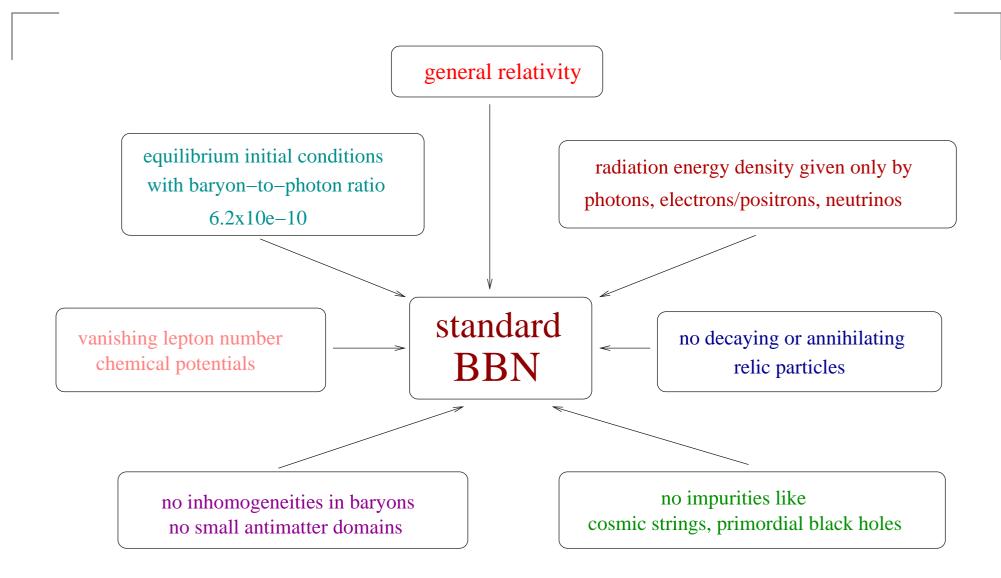
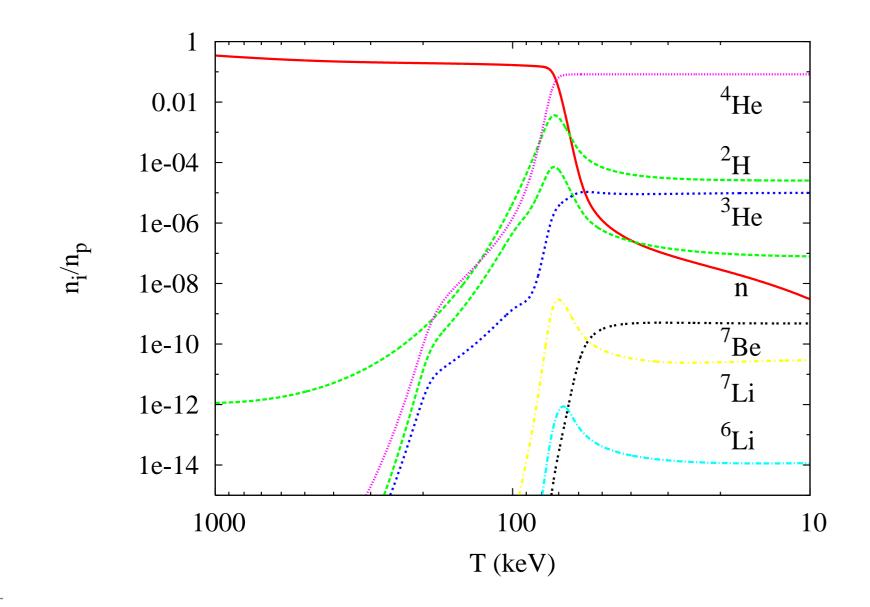
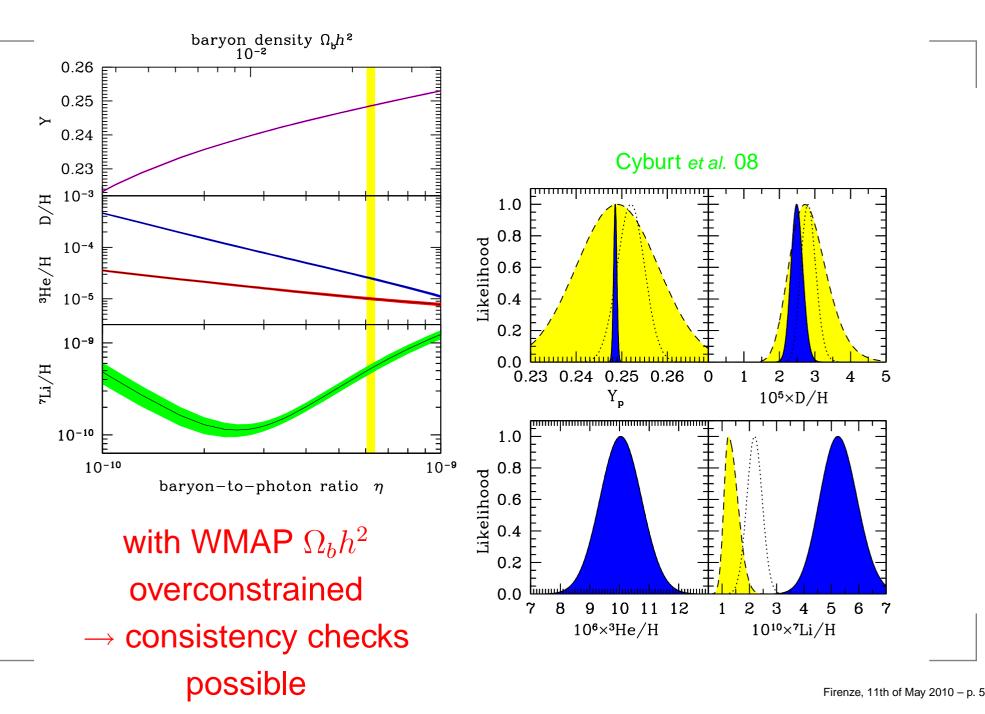
Big Bang Nucleosynthesis and Particle Dark Matter


Karsten JEDAMZIK^{\dagger}

[†] LPTA, Montpellier


Outline of Talk

- . Theory of standard BBN
- Modified Expansion Rate during BBN
- Particle Decays/Annihilations during/after BBN
- V. Weak Mass Scale Charged Particles during BBN
- V. Constraints on SUSY with gravitino LSPs
- VI. The Lithium Anomalies
- VII. Dark Matter and the Lithium Anomalies


Assumptions underlying Standard Big Bang Nucleosynthesis

The standard BBN model at $\Omega_b h^2 \approx 0.02273$

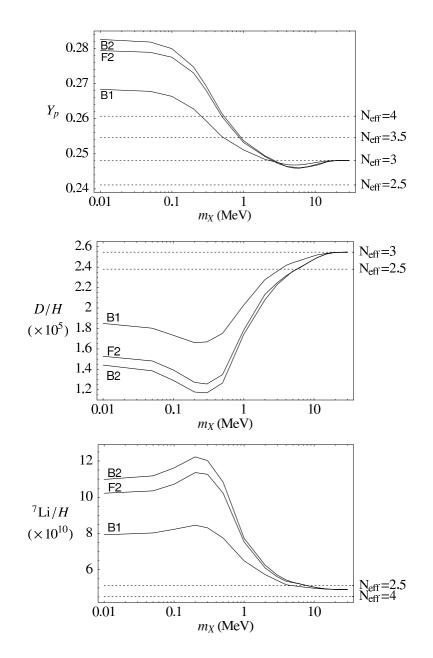
SBBN: A one parameter model

"Historical" Perspective

BBN had been the main argument for the existence of *non-baryonic* dark matter !!!

II. Modified Expansion Rate during BBN

BBN essentially incorporates all neutrons left-over at $T \approx 80$ keV into ${}^{4}\text{He}$


$$Y_p \approx \frac{2(\frac{n_n}{n_p})_{80\text{keV}}}{1 + (\frac{n_n}{n_p})_{80\text{keV}}}$$
$$\left(\frac{n_n}{n_p}\right)_{80\text{keV}} \approx \exp\left(\frac{-(m_n - m_p)}{T_f}\right) \left(1 - \frac{t_{T_f \to 80\text{keV}}}{\tau_n}\right)$$
$$T_f: \quad n_{e,\nu} \langle \sigma v \rangle_{weak} = H$$

 \rightarrow strong constraints on extra energy density (extra particles, gravitational waves, magnetic fields, scalar fields) and modification of general relativity

 $\delta H/H$ should not be larger than 5-10%

Constraints on MeV - Dark Matter

III. Particle Decays/Annihilations during/after BBN

BBN with decaying particles: Hadronic versus Electromagnetic

injection of energetic nucleons and mesons

- elastic- and inelastic scatterings $p + p \rightarrow p(n) + (p)n + \pi$'s
- Spallation reactions $p(n) + {}^{4}\text{He} → {}^{3}\text{H}, {}^{3}\text{He}, {}^{2}\text{H} + \dots$
- ✓ Coulomb stopping of charged nuclei ${}^{3}H + e^{\pm} \rightarrow {}^{3}H' + e^{\pm}$

injection of energetic photons and electrons/positrons

- Inverse Compton scattering $e^{\pm} + \gamma_{CMBR} → e^{\pm} + \gamma$
- Bethe-Heitler scattering $\gamma + p \rightarrow p + e^- + e^+$
 - photodisintegration $\gamma + {}^{4}\text{He} \rightarrow {}^{3}\text{H} + p$

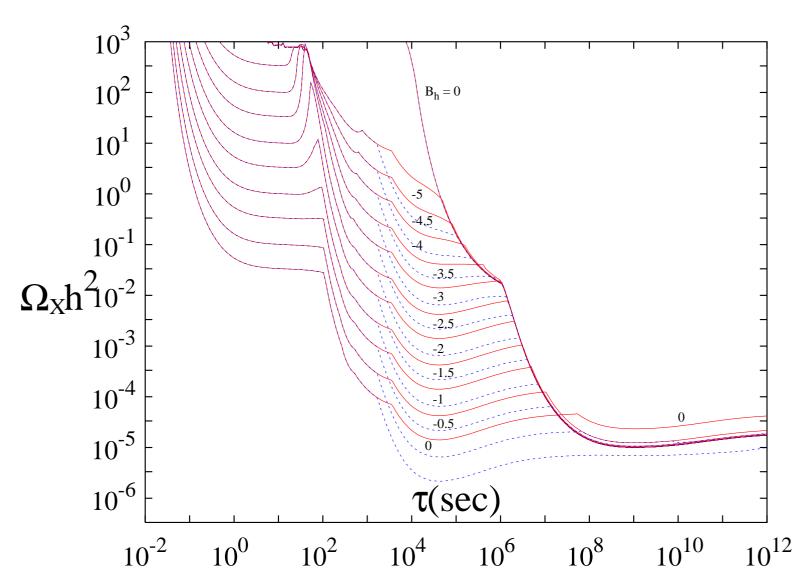
Hadronic Effects: $t\gtrsim 0.1\,{\rm SeC};$ $T\lesssim 3\,{\rm MeV}$

```
Electromagnetic Effects: t\gtrsim 10^5\,{\rm sec;} T\lesssim 3\,{\rm keV}
```

No.	Reaction	Channel	Ref.	No.	Reaction	Channel	Ref.
1	$p + e^{\pm} \rightarrow \text{elastic}$	Coulomb	App. D.1.a	48	$p + p \rightarrow$	elastic	[44, 45], App.E.3
2	$p(N) + \gamma_{\text{CMBR}} \rightarrow$	Thomson	App. D.1.b	49	$p + {}^{4}\text{He} \rightarrow$	elastic	[44], App.E.3
3	$n + e^{\pm} \rightarrow$	magnetic moment	App. D.1.c	50	$n + p \rightarrow$	elastic	[44, 45], App.E.3
4	$\gamma + \gamma_{\rm CMBR} \rightarrow$	$e^{-} + e^{+}$	App. D.2	51	$n + {}^{4}\text{He} \rightarrow$	elastic	[44], App.E.3
5	$e^{\pm} + \gamma_{\rm CMBR} \rightarrow$	inverse Compton	App. D.2, D.2.b	52	$p + p \rightarrow$	$p + p + \pi^{0}$	[46], App. E.4
6	$\gamma + p({}^{4}\text{He}) \rightarrow$	$p(^{4}\text{He}) + e^{-} + e^{+}$	App. D.2.a	53		$n + p + \pi^+$	[46, 47], App. E.4
	$\gamma + e^- \rightarrow$	Compton	App. D.2.c	54		${}^{2}H + \pi^{+}$	[46, 47], App. E.4
	$\gamma + \gamma_{\rm CMBR} \rightarrow$	$\gamma + \gamma$	App. D.2.d	55		$p + p + \pi^{+}\pi^{-}$	[46], App. E.4
				56		${}^{2}H + \pi^{+}\pi^{0}$	[46], App. E.4
9	$\gamma + {}^{2}H \rightarrow$	p + n	[36]	57		${}^{2}H + 2\pi^{+}\pi^{-}$	[46], App. E.4
10	$\gamma + {}^{3}H \rightarrow$	${}^{2}H + n$	[36]	58		$p + p + \pi^{+}\pi^{-}\pi^{0}$	[46], App. E.4
11		2n + p	[36]	59		$n + p + 2\pi^{+}\pi^{-}$	[46], App. E.4
12	$\gamma + {}^{3}\text{He} \rightarrow$	${}^{2}H + p$	[36]	60		$p + p + 2\pi^0 + (\pi^0 s)$	[46, 47], App. E.4
13		2p + n	[36]	61		$n + n + 2\pi^+ + (\pi^0 s)$	[46], App. E.4
14	$\gamma + {}^{4}\text{He} \rightarrow$	${}^{3}H + p$	[36]	62		$n + p + \pi^+ + (\pi^0 s)$	[46, 47], App. E.4
15		$^{3}\text{He} + n$	[36, 37]	63	$n + p \rightarrow$	$p + n + \pi^0 + (\pi^0 s)$	[46], App. E.4
16		${}^{2}H + {}^{2}H$	[36]	64	-	$^{2}H + \pi^{0} + (\pi^{0}s)$	[46], App. E.4
17		${}^{2}H + n + p$	[36]	65		$p + p + \pi^{-1}$	[46], App. E.4
18	$\gamma + {}^{6}Li \rightarrow$	4 He + n + p	[36, 38]	66		$n + n + \pi^+$	[46], App. E.4
19	,	$^{3}A + X$	[36]	67		$n + p + \pi^{-}\pi^{+}$	[46, 47], App. E.4
20	$\gamma + {}^{7}\text{Li} \rightarrow$	${}^{4}\mathrm{He} + {}^{3}\mathrm{H}$	[36, 39]	68		$p + p + \pi^{-}\pi^{0} + (\pi^{0}s)$	[46], App. E.4
21	,	${}^{6}\text{Li} + n$	[36]	69		${}^{2}H + \pi^{-}\pi^{+}$	[46], App. E.4
22		${}^{4}\text{He} + 2n + p$	[36]	70		$n + n + \pi^+ + (\pi^0 s)$	[46, 47], App. E.4
23		${}^{4}\mathrm{He} + {}^{2}\mathrm{H} + n$	App. D.3	71		$n + p + 2\pi^{-}2\pi^{+}$	[46], App. E.4
24		${}^{6}\mathrm{He} + p \rightarrow {}^{6}\mathrm{Li} + p$	App. D.3	72		$n + p + \pi^{-}\pi^{+}\pi^{0}$	[46], App. E.4
25		$2^{3}H + p$	App. D.3	73		$p + p + 2\pi^{-}\pi^{+}$	[46], App. E.4
26		${}^{3}\mathrm{H} + {}^{3}\mathrm{He} + n$	App. D.3			1 . 1 .	
27	$\gamma + {}^7\text{Be} \rightarrow$	${}^{4}\mathrm{He} + {}^{3}\mathrm{He}$	[36, 43]	74	$p + {}^{4}\text{He} \rightarrow$	${}^{3}\mathrm{H} + 2p + (\pi s)$	App. E.5, E.6
28	,	${}^{6}\text{Li} + p$	[36]	75	-	$^{3}\text{He} + n + p + (\pi s)$	App. E.5,E.6
29		${}^{4}\text{He} + 2p + n$	[36]	76		2 H + 2p + n + (πs)	App. E.5
30		${}^{4}\text{He} + {}^{2}\text{H} + p$	App. D.3	77		${}^{3}\text{He} + {}^{2}\text{H}$	App. E.5,E.6
31		${}^{6}\mathrm{Be} + n \rightarrow {}^{4}\mathrm{He} + 2p + n$	App. D.3	78		${}^{2}\mathrm{H} + {}^{2}\mathrm{H} + p + (\pi s)$	App. E.5
32		$2^{3}He + n$	App. D.3	79	$n + {}^{4}\text{He} \rightarrow$	${}^{3}\mathrm{He} + 2n + (\pi s)$	App. E.5,E.6
33		${}^{3}\text{H} + {}^{3}\text{He} + p$	App. D.3	80		${}^{3}\mathrm{H} + n + p + (\pi s)$	App. E.5,E.6
				81		2 H + 2n + p + (πs)	App. E.5
34	$\pi^+ + n \rightarrow$	$\pi^{0}(\gamma) + p$	[15], App. E.1	82		${}^{3}H + {}^{2}H$	App. E.5,E.6
35	$\pi^- + p \rightarrow$	$\pi^0(\gamma) + n$	[15], App. E.1	83		${}^{2}\mathrm{H} + {}^{2}\mathrm{H} + n + (\pi s)$	App E.5
		p + X	[15], App. E.1	84	$p + {}^{6}\text{Li} \rightarrow$	$^{3}\mathrm{He} + ^{4}\mathrm{He}$	App. E.5
37		n + X	[15], App. E.1				
38	$K^- + p \rightarrow$	n + X	[15], App. E.1	85	$^{3}\mathrm{H}+{}^{4}\mathrm{He}\rightarrow$	${}^{6}\text{Li} + n$	App. E.6
39		p + X	[15], App. E.1	86	$^{3}\mathrm{He}+^{4}\mathrm{He}\rightarrow$	${}^{6}Li + p$	App. E.6
40	$K_L + n \rightarrow$	p + X	[15], App. E.1	87	${}^{4}\mathrm{He} + {}^{4}\mathrm{He} \rightarrow$	${}^{6}\text{Li} + {}^{2}\text{H} ({}^{6}\text{Li} + p + n)$	App. E.6
41		n + X	[15], App. E.1	88		$^{7}\mathrm{Li} + p(^{7}\mathrm{Be} + n)$	App. E.6
42	$K_L + p \rightarrow$	n + X	[15], App. E.1				
43		p + X	[15], App. E.1	89	${}^{3}\mathrm{He} + p \rightarrow$	elastic	App. E.6
				90	$^{3}\mathrm{H} + p \rightarrow$	${}^{3}\text{He} + n$	App.E.6
44	$\bar{p} + p \rightarrow$	π 's	[15], App. E.2	91	$^{3}\mathrm{H} + p \rightarrow$	elastic	App. E.6
45	$\bar{n} + p \rightarrow$	π 's	[15], App. E.2	92	$^{3}\mathrm{H} \rightarrow$	${}^{3}\text{He} + e^{-} + \bar{\nu_{e}}$	[58], App.E.6
46	$\bar{p} + n \rightarrow$	π 's	[15], App. E.2	93	$^{7}\mathrm{Be} + e^{-} \rightarrow$	7 Li + ν_{e}	[58]
	$\bar{n} + n \rightarrow$	π 's	[15], App. E.2				-

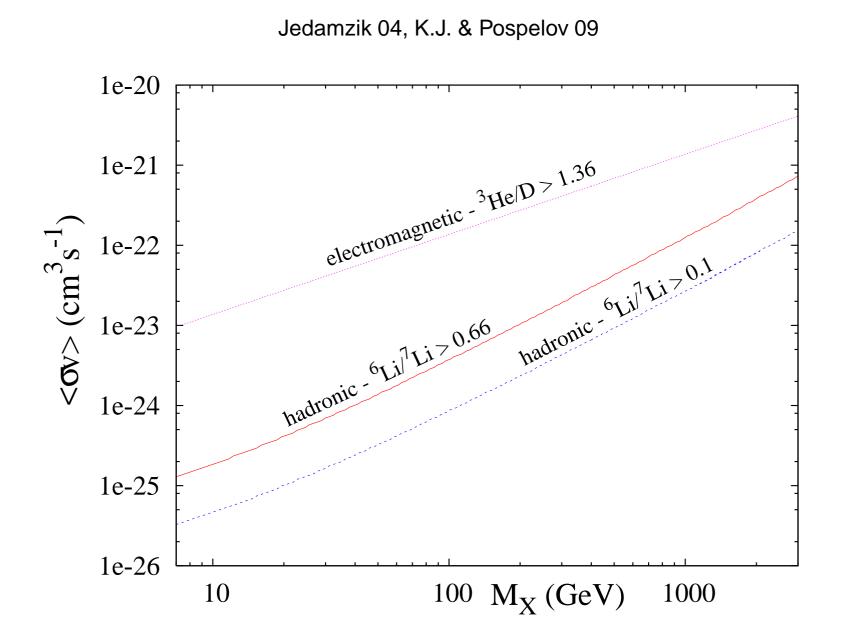
The Physics behind the Main Constraints Overproduction of ...

• ⁴He : $0.1 \sec \lesssim t \lesssim 10^2 \sec \pi^- + p \to \pi^0 + n$ injection of extra neutrons/antinucleons • ²H : $10^2 \sec \lesssim t \lesssim 3 \times 10^3 \sec n + p \to {}^{2}H + \gamma, N + {}^{4}He \to {}^{2}H + ...$ injection of extra


neutrons/energetic nucleons

- ⁶Li: $3 \times 10^3 \text{sec} \lesssim t \lesssim 10^7 \text{sec}$ $N + {}^4\text{He} \rightarrow {}^3\text{H} + ..., {}^3\text{H} + {}^4\text{He} \rightarrow {}^6\text{Li} + n$ injection of energetic nucleons
- ${}^{3}\text{He}/{}^{2}\text{H}$: $t\gtrsim 10^{7}\text{sec}$ $\gamma + {}^{4}\text{He} \rightarrow {}^{3}\text{He} + \dots$ injection of γ -rays and energetic e^{\pm}

Helium-3/D Limit IS Secure

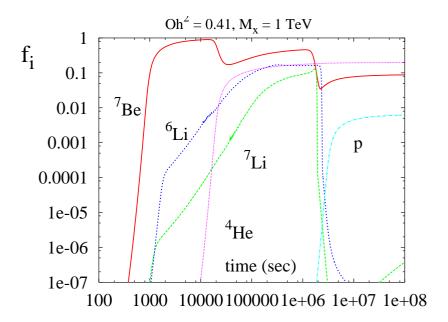

 3 He/D ≤ 1.5 for solar system Geiss & Gloeckner 07 is secure and useful in constraing non-standard BBN Sigl et al. 96

Decay of Relic Particle

Jedamzik 06

Annihilation of Relic Particle

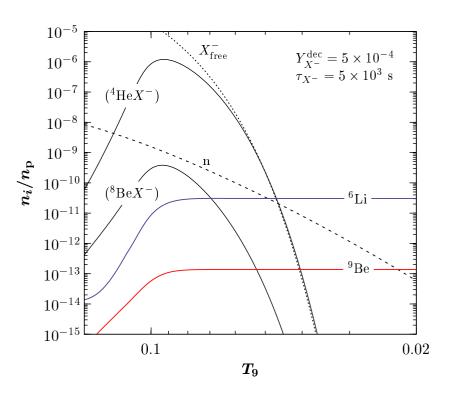
IV. Weak Mass Scale Charged Particles during BBN


Formation of nuclei- X^- **bound states during BBN**

negatively charged weak mass scale particles $X^$ during BBN \rightarrow

formation of bound states with nuclei

 ${}^{7}\text{Be} + X^{-} \rightarrow ({}^{7}\text{Be}X^{-}) + \gamma \text{ at} \approx 30 \text{ keV}$ ${}^{4}\text{He} + X^{-} \rightarrow ({}^{4}\text{He}X^{-}) + \gamma, \text{ at} \approx 10 \text{ keV}$ $E_{b} = \frac{Z_{N}^{2}\alpha^{2}m_{N}}{2} \qquad r_{Bohr} = \frac{1}{\alpha Z_{N}m_{N}}$


Pospelov 06, Kohri & Takayama 06, Kaplinghat & Rajaraman 06, Cyburt *et al* 06

Catalysis of nuclear reactions due to bound states

Pospelov 06,07; Hamaguchi et al. 07; Bird et al. 07; Kamimura et al. 08

X^- acts as catalysator for reactions

important when $B_h \lesssim 10^{-2}$ as with supersymmetric stau !

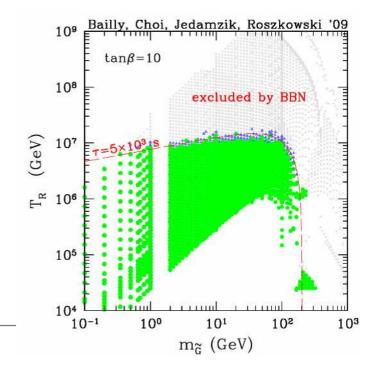
Catalysis and the abundances of ⁶Li, ⁷Li, and ⁷Be

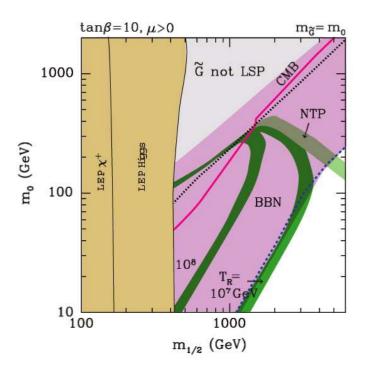
Catalysis:

- main production mechanism for ⁶Li if $B_h \lesssim 10^{-2}$
- may not solve the ⁷Li problem, unless $B_h \lesssim 10^{-5}$ rather small and $\Omega_X \gtrsim 10$ rather large
- not clear if may lead to some ⁹Be production

V. Constraints on SUSY with gravitino LSPs

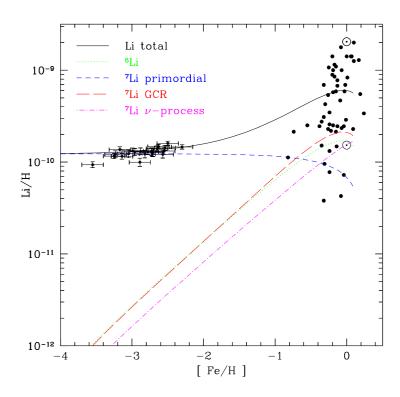
The MSSM and gravitino LSPs

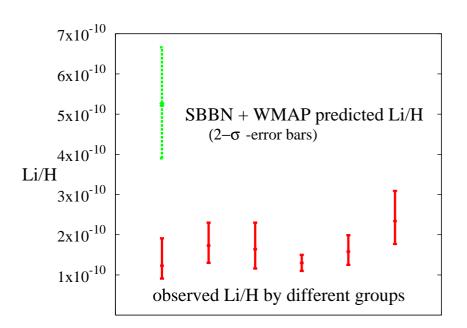

Choi et al 04; Cerdeno et al 06, Bailly et al 09



Supersymmetry, BBN, and T_{rh}

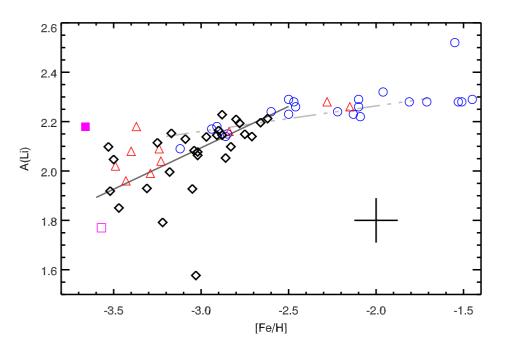
gravitino not LSP $\rightarrow T_{rh}$ must be low to avoid too many decays of thermally produced gravitinos during BBN


gravitino LSP \rightarrow NLSP decays dangerous unless $\tau \lesssim 5 \times 10^3 \text{sec} \rightarrow \text{gravitino}$ LSP somewhat lighter than weak scale \rightarrow reheat temperature must be low



→ supergravity and thermal leptogenesis (in most cases) incompatible **VI.** The Lithium Anomalies

The ⁷Li Spite plateau 1982-2009



(almost) no variation with metallicity and stellar temperature Spite & Spite 82, Bonifacio & Molaro 97, Ryan *et al* 99, Melendez Ramirez 04, Charbonnel & Primas 05, Asplund *et al* 06

- no measurable star-to-star scatter
- Interpretation the Primordial ⁷Li Abundance

The ⁷Li **Spite plateau in 2010**

Sbordone et al. 10, Asplund et al., Aoki et al.

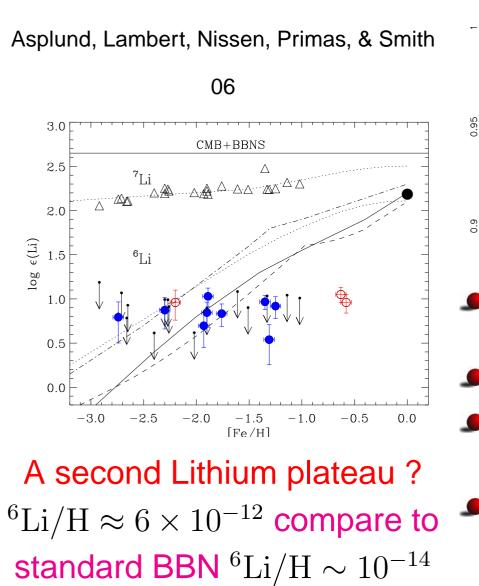
- well defined upper envelope plateau
- no measurable star-to-star scatter at metallicities $[Z] \gtrsim -2.7$
- absence of stars with ⁷Li/H above plateau

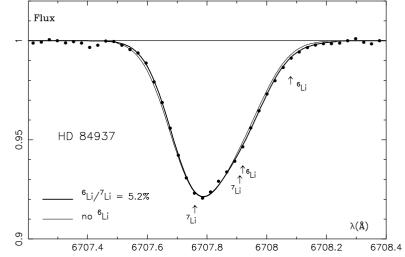
Depletion of Lithium in PopII stars ?

$^{7}\mathrm{Li}$ is observed in the atmospheres of PopII stars it may be destroyed via $^{7}\mathrm{Li}+p \rightarrow ^{4}\mathrm{He} + ^{4}\mathrm{He}$ in the interieur of the star

atmospheric material transported into the star and ⁷Li-depleted gas returned to the atmosphere

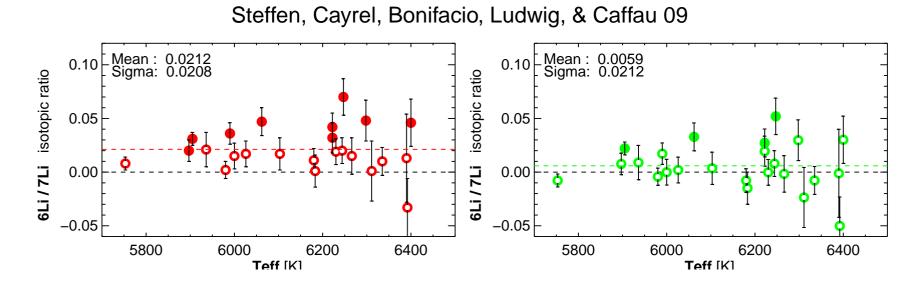
Spite plateau not primordial ?


Depletion of ⁷Li by factor 2-5 in halo stars is not understood and may currently only be explained with fine-tuned stellar conditions Dispersion ?


Comments in Sbordone *et al*

[Fe/H], but with increased scatter at low [Fe/H]. It would also explain why, while the scatter in A(Li) increases at low metallicities, not a single star in this metallicity regime has been found to lie above the Spite plateau level. It would then be consistent

> Finally, attributing the extra depletion to atmospheric diffusion / settling would not require a physical "conspiracy" capable to produce exactly the same depletion level regardless of metallicity, stellar rotation, gravity, or effective temperature, as it is often invoked when diffusion is used to explain the Spite plateau.


⁶Li/H observations

- ⁶Li and ⁷Li absorption features blend together
- ⁶Li from asymmetry of lines
- asymmetry of lines from convective Doppler shifts ?
- non-LTE hydrodynamic simulations of two groups reach somewhat different conclusions

Are the ⁶Li detections real ?

- fewer (four) $\sim 2\sigma$ detections in Steffen *et al.* compared to (nine) Asplund *et al.*
- however, distribution always skewed towards positive ⁶Li/H
- a positive ⁶Li/H detection in HD84937 by four(!) groups

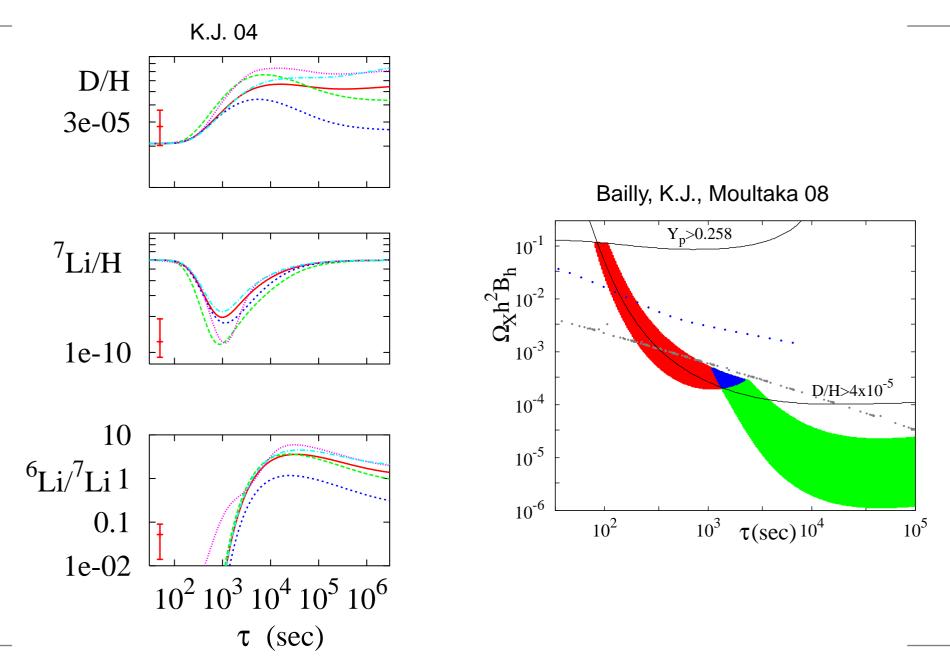
VII. Dark Matter and the Lithium Anomalies

Destruction of ⁷Li **during BBN due to injection of neutrons**

K.J. 04

⁷Li destruction: ⁷Be + $n \rightarrow$ ⁷Li +p; ⁷Li + $p \rightarrow$ ⁴He + ⁴He at $T \approx 30 \text{ keV}$

need only 10^{-5} extra neutrons per baryon some extra ${}^{2}\mathrm{H}$ will be also synthesized


 \rightarrow possible by decay/annihilation of relic particles or evaporation of defects

Production of ⁶Li **in cascade nucleosynthesis**

⁶Li is very easily produced by small "perturbations" of the standard model Dimopoulos *et al.* 88, K.J. 00

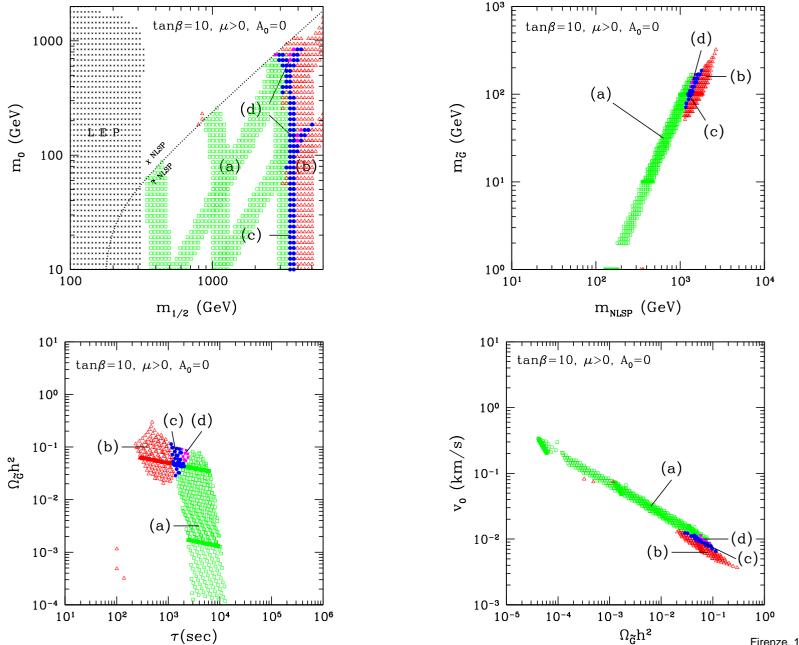
Electromagnetic: $\gamma + {}^{4}\text{He} \rightarrow {}^{3}\text{H} + p$ ${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n$ at $T \lesssim 0.1 \text{ keV}$ Hadronic: $n + {}^{4}\text{He} \rightarrow {}^{3}\text{H} + p + n$ ${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n$ at $T \lesssim 10 \text{ keV}$

Solutions to the lithium problems through relic particle decay

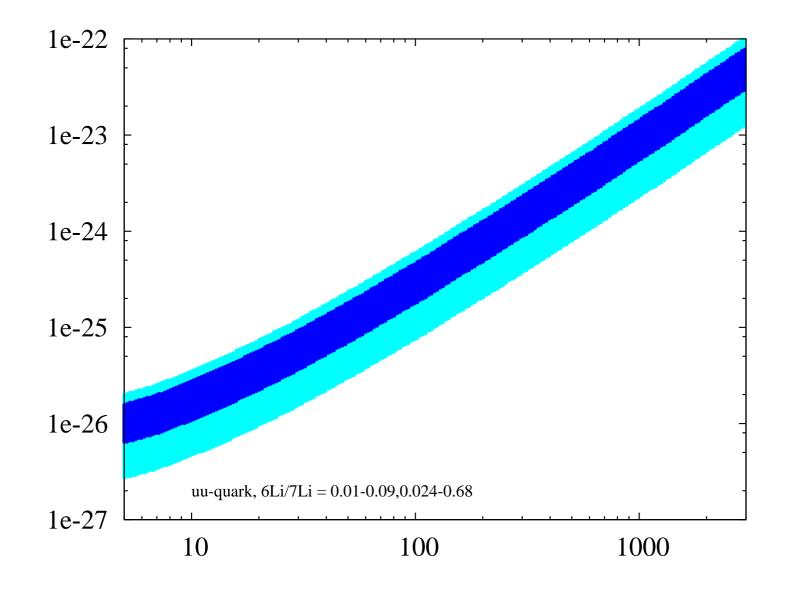
Firenze, 11th of May 2010 - p. 34

Signatures at the LHC !

A metastable particle X with life time between 100 - 1000 sec, if not too massive, could be potentially produced at the LHC (since having at least some hadronic interactions), and, if charged under standard model $U(1)_{\text{EM}}$ or SU(3) could be stopped in the detector \rightarrow smoking gun for non-standard BBN \rightarrow possible connection to the dark matter


Examples:

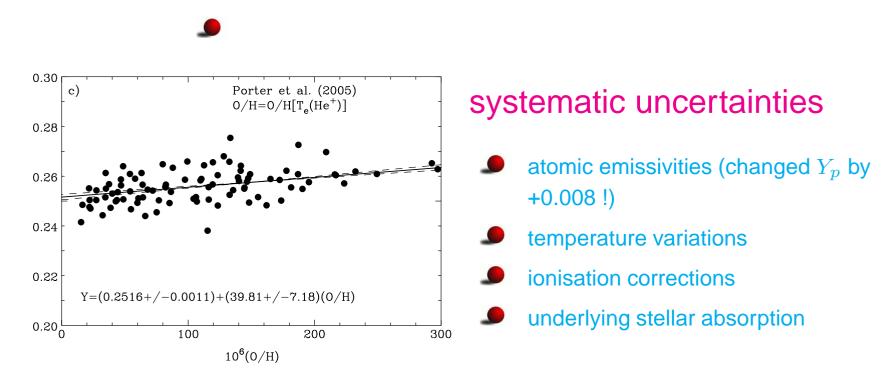
Gluino in split supersymmetry


supersymmetric stau Next-to-LSP with gravitino LSP

Example: Gravitino dark matter in the CMSSM

K.J., Choi, Roszkowski, Ruiz de Austri 06

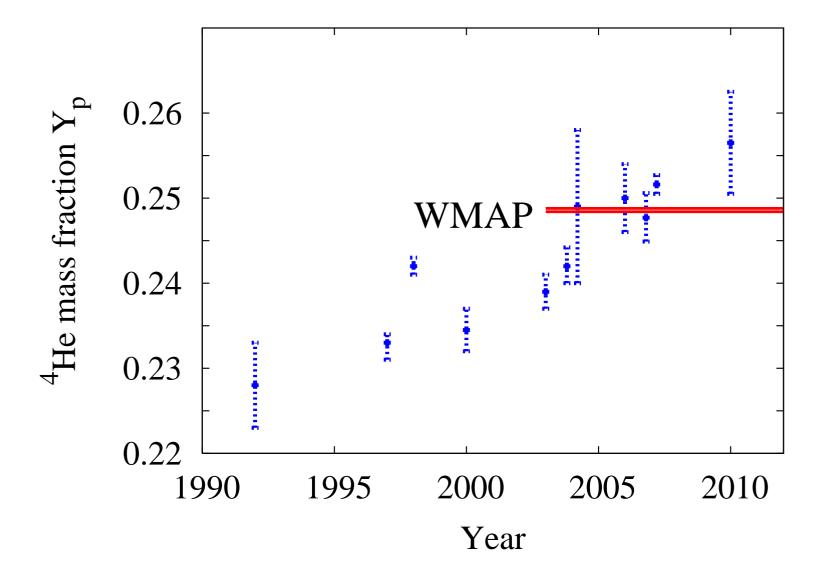
Producing the ⁶Li **in HD84937 by relic particle annihilation ?**

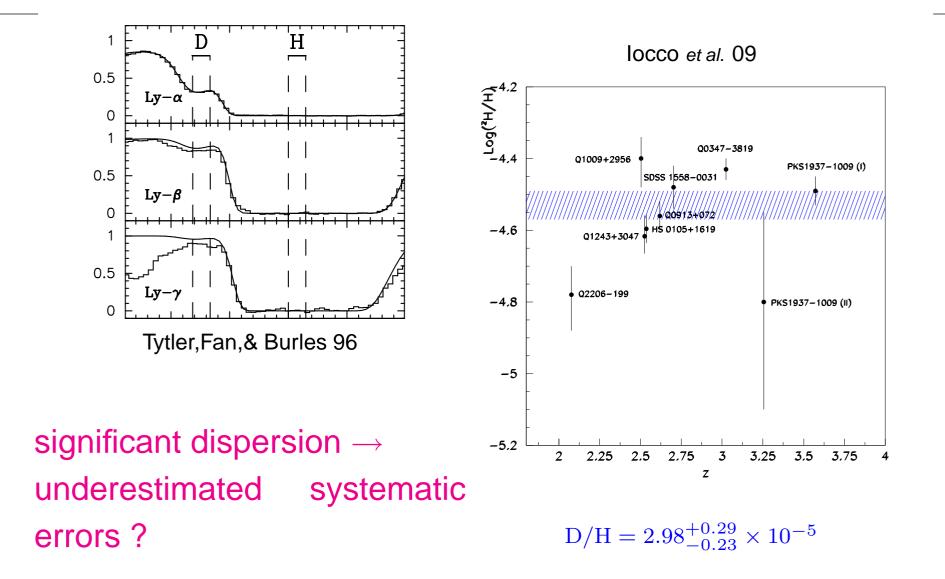

Signatures at the LHC !

if the LHC discovers a light stable neutralino of mass $m \approx 20 - 90 \,\text{GeV}$ and of hadronic annihilation cross section $3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$ as required to explain origin of the dark matter by annihilation freeze-out \rightarrow explanation of all the ^6Li as claimed to exist in HD84937

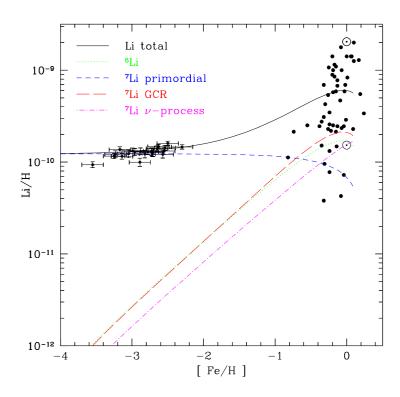
Conclusions

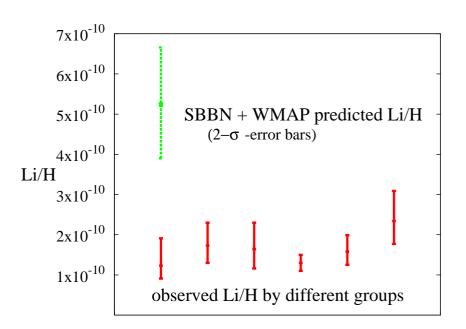
- the by standard BBN at η_{WMAP} predicted D (and ^{4}He) are in good agreement with those observed
- in contrast, there is a factor 3-4 discrepancy between SBBN predicted and observationally inferred ⁷Li
- this discrepancy could possibly be removed if ⁷Li is destroyed in Pop II stars, though how this is done exactly is not understood
- Internatively BBN could have been non-standard, e.g. including the decay of a relic particle \rightarrow potentially testable at the LHC
- Observations of the existence of a ⁶Li plateau (similiar to the ⁷Li Spite plateau) are currently controversial
- BBN continues to be a powerful probe of the early Universe and physics beyond the standard model


Helium-4 from low-metallicity extragalactic HII regions


 $Y_p = 0.2477 \pm 0.0029, 0.2516 \pm 0.0011$ Peimbert it et. al07, Izotov it et. al07

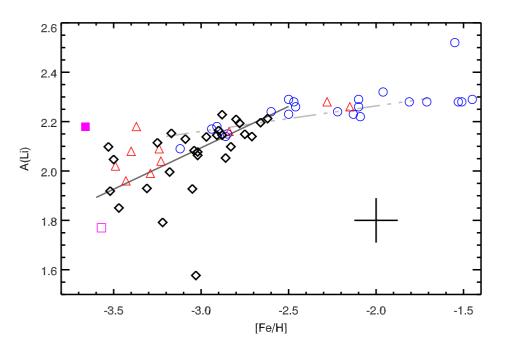
more realistic error bars: $Y_p = 0.249 \pm 0.009$ Olive & Skillman 04


Observational inferred Helium-4 with time



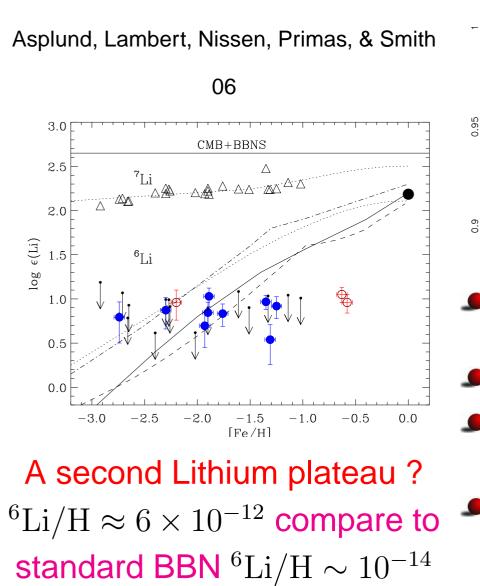
D/H from Quasar Absorption Systems

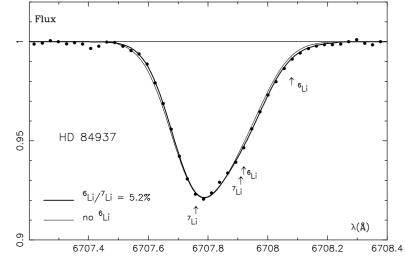
The ⁷Li Spite plateau 1982-2009



(almost) no variation with metallicity and stellar temperature Spite & Spite 82, Bonifacio & Molaro 97, Ryan *et al* 99, Melendez Ramirez 04, Charbonnel & Primas 05, Asplund *et al* 06

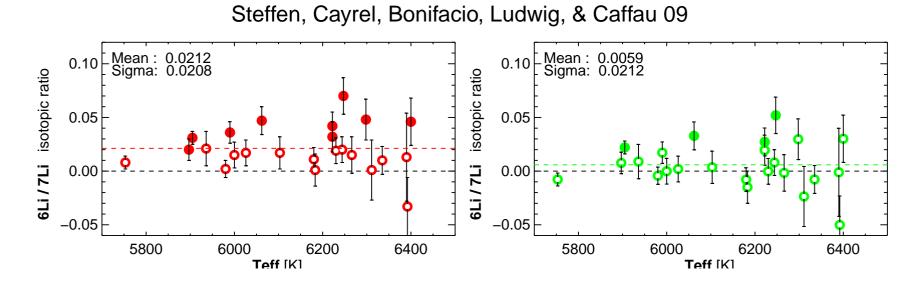
- no measurable star-to-star scatter
- Interpretation the Primordial ⁷Li Abundance


The ⁷Li **Spite plateau in 2010**



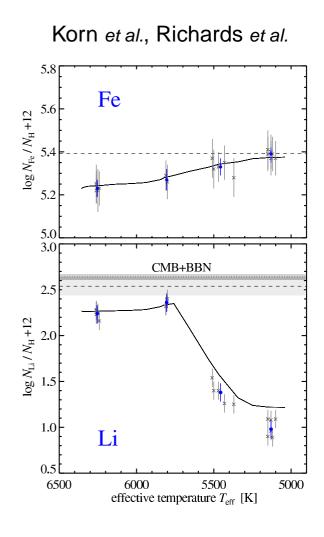
Sbordone et al. 10, Asplund et al., Aoki et al.

- well defined upper envelope plateau
- no measurable star-to-star scatter at metallicities $[Z] \gtrsim -2.7$
- absence of stars with ⁷Li/H above plateau


⁶Li/H observations

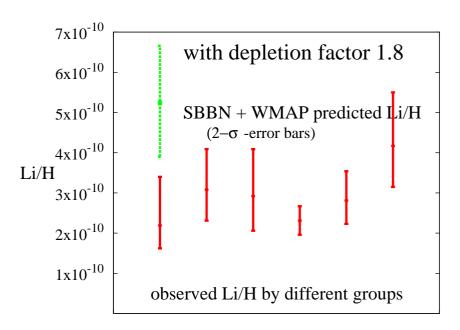
- ⁶Li and ⁷Li absorption features blend together
- ⁶Li from asymmetry of lines
- asymmetry of lines from convective Doppler shifts ?
- non-LTE hydrodynamic simulations of two groups reach somewhat different conclusions

Are the ⁶Li detections real ?


- fewer (four) $\sim 2\sigma$ detections in Steffen *et al.* compared to (nine) Asplund *et al.*
- however, distribution always skewed towards positive ⁶Li/H
- a positive ⁶Li/H detection in HD84937 by four(!) groups

Nuclear reactions/stellar atmospheres ?

- stellar temperature $\Delta T \sim 900$ K underestimated seems impossible
- narrow nuclear resonance in ${}^{7}\text{Be} + {}^{2}\text{H} \rightarrow {}^{9}\text{B}^{*}_{5/2^{+}} \rightarrow 2^{4}\text{He} + p$ Cyburt & Pospelov 09, Angulo *et al.* 05 seems unlikely but not ruled out \rightarrow neg


seems unlikely but not ruled out \rightarrow need further measurement

⁷Li depletion by atomic diffusion in PopII stars ?

tuned turbulent diffusion coefficient $D_T = 400D_{4He}^{gs} \left(\frac{\rho}{\rho(T_0)}\right)^{-3}$ at $\log(T_0) = 6.0 \pm 0.1$ $\rightarrow \pm 25\%$

- atomic diffusion
- turbulent mixing

 \rightarrow factor 1.8 ⁷Li depletion

- but stellar models ad hoc and tuned !
 - absence of star-to-star scatter ?

⁶Li production by early cosmic rays: Energetics ?

⁶ Li originates in galactic cosmic ray nucle- osynthesis (along, with ⁹ Be, and B) \checkmark via p, α + CNO \rightarrow LiBeB	standard cosmic rays may provide 5 eV/nucleon (up to $[Z] \sim -2.7$
\checkmark and some $\alpha + \alpha \rightarrow Li$	
need 100 eV/nucleon to synthesize ${}^{6}\text{Li/H} \sim 5 \times 10^{-12}$	only very efficient accretion on central black hole, or large fraction of baryons in supermassive $\sim 100 M_{\odot}$ stars may provide the required cosmic rays Suzuki & Inoue 00 Rollinde <i>et al.</i> 05, Prantzos <i>et al.</i> 05 Nath <i>et al.</i> 05

V. Beyond the standard model solutions to the lithium problem(s)

- relic particle decay
- relic particle annihilation
- catalysis during BBN
- varying fundamental constants