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1 – BACKGROUND

Observations show that most of the baryonic mass in galaxy
clusters is in form of gas

fg ≡
Mgas

Mtot

≃ 0.12 − 0.18 , (1)

more than 1 order of magnitude larger than the stellar mass

f∗ ≡
M∗

Mtot

≃ 0.02 − 0.03 . (2)

Observations also show that the gas is hot

1 · 107 K < Tg < 1.5 · 108 K , (3)

and so it is ionized. Therefore it emits via thermal Bremsstrahlung
in the X-ray band – this is just how it is detected – and it is found
that its luminosity is

6 · 1042 erg s−1 < LX < 2 · 1045 erg s−1 . (4)



Note that
〈Tg 〉 ≃ Tvir . (5)

Indeed, for 〈Tg 〉 > Tvir the gas would have evaporated while for
〈Tg 〉 < Tvir it would have collapsed towards the centre: in either
case it would not be observed.
I consider throughout only regular and relaxed clusters. Because
this occurs via violent relaxation, it means that

tcluster > tcross . (6)

I also assume spherical symmetry. Then the gas is in hydrostatic

equilibrium inside the region

r∗ < r < rvir , (7)

with r∗ defined by
tcool(r∗) = tdyn(r∗) , (8)



with tcool(r) ∝ r3/2 and tdyn(r) ∝ (Gρ)−1/2. Note that this hot
gas cannot clump, and so it must be diffuse within the cluster
potential well.
Hydrostatic equilibrium is formalized by

dPg (r)

dr
= −

G Mtot(r)ρg (r)

r2
. (9)

Assuming further that the gas is a perfect gas

Pg (r) = ng (r)kBTg (r) (10)

it follows that condition for hydrostatic equilibrium becomes

σ2

g (r)

(

d ln ρg (r)

d ln r
+

d lnTg (r)

d ln r

)

+
G Mtot(r)

r
= 0 . (11)

with the gas 1-dim velocity dispersion defined as

σ2

g (r) ≡
kBTg (r)

µmp

. (12)



2 – FROM GAS TO DARK MATTER

Observations of X-ray emission from hot diffuse gas in regular
relaxed clusters allow for the determination of the DM properties.

2.1 – DM density profile

Observations yield

◮ X-ray temperature profile of the gasTg (r),

◮ X-ray emissivity profile of the gas jX (r),

◮ X-ray luminosity profile of the gas LX (r).

Note that the deprojection of the data is unique because of the
supposed spherical symmetry. Assuming Bremsstrahlung emission,
the gas number density profile is

ρg (r) ∝

(

jX (r)

LX (Tg (r))

)1/2

. (13)



Since ρg (r) and Tg (r) are now known, Eq. (11) yields Mtot(r).
Due to the fact that the leading mass component is dark matter
(DM), in first approximation we get MDM(r) = Mtot(r), so that
the DM profile is fixed in a unique way. Higher-order corrections
taking the gas mass into account can be computed in a
straightforward fashion.

2.2 – DM anisotropy profile

A plausible assumption in that in first approximation the DM
distribution is characterized by complete spherical symmetry. In
such a situation it is described by the following Jeans equation

σ2

r (r)

(

d ln ρDM(r)

d ln r
+

d lnσ2
r (r)

d ln r
+ 2β(r)

)

+
G Mtot(r)

r
= 0 ,

(14)
with ρDM(r) the DM density profile. Complete spherical symmetry
forces the 2 tangential components of the velocity dispersion



σϕ(r) and σθ(r) of the DM particles to be the same – they are
denoted by σt(r) – but they are unrelated to the radial component
σr (r). So the departure to orbital isotropy of DM particles is
parameterized by

β(r) ≡ 1 −
σ2

t (r)

σ2
r (r)

. (15)

Correspondingly, I define the mean DM 1-dim velocity dispersion as

σ2

DM(r) ≡
1

3

(

σ2

r (r) + 2σ2

t (r)
)

=

(

1 −
2

3
β(r)

)

σ2

r . (16)

I further define

κ(r) ≡
σDM(r)

σg (r)
. (17)

Now, because the cluster equilibrium is achieved through violent

relaxation, equipartition of the kinetic energy per unit mass takes
place, thereby strongly suggesting that

σDM(r) = σg (r) . (18)



Actually, this circumstance is further supported by extended
numerical simulations which can be trusted precisely in the region
where the gas is expected to be in hydrostatic equilibrium, so that
I will take κ(r) = 1 from now on. Moreover, even the presence of a
central AGN does not change the situation.



Effect of an AGN feedback.



Thanks to Eq. (18), Eqs. (11) and (14) can be combined to give

σ2

r (r)

(

d ln ρDM(r)

d ln r
+

d lnσ2
r (r)

d ln r
+ 3

)

= ψ(r) , (19)

where I have set

ψ(r) ≡ σ2

g (r)

(

d ln ρg (r)

d ln r
+

d lnTg (r)

d ln r
+ 3

)

. (20)

By the previous argument, X-ray observations fix both ψ(r) and
ρtot(r). And recalling that I am working in the approximation
Mtot = MDM, also ρDM(r) is fixed. So, Eq. (19) can be solved to
get

σ2

r (r) =
1

ρDM(r) r3

∫ r

0

dr ′ ρDM(r ′) r ′2 . (21)



3 – FROM DARK MATTER TO GAS

All observational uncertainties are avoided altogether when the
argument is turned around. So, I am now assuming a given DM
density profile and I work out the resulting gas properties under the
same assumptions as above.
Central to this strategy is again the hydrostatic equilibrium
condition

σ2

g (r)

(

d ln ρg (r)

d ln r
+

d lnTg (r)

d ln r

)

+
G Mtot(r)

r
= 0 . (22)

Because Mtot(r) is given - recall my approximation
Mtot(r) = MDM(r) – the job is to solve Eq. (11) for both ρg (r)
and Tg (r). Of course, this can be done only if some further

information about the state of the gas is available.



3.1 – An incorrect start

Simulations have shown that 〈Tg 〉 ≃ Tvir, so that specific
dependence of 〈Tg 〉 on rvir shows up.
Makino, Sasaki and Suto (MSS) assume that just the same
relation holds locally as well! So, MSS take

Tg (r) = Tvir(r) , (23)

with Tvir(r) defined as Tvir(rvir) with rvir → r . By inserting Eq.
(23) into Eq. (22), MSS proceed to evaluate ρg (r). Further, MSS
restrict themselves to isothermal and polytropic gas distributions.
They find – not unexpectedly – a disagreement with observations.



3.2 – A correct approach

A very different attitude is taken by Frederiksen, Hansen, Host and
Roncadelli.
As a preliminary step, we trivially combine Eqs. (11) and (14).
Our first assumption is again the relation

σDM(r) = σg (r) . (24)

Expressing σDM(r) in terms of σr (r) and β(r) with the help of Eq.
(16), we put the resulting equation into the form

γg (r) =
1

1 − 2

3
β(r)

(

γDM(r) + 2β(r) +
2

3
β(r)

d lnσ2
r (r)

d ln r
+

2

3

dβ(r)

d ln r

)

,

(25)
where the density slopes γDM(r) of the DM and γg (r) of the gas
are defined as

γX (r) ≡
d ln ρX

d ln r
. (26)



I stress that Eq. (25) captures a crucial point of the present
strategy: only the gas density slope appears on its l. h. s., whereas
only quantities pertaining to the DM appear on its r. h. s.
Further, the Jeans equation for DM can be rewritten as

r
dσ2

r

dr
+ σ2

r

(

γDM(r) + 2β(r)
)

+
G Mtot(r)

r
= 0 , (27)

and its solution is

σ2

r (r) =
G

B(r)

∫

∞

r

dr ′
B(r ′)Mtot(r

′)

r ′2
, (28)

with

B(r) ≡ ρDM(r) exp

{

− 2

∫

∞

r

dr ′
β(r ′)

r ′

}

. (29)

Our second assumption is the relation

β(r) ∝ γDM(r) , (30)

which emerges from computer simulations with a scatter of about
0.05. Using this relation we finally obtain the gas density profile.
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The derived gas density profile, assuming that ρg/ρDM = 10% at
r0, which is the scale length of the NFW profile. The upper curve
(black) is the DM density, and the 3 lower lines show gas profiles
modelled with extreme variations in the possible DM velocity
anisotropy (green dot-dashed is isotropic (β = 0), red solid is using
β = − 0.2 (γ + 0.8) and blue dashed is using β = − 0.13 γ.
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The derived slope of the gas density profile, assuming an NFW
profile for the DM. Inner points are taken from Vikhlinin et al.
2006 while outer points are taken from Ettori and Balestra 2008.
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The slope of the gas density profile, assuming a Sersic profile with
n = 5 for the DM. Inner points are taken from Vikhlinin et al.
2006 while outer points are taken from Ettori and Balestra 2008.


