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Quantum Mechanics with Indefinite Metric

Paul Dirac at a SuperCollider workshop in the early 1930s.

There is a sign error in the Maxwell equations.
Pauli



Indefinite Metric Quantization

(7)) = mij
e Hamiltonian is self-adjoint but not hermitian
e H =nH'n

e /1 eigenvalues are either of
e real with non-zero norm
E: = by <T’T> # 0
e complex, in c.c. pairs, with zero norm
L A ) o (ML VAR R (+]—)=1
o /1 self-adjoint implies S-matrix is pseudo-unitary
S'nS =n
e W condition: all eigenstates with real eigenvalues have positive norm
® restriction of S-matrix fo states with real eigenvalues gives a unitary S-matrix

Sl0is1 1= 11 Gl



Don't be afraid of indefinite metric:

— Lorentz metric is indefinite

——1  Gauge fields have a negative metric component

—  (ombined with the longitudinal mode give pairs of zero norm states

—  S-matrix is unitary because they are not allowed as
external asymptotic states (and current conservation)

1 Likewise in string theory (X component has negative norm)



1D Lee
and
Giancarlo Wick

Basic idea: unitary S-matrix possible if negative metric states are unstable



Basic idea: unitary S-matrix possible if negative metric states are unstable

e Strategy (arranging for real eigenvalue states to have positive norm automatically):
® |n absence of interactions have “heavy” (n) negative metric states and “light” (p) positive
meftric states
* Turn on inferactions; a pp state is degenerate with an n state; n unstable
® n and pp states mix; complex eigen-energy (c.c. pair), zero norm

_|pp) £ |n)

e all negative metric states have disappeared
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Consider an example
Three equivalent Lagrangians:

1 A 1 A A
L=5(0u0)" — 575 (079)” — V(9)
£ = 20,87 ~ X(6°8) + T M~ V()

L// 1l



Consider an example

Three equivalent Lagrangians:

L= 5049 ~ 535(0%37 ~ V(D

- Indefinite metric problem explicit



To explain basic ideas consider toy model for simplicity: ggbg

Recall, equivalent lagrangians

1 A 1 L A
L=(0u9)° - (0%¢)* = V(9)
Al 99> — g(¢ — x)°
L= 5(@@)2 M §(auX)2 1 §M2 TGty

Scattering:

S A g = 7Tg2 [5(]92 1 m2) H] 5(192 1 M2)}

This is a disaster: optical theorem is violated g s L — 7T\/ S (5 Tl 4m2)0 >0



Reorganize perturbation theory (old school, resonances, think 177/2):
(i) Replace all propagators by dressed propagators (old well known way to deal with resonances)
(ii) Define amplitude by analytic continuation from positive and large Im(p?)

M\W/\Q/\/\/\/\/\m Ti AAAAAN T Il :>ZG(2): 1

: AT YT
iG'? 1A iA I iA
very familiar, but now use ¢A = 2 A fo get the surprising
v oL 2 L T Compare this with normal case:  ¢G T

IT itself is very “normal,” it is the sume for normal and LW fields:

—— - —O




Pole in the scattering amplitude! / \W /
| IV

! 1N 1]
’I/A— g [pQ—m2—|—H p2—M2—H]

Im p* / Im p& Y

Am?2 Rep 4m? Rep2
M*
A A* il p(p?)
{ . G(Q) 1144 1 11 ! / d 2
s0 in fact, the LW propagator is DB I 3z3) 1 | e e T it H P2 — 112

properties: p(u°) >0 —A— A"+ /d,u2p(,u2) =1

Imaginary part of forward amplitude: complex dipole cancels out

Im Afwd = 7792 [pnormal(MQ) i IOLW(,U2)}

This is a positive discontinuity.
You can see it is precisely the fotal cross section (to the order we have carried this out)



Above calculation ok because single LW-resonance in intermediate state can never go “on-shell” when energies of
incoming particles are real

Subleties first encountered in 1-loop amplitude:
with real energy may still produce two LW-resonances with masses A7 and A7 *

7 / d*p —1 —1
(2m) (p + )2 — M7 p? — M3’

has polesat~ P° = i\/PQ + M3 and p° = —¢° £ \/p? + M?

Lee & Wick:

Start from g = 0, masses real, take usual Feynman contour.
Turn on interaction. As A/ develops imaginary part deform contour to avoid crossing poles

CLOP:

Issue when contour is pinched, which can only happen when A2,* = M
Take A1 and A2, independent, My — My = @6
After integration complete take 5 — 0
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Clearly works at one loop. How about all orders?
- Lee & Wick made general arguments, but not a proof

- Cutkosky et al (CLOP) analyzed analytic structure (particularly including the so far ignored
two intermediate LW lines case) of large classes of complicated graphs

-Tomboulis solved V spinors coupled to Einstein-gravity. At large V the fermion determinant
gives HD gravity. He shows explicitly theory remains unitary (no need to use LW-CLOP)

-We have solved the O(2V) model in large V limit. The width or LW resonance is O(1/NN), so

positivity of spectral function easily shown. Hence example exists for which
i) used LW-CLOP prescription
ii) unitary shown explicitly (directly checked optical theorem)
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Lee, Wick, Coleman, Gross.... not everyone
who has worked on this is a crackpot

R. Rattazzi

Indefinite metric quantization: Dirac, Pauli, ...



Peculiar effects:

Non-locality?



Recall “response theory”

detector g(k),
localized af =
proper fime T
/] X
N
source f(k)
k), g(k) concentrated about & = ko

stable particle
* 1 —imT
(detector|source) x g (my/T)f(my/T)me 0(y°)



Recall “response theory”

i detector g(k),
localized at y#
proper fime T
/] X
N
source f(k)
k), g(k) concentrated about & = ko
stable particle
« R AL
(detector|source) x g (my/T)f(my/T)me M7 H(y")
and for narrow resonance, production and decay, (pole in second sheet)
* 1 —wmT _—I'T
(detector|source) x g (my/T)f(my/T)me e 17/20(y%)

“source” can be from collision of two normal (non-LW) particles
“detector” from decay into normal particles



Now for LW resonance

¢ detector g(k),
localized af =
proper fime t
£ X
J/
source f(k)
k), g(k) concentrated about & = ko

A
(detector|source) ox g*(—my/T)f(—my/T)3—/2«9%%_”/29(—?;0)
T



Now for LW resonance

proper fime t

/]
U
source f(k)

k), g(k) concentrated about & = ko

detector g(k),
localized af )=

A
(detector|source) ox g*(—my/T)f(—my/T)3—/2«9%%_”/29(—?;0)
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Now for LW resonance

proper fime t

/]
U
source f(k)

k), g(k) concentrated about & = ko

detector g(k),
localized af )=

1 :
(detector|source) ox g*(—my/T)f(—my/T)mezm%_”m@(—yo)
particle beam N, decay of normal resonance

target



Now for LW resonance

1
proper fime t
/4 A X
\
source f(k)
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detector g(k),
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Now for LW resonance

1
proper fime t
/4 A X
\
source f(k)
k), g(k) concentrated about & = ko
detector g(k),
localized af )=
d * 1 imT —FT/Q@ 0
(detector|source) o g (—my/T)f(—my/T)me e (—y")
particle beam HAH S \ N, decay of normal resonance
ecay o resonance ¥ ,

target

1 .
(And for LW virtual “dipole” ) (detector|source) ~ g*(—my/7) f(—my/T) ge—%Re(M)T



|W-SM: Introduction

—! Lore:

Symmetry+Field Content+Renormalizability+Unitarity = SM
—— Higher Derivative (HD) terms:
— can be made of same fields and preserve symmetries
— renormalizability preserved
— unitarity?? Lee-Wick says yes
—— Should be explored



—— Minimalistic presentation of six results:
—  No "hig” fine-tuning problem
—  No flavor problem
—  EW precision OK, if mass of new resonances few TeV
—  Renormalization and GUTs
— High energy vector-vector scattering: the special operators
—  LHC examples



The LW SM (or HD SM)

L = Lsm + Lup

1 i (| L
CIE - (D,D*H)' (D,D"H) —@m(zw)?’m

1
EHD_2M (DHF,.)* (DR —



The LW SM (or HD SM)

L = Lsm + Lup

2]\14 (D,D"H)" (D, D"H) —ML??&L(W)%L

1
EHD_2M (DHF,.)* (DR —

N

(one for each gauge group factor)



The LW SM (or HD SM)

L = Lsm + Lup

1 | A

I

(one for each gauge group factor)

1
e

Lup (D,.D"H)" (D, D"H) —%ﬁL(ilﬁ)ng
3

1
Gauge fixing can be asusval ~ LaF = 2—€(8 . A)?

2
or can include HD's, eg, i i(a A)(1 + %)(a L A)
3

(convenient for power counfing) 28



Naive degree of divergence, naively done (but correct!)

?
propagators | Ty p2 I 1 / M2
1 .
vertices | ~ p®~" (leading)
n
naive degree of divergence:
L = #ofloops D=4L+) (6—n)V,—4I
V. = # of vertices with n lines UL
| topological identities
I = # of internal propagators
E = # of external lines L:I_;V”Jrl zn:nV”:21+E

SN =—116 — 2], —




Naive degree of divergence, naively done (but correct!)

?
propagators | Ty p2 I 1 / M2
1 .
vertices | ~ p®~" (leading)
n
naive degree of divergence:
L = #ofloops D=4L+) (6—n)V,—4I
V. = # of vertices with n lines UL
| topological identities
I = # of internal propagators
E = # of external lines L:I_Zn:v”+1 ;"V”ZQI+E

SN =—116 — 2], —

possible divergences:

Il {4 —E L=1 quadratic only for L=1, E=2
2-F L=2 Note: renormalizability straightforward



1. Quadratic divergences?
(i) Gauge fields: gauge invariance decreases divergence fo D = 0
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1. Quadratic divergences?
(i) Gauge fields: gauge invariance decreases divergence fo D = 0

M’\/\/\/\/\QW l — @'(p,upy ul g’w/pQ)H(p2)

(ii) Higgs field: quadratic divergence from vertex with 2/3 derivatives
(D*H)'(D*H)  D?H = [0% + 2igA -0 +ig(0 - A)|H

éj% } I Choose gauge 8- A =0 and infegrate by parts:

there are at least two derivatives on external field

= | dm3; ~ M?1n A°




1. Quadratic divergences?
(i) Gauge fields: gauge invariance decreases divergence fo D = 0

MW\A/\QK/\/WM = i(pupy — Guwp®)I(p?)
(ii) Higgs field: quadratic divergence from vertex with 2/3 derivatives
(D*H)'(D*H)  D?H = [0% + 2igA -0 +ig(0 - A)|H
éj% i l Choose gauge 8- A =0 and infegrate by parts:

there are at least two derivatives on external field

= | dm3; ~ M?1n A°

Notes:

1. Physical mass is gauge independent. Quadratic divergences found in unphysical quantities
2. Result checked by explicit calculation (arbitrary &-gauge)



2. FCNC's

This is of particular interest at this meeting on “Flavor Physics”
What is interesting is that there is no need for additional
restrictions arfificially imposed (eg, MFV couplings for the HDs)
nor an additional huge superstructure to deal with this (like

in SUSY with gauge mediation).

| think this merits more study.



Notation: SM Yukawas:

LSM D )\UHQLUR + )\DH*chdR S )\EH*ZL(?R

For low energy FCNCs treat HDs as small.

Use EOM on HD terms:
1 3 1 —q T J
Mzrw‘c{lﬁ) q = T2 ()\ rAv)i; WpH zlP(HuR)

completely arbitrary matrix (order(1))

:: There are off-diagonal tree level Z couplings, but suppressed

So, for example, with M =1 TeV

mpMsTps
Abs i

M? M?

(HD-2HDM at large tan 3 ? not done)

A0

Even for LFV, this mass suppression is sufficient



Alvarez, Da Rold, Schat & Szynkman, JHEP 0804:026,2008
Underwood & Zwicky, Phys. Rev. D79:035016,2009

3. EW precision Carone & Lebed, Phys. Lett.B668: 221-225 2008
S. Chivukula et al, arXiv:1002.0343 (this reported below)

95% CL (2d.0.f.)

. Quarks, g &t ||
yellow is for my, = 800 GeV| R
. ;

M, (TeV

1line

Bounds, quark or gauge bosons, largely decouple:
enter into (S,T), or (W, Y)

Light higgs favored




back on plan:

4. YM-beta function

Background-Field Gauge m@m'

3
H{ L LI
1-loop, normal g = 1672 Ca ( 5 " 3)
3
L Ll
1-loop, HD? theory e 8 (2 MBI 6)

1/6 is easy to understand: doubling obvious only when longitudinal and transverse modes
all have same power counting. Need HD GF. But then get determinant from exponenfiation trick:

J/det(1 + D2/M?) /[doz]e;& J it (LS e o

This det is, for UV, same as usual ghosts in BFG. The sqrt gives an additional 1/2

3
]_loop HD3 Iheory 8 =— g Cy | 2 x E L 1 Ll 1 L] C. Carone, arXiv:0904.2359
! 1672 3 IS HINE



More generally intD? L = L a4 + ,Cw T £¢,

1 y 1 279 v
La=—5Tr(F" Fu) + —5T(DF)? = —STe(F*[F, F, )

1| 4|11 . ) . )
Ly = rilPyr + Ww (o1 DD + 02DD? + igosF* v, Dy, + igoa(DuF* )y | 1

1 D 1% 1%
Lo=—¢"D*¢— WW [51(D2)2 +igd2 (D, F*™)D, + g°63F* FW] ¢

3 2 1 9
g 43 9 9 07 —0'20'3‘|‘§O'3 51‘|‘6(53
u g ~ Ol - Sl
Bl9) = ~16.2 K Amie ) it ( (01 + 02)2 e\ Bz
i itk 201(209 + 03 — 204) + 02(202 + 203 — 04) — ag — 0% + 0304
%ﬂ(g) 1| HO
1672 4 o1+ 09
2 2 2
=1 L
16(9) = ~1525 ( 5
9, d(g%0; 8(g%5;
M% =1 p (%:) =2(g%0i)vy(g) and (gu I 2(9°6:)76(9)-

This is for general HD terms, but not all have good high energy behavior (next section)



GUT (Carone): some fields have HD?, others HD?

model N =3 fields (b3, b2, b1) agzt(mz) error
SM I (—7,-19/6,41/10)  14.04 +50.80
MSSM ! (—3,1,33/5) 855  +2.90
N =2 1H LWSM none (—19/2,—2,61/5) 14.03  +50.60
N=3 1H LWSM all (—9/2,25/6,203/10)  13.76  +48.30
N=2 8H LWSM none (—19/2,1/3,68/5) 776 —4.0lc
N=3 6H LWSM all (—9/2,20/3,109/5)  7.85 —3.160
N=2 1H LWSM, gluons (—25/2,-2,61/5) 7.81 —3.550
N=2 1H LWSM gluons, 1 gen. quarks  (—59/6,0,41/3) 8.40 +1.550

N=2 THTLWSM  1gen. LHfields (—49/6,2/3,191/15) 803 —1.660
N=2 2H LWSM LH leptons (—19/2,1/3,68/5) 776 —4.0lc
N=22H IWSM gluons, quarks, TH  (—9/2,9/2,169/10) 821  —0.060

TABLE I: Predictions for az'(mz) assuming one-loop unification. The experimental value is
8.2169 + 0.1148 [10]. The abbreviations used are as follows: H=Higgs doublets, gen.=generation,
LH=left handed.

but Mcur low, proton decay a problem. Fermions at orbifold fixed points in Higher-dim’s where wave-function vanishes?



5. Massive V V-scattering: Special HD terms W
Consider W-scattering, first in non-HD case: ﬁf %

- if described by massive vector boson lograngion, A ~ E? E >>m

unitarity violated (perturbatively)

-growth could be E*, € (p) = 1/M (p, 0,0, E)

but approximate Gl at large E reduces growth by E2, since €7 (p) = p*/M + (M/2E)n*

- HD: titlr
+ Gauge Invariance (G1) is maintained, exact ward identities
+ Use LW-form (2-fields): amplitude has no inverse powers of M

= A~ E°
Unacceptable growth is controlled by Gl and absence of 1/A7 terms in lagrangian.

- HD with no LW-form, like F*, does have £2 growth af tree level (verified by explicit calculation)



6. LHC examples

T. Rizzo, JHEP 06:070(2007)

800 [

| 500

2 :

I 400

LW-Whoson § g
M=1.5TeV o 3001
ATASlike cuts &3 _
of! (1) g
(LW=black) =LA

ATLASike cuts
10 fb (14TeV)
(LW=green)

1000 F T T T T B
500 =

b
o]
L]
o 100¢ E
~ C -
[ 50 I LW-Zboson
@ ' M=1.5TeV
n
&
Z
5]
=
5]

1 1 o
500 2500




——— There exist unitary HD theories (at least large N to all orders g
—— HDSM Solves big fine tuning, flavor OK, EWP fine (A7 > 3 TeV)

——| GUTtrouble... open questions on completion and gravity

—— Acausal (non-ocal?) at short distances, but does not build
macroscopic acauvsality (at least not in thermal equilibrium)

—— Other applications? Cosmology?






Extra slides



3. EW precision, very rough
Use perturbation theory in HD operators, again because E << M
Then from operator analysis (eff theory; eg, Han and Skiba) know that T and S are, respectively

(renlroflannitHE N D vstib e

Neither of these are HD ops, but we generate them using EOM.

i

(DF), = g(H" 9 = %(HTDMH)Q

Bound on boundary of total naturalness:
2 2 2
ey > 3 ey
gl 04 9
g
167

Global analysis constraints M fo 3 TeV'ish. Alvarez, Da Rold, Schat & Szynkman, JHEP 0804:026,2008

= —m

while  om3; ~ M? <mf = M <3 TeV

2



(i) O(V) model

1 1l 1 1 1
L= 3(0u8")° = gm*(¢°)? — 5(0,8°) + M2 — 2A[(¢" — &%)
Il 1
use auxiliary field o,  Lint = 502 il go(¢® — )2, ¢2N = g2 fixed

same story as above, this does not satisfy optical theorem, need to dress propagators



but now only Im part of pole need to be kept, Re is a 1/NV correction

tull LW propagator formally as before

A A i :
p?— M2 p?—M*2  Jom2 il

but now A=1+O(1/N) and

|
Pl T — . > 8(p? — M?)



We can see very explicitly how unitarity works; consider
the contribution to the forward scattering U oS
amplitude from 1 normal and 1 LW

Let
My
iZ(My, M) = Q defined with p? integral along the imaginary axis™
My
3 terms in LW propagafor: 7 = — AT (m, M) — A*Z(m, M*) + / dp? p(p®)Z(m, p)
(3m)>
g*N 1 1

Im(A)

= dp® p(p*)I(s,m, p)
167 |1 ‘|—HG(S)‘2 (3m)2

~

where Im(Z(m,p)) = wl(m, p) isthe usual phase space factor

Replacing (1) — 6(u° — M?) satisfies exactly the optical theorem

1
o — o®P) =
8~ 99)= - (

g*N 1
167 |1 + IL,(s)|

) om0 o 30

**subtleties @ dinner tonight after wine



Physically:

recall M,
iZ(My, Mp) = Q is a function of p2 = 4E2 (in (M frame)
My
T — —AZ(m, 51) — AZm 5 + [ d ()L, )
(3m)?

look for discontinuities in E in each of three terms
discontinuity only arises from internal propagators going on shell

for first two this can only happen for complex E

but E is external energy, always real (if external particles are the stable “normal” modes)



2 LW case is on the surface similar i; _________

3x3 terms:
T(M, M) +I(M*,M*) + 2Z(M,M*) +I(M, M) — 2Z(M, M) — 2I(M, M*)

problem: hoth Z (M4, M) and  Z(M, M*) may give disc(A)

and this one comes with wrong sign

more specifically

the integral Z (17, M) as a function of £ has a cut with branch point at (M, + M>)?
this is for real £ in both terms above



2 LW case is on the surface similar i; _________

3x3 terms:
T(M, M) +I(M*,M*) + 2Z(M,M*) +I(M, M) — 2Z(M, M) — 2I(M, M*)

problem: hoth Z (M4, M) and  Z(M, M*) may give disc(A)

and this one comes with wrong sign

more specifically

the integral Z (17, M) as a function of £ has a cut with branch point at (M, + M>)?
this is for real £ in both terms above

oopsie!



CLOP prescription:
result of integration depends on choice of contour
equivalent fo taking different complex masses in the two propagators, with

My — My =i0

then letting, at theend, § — ()
This prescription is explicitly Lorentz covariant.

Im(’s

) “bad” cuts move off real axis,
discontinuity across real axis
is only from “good” cut

This distortion of the normal Feynman rules is what makes
the non-perturbative formulation elusive

-we have checked the optical theorem for this case
-easy fo generalize argument to all scattering amplitudes



