The XENON100 Dark Matter Search

Elena Aprile on behalf of the XENON collaboration

The XENON100 Dark Matter Search

Elena Aprile on behalf of the XENON collaboration

The XENON100 Dark Matter Search

Elena Aprile on behalf of the XENON collaboration

XENON Collaboration

USA, Switzerland, Portugal, Italy, Germany, France, China, Netherlands

The XENON Roadmap

past (2005 - 2007)

NSF

XENON10

Achieved (2007) σ_{s1}=8.8 x10⁻⁴⁴ cm² Phys. Rev. Lett. **100**, 021303 (2008) Phys. Rev. Lett. **101**, 091301 (2008) current (2008-2010)

XENON100 *Projected (2010)* σ_{SI}~2x10⁻⁴⁵ cm² future (2011-2015)

XENON1T Goal: $\sigma_{SI} < 10^{-46} \text{ cm}^2$

Liquid Xenon for Dark Matter

- scalability: relatively inexpensive for very large detector (today < \$800/kg)</p>
- Large mass number (A~131): high rate for SI interactions if NR threshold is low
- Excellent Stopping Power: active volume is shelf-shielding
- Excellent Scintillator and Ionizer: highest yield among noble liquids
- Intrinsically pure: no long-lived radioactive isotopes; Kr/Xe reduction to ppt level with established methods
- NR Discrimination: by simultaneous charge and light measurement

$$R \sim \frac{M_{det}}{M_{\chi}} \rho \sigma \langle v \rangle$$

Ionization/Scintillation Mechanism in Noble Liquids

Charge and Light response of different particles in LXe

Charge/Light (electron) >> Charge/Light (non relativistic particle)

Distribution of ionization around the track of a high energy a-particle or electron

Aprile et al., Phys. Rev. D 72 (2005) 072006

Dual-Phase Xenon TPC

S2

Time / us

Recoil Discrimination > 99%

XENON100

98 PMT top array

latter and XENON100

XENON100

veto PMT bell 98 PMT top array

+4500V

170kg

liquid xenon

-16000V

62 kg targe

30 cm Drift Gap

PTFE TPC, field shaping

> 80 PMT bottom array

> > veto PMT

latter and XENON100

PMTs & Gain Calibration

- 1" square metal-channel R8520-06-Al
- optimized for 178nm, low T, high p
- low radioactivity <1mBq in ²³⁸U/²³²Th per PMT
- 98 top PMTs, optimized for good r resolution
- 80 bottom PMTs, optimized for filling factor, QE ~33%
- 64 in veto looking up, down and inward

ZB1592 -

regular gain monitoring

133

XENON100 Shield

20cm H₂O, 15cm Pb, 5cm French Pb, 20cm PE, 5cm Cu

XENON100: Measured Background

XENON100: Summary of Predicted Backgrounds

Electron and nuclear backgrounds from various sources are predicted

Electron recoils	Source of BG	events/(kg·day·keVee)	
(before S2/S1 discrimination		50 kg FV	30 kg FV
	Detector and shield materials	< 21.01	< 7.73
and active veto cut)	²³⁸ U and ²³² Th in LXe	<5.57	<3.24
	⁸⁵ Kr in LXe	< 11.85	< 7.05
	²²² Rn in the cavity	< 2.56	< 1.24
	All sources	< 40.99	< 19.26

Nuclear recoils	Neutron source	Single nuclear recoils per year in		
		50 kg FV	30 kg FV	
	Detector and shield materials	< 0.68	< 0.28	
	Cavern	0.48 ± 0.15	0.20 ± 0.09	
	Cosmic ray muons	0.27 ± 0.13	< 0.07	
	All sources	< 1.43	< 0.55	

Background reduction with fiducial volume cuts and active veto is calculated:

efficiency of fiducial volume cuts >90% (30 kg of LXe)

efficiency of the active veto >70%

XENON100: Status

- In continuous operation underground for the past 6 months with high stability
- Neutron calibration performed in mid-December 2009
- Gamma calibrations are performed on regular basis (Cs137 for e-lifetime; Co60 for gamma band)
- Measured background level is consistent with design goal of 100 less than XENON10
- Dark Matter search run started on January 13, 2010: data in ROI "blinded"
- Event selection and cuts developed and optimized on calibration data

XENON100: ultra-low background detector

XENON100 Data Taking

19

XENON100: Neutron Calibration

XENON100: Neutron Recoil Band

XENON100: Gamma Recoil Band

Nuclear Recoil Equivalent Energy Scale

Nuclear Recoil Equivalent Energy

E

Nuclear Recoil Energy:

$$_{\rm nr} = \frac{S1}{L_y} \cdot \frac{S_{\rm ee}}{S_{\rm nr}} \cdot \frac{1}{\mathcal{L}_{\rm eff}}$$

L_y(122keV_{ee}) = (2.20 0.09)PE

 $S_{ee} = 0.58$ $S_{nr} = 0.95$

astro-ph/0601552

Current Leff Measurements in LXe

New Measurements of Leff in Liquid Xenon

New experiment ongoing at the Columbia Nevis Lab, with a 2-phase miniTPC optimized for high light collection. Measure ionization and scintillation yield of very low energy ER and NR in LXe, as a function of field and energy. DD- generator for neutrons Additional set-up also at UZurich

XENON100: arxiv-20100511

- WIMP search energy window: 4-20 PE or 8.7 32.6 keVr
- S2 software threshold: 300 PE

Analysis of XENON100 non-blinded data

- 11.2 live days of background data from October-November 2009
- Non-blind analysis: but cuts optimized only on neutron and gamma calibration data
- Only very basic event selections are applied:
 - events with reasonable S/N ratio (TPC has high sensitivity to single electrons)
 - events with single S1 and single S2 peaks (remove delayed coincidence events and multiple Compton and neutron scatters)
 - events with the S2 pulse width compatible with drift time (remove gas events)
 - events with an SI signal in active volume but no veto signal

Results from the 11 days data

• 22 Events (8.7 - 32.6 keVr) after a 40 kg fiducial volume cut

Results from the 11 days data

XENON100: First Spin Independent Limit

XENON100: First Spin Independent Limit

FIG. 2: Expected spectrum of a 10 GeV/ c^2 WIMP with a cross section of 1×10^{-41} cm² (black, solid), a benchmark case at the lower edge of the DAMA region. The red (dashed) lines show the spectrum after a convolution with a Poisson distribution, the blue (thick dashed) line is corrected for the XENON100 efficiency. The straight lines are the 3 PE and 4 PE thresholds using the lower 90% CL \mathcal{L}_{eff} contour of the global fit as explained in the text.

The case for XENON1T

- XENON100 is working very well. It is the largest mass and lowest background DM experiment in operation underground and with a large exposure ready to be unveiled.
- Within 2010 XENON100 will a) either see a signal or b) will significantly constraint WIMP models for both SI and SD cross-section.
- Larger scale experiments with even lower background are needed in both cases.
- Critical technologies developed within the XENON10/100 programs can be directly applied to the next scale. Risks and the costs are fully understood.
- A strong international collaboration, with valuable expertise and resources, is in place.
- A technical design proposal for a XENON1T is in preparation. With 50 50 share of resources between US and other groups, we plan to realize the experiment before 2015.

XENON1T: A tremendous scientific reach

XENON1T: constraints on WIMP mass

Number of events				Mass (GeV)		
		20	50	100	200	500
Cross Section	10 ⁻⁴⁴ cm ²	230	710	560	330	140
	10 ⁻⁴⁵ cm ²	23	71	56	33	14

XENON1T: Detector Overview

- Baseline design similar to XENON100 with improvements in different areas
 - Iower radioactivity cryostat (Ti and Cu)
 - ➡ lower radioactivity PMTs (QUPIDs)
 - ➡ high efficiency heat exchanger: >98%
 - ➡ filling & recovery in liquid phase
- Design has been validated with detailed MC studies of internal/external background sources
- Capital cost ~ 8M\$ shared equally between US and foreign groups

QUPID Characteristics

Extremely low radioactivity: <1 mBq</p>

- ✓ < 0.1 neutron / year</p>
- << 10 times lower than conventional low radioactive PMTs.</p>
- Large diameter: 3 inch
 - ✓ 6 inch is also under investigation.
- Special Photocathode: Bialkali LT
 - ✓ > 30 % QE at 170 450 nm
 - ✓ Low resistivity even at Liquid Ar temperature (- 185 ₀C)
- True photon counting
 - ✓ 1, 2, 3... photoelectron peaks clearly visible.
 - ✓ 100% collection efficiency.
- Simple HV supply.
 - ✓ Common HV (-6 kV) for all QUPIDs
 - Resistor chain not necessary
- Successful test at UCLA in LXe with >33% QE.

Expected Backgrounds from Detector Materials

External background at LNGS:

gamma

neutrons

Residual gamma and neutron flux after different thicknesses of **water shield**

XENONIT Baseline at LNGS

A 4- π active water muon veto and shield

