

g2N

32π
I(s,m,m) + O(g2) (31)

6

but now only Im part of pole need to be kept, Re is a 1/N correction

G(2) = − A

p2 − M̂2
− A∗

p2 − M̂∗2
+

∫ ∞

9m2
dµ2 ρ(µ2)

p2 − µ2

full LW propagator formally as before

but now A=1+O(1/N) and

ρ(µ2) ≈ 1
π

Im
1

µ2 −M2 − iMΓ
→ δ(µ2 −M2)
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The idea is that one uses in the perturbative expansion full propagators for the internal
lines of Feynman diagrams. For example, the computation of Πσ is now shown diagramat-
ically in Fig. 4. While in principle one should retain the full propagator, we will simplify
the computation by retaining only the leading terms in the φ-Φ propaator that drastically
modifies tha analyitic structure of the theory. In fact, since it is the change of the analytic
structure that matters, we will be able to take the limit N → ∞ (g2 → 0, g2N fixed)
at the end of the calculation. Although this is the N → ∞ theory, it is not the same as
that of the previous section which ignored the modifications to the analytic properties of
propagators from subleading effects.

Note: that the N = ∞ and N → ∞ theories differ is not a novel phenomena. For
example, in the ’tHooft model (QCD in 1+1 dimensions) the N = ∞ theory exhibits chiral
symmerty breaking and associated Goldstone bosons (pions), but that is not the case of
the N → ∞ theory since for any finite N symmetry breaking is forbidden by Elitzur’s
theorem. End Note.

In this approximation we can take

D(p2) ≈

(

1
p2−m2+Π11

0

0 −1
p2−M2−Π22

)

(30)

Let us consider the three different contributions to Πσ separately.
The first one is from two φ particles in the loop, the first term on the RHS of the

equation in Fig. 4. This is just as in the standard (non-LW) case and there are no surprises
here. This will result in a contribution to the imaginary part of Πσ just like the first term
in (28),

g2N

32π
I(s,m,m) + O(g2) (31)

6

**subtleties @ dinner tonight after wine

We can see very explicitly how unitarity works; consider 
the contribution to the forward scattering 
amplitude from 1 normal and 1 LW
Let

Im(Ĩ(m,µ)) = πI(m,µ)

iĨ(M1,M2) =

M1

M2

defined with p0 integral along the imaginary axis** 

3 terms in LW propagator: I = −AĨ(m, M̂)−A∗Ĩ(m, M̂∗) +
∫ ∞

(3m)2
dµ2 ρ(µ2)Ĩ(m,µ)

Im(A) =
g4N

16π

1
|1 + Πσ(s)|2

∫ ∞

(3m)2
dµ2 ρ(µ2)I(s,m, µ)

where is the usual phase space factor

Replacing ρ(µ2)→ δ(µ2 −M2) satisfies exactly the optical theorem

σ(φφ→ φΦ) =
1√

s(s− 4m2)

(
g4N

16π

1
|1 + Πσ(s)|2

)
I(s,m, M) (“Φ” = 3φ)
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In this approximation we can take

D(p2) ≈
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0

0 −1
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(30)

Let us consider the three different contributions to Πσ separately.
The first one is from two φ particles in the loop, the first term on the RHS of the

equation in Fig. 4. This is just as in the standard (non-LW) case and there are no surprises
here. This will result in a contribution to the imaginary part of Πσ just like the first term
in (28),

g2N

32π
I(s,m,m) + O(g2) (31)

6

Physically:

recall
iĨ(M1,M2) =

M1

M2

is a function of p2 = 4E2 (in CM frame)

look for discontinuities in E in each of three terms

discontinuity only arises from internal propagators going on shell 

for first two this can only happen for complex E 

but E is external energy, always real (if external particles are the stable “normal” modes)

I = −AĨ(m, M̂)−A∗Ĩ(m, M̂∗) +
∫ ∞

(3m)2
dµ2 ρ(µ2)Ĩ(m,µ)



4 N = ∞ as the limit N → ∞: unitarity recovered

In order to implement the program of Lee-Wick one must introduce the effects of a finite
width of the LW particle. In the previous section we saw that neglecting the width resulted
in a non-unitary theory. In this section we study how unitarity resurges when the lowest
order contribution to the width of the LW particle is reatined in the propagators.

1PI = + +

+ + + +

Figure 4: The σ 1PI two-point function with full internal propagators. Except for the
O(g2) corrections to propahators, only the leading order in 1/N is retained. The hashed
blub denotes the full propagator Dij of Eq. (4)

The idea is that one uses in the perturbative expansion full propagators for the internal
lines of Feynman diagrams. For example, the computation of Πσ is now shown diagramat-
ically in Fig. 4. While in principle one should retain the full propagator, we will simplify
the computation by retaining only the leading terms in the φ-Φ propaator that drastically
modifies tha analyitic structure of the theory. In fact, since it is the change of the analytic
structure that matters, we will be able to take the limit N → ∞ (g2 → 0, g2N fixed)
at the end of the calculation. Although this is the N → ∞ theory, it is not the same as
that of the previous section which ignored the modifications to the analytic properties of
propagators from subleading effects.

Note: that the N = ∞ and N → ∞ theories differ is not a novel phenomena. For
example, in the ’tHooft model (QCD in 1+1 dimensions) the N = ∞ theory exhibits chiral
symmerty breaking and associated Goldstone bosons (pions), but that is not the case of
the N → ∞ theory since for any finite N symmetry breaking is forbidden by Elitzur’s
theorem. End Note.

In this approximation we can take

D(p2) ≈

(

1
p2−m2+Π11

0

0 −1
p2−M2−Π22

)

(30)

Let us consider the three different contributions to Πσ separately.
The first one is from two φ particles in the loop, the first term on the RHS of the

equation in Fig. 4. This is just as in the standard (non-LW) case and there are no surprises
here. This will result in a contribution to the imaginary part of Πσ just like the first term
in (28),

g2N

32π
I(s,m,m) + O(g2) (31)

6

2 LW case is on the surface similar

3x3 terms:

Ĩ(M̂, M̂) + Ĩ(M̂∗, M̂∗) + 2Ĩ(M̂, M̂∗) + Ĩ(M,M)− 2Ĩ(M,M̂)− 2Ĩ(M,M̂∗)

problem: both Ĩ(M̂, M̂∗)Ĩ(M,M) and may give  disc(A)

and this one comes with wrong sign

more specifically

the integral                           as a function of E has a cut with branch point at (M1 + M2)2

this is for real E in both terms above
iĨ(M1,M2) =



4 N = ∞ as the limit N → ∞: unitarity recovered

In order to implement the program of Lee-Wick one must introduce the effects of a finite
width of the LW particle. In the previous section we saw that neglecting the width resulted
in a non-unitary theory. In this section we study how unitarity resurges when the lowest
order contribution to the width of the LW particle is reatined in the propagators.

1PI = + +

+ + + +

Figure 4: The σ 1PI two-point function with full internal propagators. Except for the
O(g2) corrections to propahators, only the leading order in 1/N is retained. The hashed
blub denotes the full propagator Dij of Eq. (4)

The idea is that one uses in the perturbative expansion full propagators for the internal
lines of Feynman diagrams. For example, the computation of Πσ is now shown diagramat-
ically in Fig. 4. While in principle one should retain the full propagator, we will simplify
the computation by retaining only the leading terms in the φ-Φ propaator that drastically
modifies tha analyitic structure of the theory. In fact, since it is the change of the analytic
structure that matters, we will be able to take the limit N → ∞ (g2 → 0, g2N fixed)
at the end of the calculation. Although this is the N → ∞ theory, it is not the same as
that of the previous section which ignored the modifications to the analytic properties of
propagators from subleading effects.

Note: that the N = ∞ and N → ∞ theories differ is not a novel phenomena. For
example, in the ’tHooft model (QCD in 1+1 dimensions) the N = ∞ theory exhibits chiral
symmerty breaking and associated Goldstone bosons (pions), but that is not the case of
the N → ∞ theory since for any finite N symmetry breaking is forbidden by Elitzur’s
theorem. End Note.

In this approximation we can take

D(p2) ≈

(

1
p2−m2+Π11

0

0 −1
p2−M2−Π22

)

(30)

Let us consider the three different contributions to Πσ separately.
The first one is from two φ particles in the loop, the first term on the RHS of the

equation in Fig. 4. This is just as in the standard (non-LW) case and there are no surprises
here. This will result in a contribution to the imaginary part of Πσ just like the first term
in (28),

g2N

32π
I(s,m,m) + O(g2) (31)

6

2 LW case is on the surface similar

3x3 terms:

Ĩ(M̂, M̂) + Ĩ(M̂∗, M̂∗) + 2Ĩ(M̂, M̂∗) + Ĩ(M,M)− 2Ĩ(M,M̂)− 2Ĩ(M,M̂∗)

problem: both Ĩ(M̂, M̂∗)Ĩ(M,M) and may give  disc(A)

and this one comes with wrong sign

more specifically

the integral                           as a function of E has a cut with branch point at (M1 + M2)2

this is for real E in both terms above
iĨ(M1,M2) =

oopsie!



CLOP prescription: 
result of integration depends on choice of contour
equivalent to taking different complex masses in the two propagators,  with

then letting, at the end,                
This prescription is explicitly Lorentz covariant.

M2 −M1 = iδ

δ → 0

Re(s)

Im(s)

δ

δ

This distortion of the normal Feynman rules is what makes 
the non-perturbative formulation elusive

“bad” cuts move off real axis,
discontinuity across real axis
is only from “good” cut

-we have checked the optical theorem  for this case
-easy to generalize argument to all scattering amplitudes


