Freeze-In of FIMP Dark Matter

Karsten JEDAMZIK †

[†] LPTA, Montpellier

Outline of Talk

Freeze-out of Weakly Interacting Massive Particles

Freeze-In of Feebly Interacting Massive Particles Hall, K.J., March-Russell, West

- The Freeze-In Process
- Comparison to super-WIMPs
- A Unified View of Freeze-In and Freeze-Out
- Detectability
- Candidate Particles

Conclusions on FIMPs IV. News of the Spite Plateau and the Lithium Problem V. Advertising IDM2010:
'Identification of Dark Matter' 26.7.-30.7. in Montpellier

Freeze-Out of Dark Matter

 \checkmark need some dark matter particle X stabilizing symmetry (parity)

■ annihilation reactions at $X + \bar{X} \rightarrow standard model particles$ freeze out at some $T \lesssim m_X$ and $n_X \ll T^3$

Virtues of Freeze-Out Production of Dark Matter

minimalistic assumptions as well as accelerator testability

- thermodynamic and chemical equilbrium at freeze-out seemingly reasonable assumption since typically $t_{equ}/t_{Hubble} \ll 1$
- $\Omega h^2 \approx 0.1 \left(\frac{\sigma v}{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}\right)^{-1}$ required interactions in principle accelerator testable in practice not that straightforward

reminiscent to conditions which led to the standard Big Bang nucleosynthesis model

The WIMP miracle

it is known that due to apparent violation of unitarity of the SM new physics is required at the TeV scale

a TeV-mass scale particle has $\sigma v \sim 3 \times 10^{-26} {\rm cm}^3 {\rm s}^{-1}$ give/or take \sim two orders of magnitude

Question:

Is freeze-out of dark matter the ONLY accelerator testable dark matter production mechanisim in thermodynamic equilibrium conditions ?

No !

FIMP Dark Matter

production per Hubble time

imagine a particle X which is so feebly interacting with the plasma (in TE) that it will never reach equilibrium abundance $\Delta n_X/s \sim \frac{n_{B_1}\Gamma_{B_1\to B_2+X}t_H}{s}$ call it FIMP = "Feebly Interacting Massive Particle" $\sim \frac{g_{B_1}T^3\lambda^2m_{B_1}M_{pl}/T^2}{gT^3}$ take interaction $\mathcal{L} \sim \lambda X B_1 B_2$ with $\lambda \ll 1$ where B_1 and B_2 are bath particles $\sim \frac{g_{B_1}\lambda^2m_{B_1}M_{pl}}{gT^2}$

the plasma produces it in attempting to attain equilibrium via $B_1 \rightarrow B_2 + X$ decay production

prod. infrared dominated !!!

$$\rightarrow \Omega_X \sim \frac{g_{B_1}}{g} \lambda^2 M_{pl} \frac{m_X}{m_{B_1}}$$

Difference to super-WIMPs

- super-WIMPs as **Gravitinos** or **axinos** are also very weakly interacting
- $\Delta n_G/s \sim n^2 \sigma v t_H/s \sim g^2 M_{pl} T \sigma v$ with $\sigma \sim 1/M_{pl}^2$ for weak mass scale gravitino, for example
- \rightarrow their production is ultraviolet dominated and reheat temperature *T* dependent

reheat temperature essentially non-testable in accelerators –

requires detailed information of the inflaton sector

difference between super-WIMPs and FIMPs is renormalizability of interaction

Freeze-In of Dark Matter

production reactions $B_1 \rightarrow X + B_2$ become inefficient at $T \lesssim m_{B_1}$ freezing-in (thawing-in) the dark matter abundance at $n_X \ll T^3$

production goes up with interaction strength

Required Interaction Strength

$$\lambda \simeq 1.5 \times 10^{-12} \left(\frac{m_X}{m_{B_1}}\right)^{1/2} \left(\frac{g_*(m_X)}{10^2}\right)^{3/4} \left(\frac{1}{g_{bath}}\right)^{1/2}$$

this is close to $M_{\rm EW}/M_{\rm GUT} \sim 10^{-13}$

 $g_{bath} \gg 1 \text{ possible}$

A Unified View of Freeze-In and Freeze-Out

 $\mathcal{L} \sim \lambda X B_1 B_2$ and $M_x \sim M_{B_1}$

freeze-in completes the lower half of the diagram

Region I: Coupling λ of X to thermal bath strong enough such that equilibrium $\sim T^3$ density will be attained and at $T < m_X$ $n_X \ll T^3$ will be frozen out \rightarrow nonrelativistic freeze-out Region II: Coupling λ of X to thermal bath strong enough such that equilibrium $\sim T^3$ density will be attained – however when $T < m_X$ no further reduction \rightarrow relativistic freeze-out Region III: Coupling to thermal bath **NOT** strong enough to attain equilibrium density $\sim T^3$ – freeze-in – abundance of X dominated by freeze-in Region IV: Coupling to thermal bath **NOT** strong enough to attain equilibrium density $\sim T^3$ - freeze-in - abundance of X dominated by freeze-out of bath particles and subsequent

A Unified View of Freeze-In and Freeze-Out

 $\mathcal{L} \sim \lambda X B_1 B_2$ and $M_x \sim M_{B_1}$

freeze-in completes the lower half of the diagram

Another Phase Diagram

Detectability of FIMPs ?

Production via $B_1 \rightarrow B_2 + X$

$$\Omega_X h^2 \approx \frac{1.09 \times 10^{27} g_{B_1}}{g_*^S \sqrt{g_*^{\rho}}} \frac{m_X \Gamma_{B_1}}{m_{B_1}^2}$$

$$\tau_{B_1} = 7.7 \times 10^{-3} \text{sec}$$
$$g_{B_1} \left(\frac{m_X}{100 \text{ GeV}}\right) \left(\frac{300 \text{ GeV}}{m_{B_1}}\right)^2 \left(\frac{10^2}{g_*(m_{B_1})}\right)^{3/2} \left(\frac{\Omega_X h^2}{0.011}\right)^{-1}$$

direct test of production mechanism in lab !!!!!

Why not $2 \rightarrow 2$ Production dominant ?

in case production via $B_1 + B_2 \rightarrow B_3 + X$ dominates, the Ω_X - τ_B correlation may be lost

however, $B_1 + B_2 \rightarrow B_3 + X$ production

$$\frac{dY_X}{dT} \approx \frac{3\lambda^2 T^2 m_X}{128\pi^5} \frac{K_1(m_X/T)}{SH}$$

is always phase space suppressed compared to $B_1 \rightarrow B_2 + X$ production

$$\frac{dY_X}{dT} \approx \frac{\lambda^2 m_{B_1}^3}{16\pi^3} \frac{K_1(m_{B_1}/T)}{SH}$$

Production of Dark Matter via Freeze-In of FIMPs

so far, have assumed FIMP is the dark matter particle

- need some (at least approximate) symmetry which stabilizes the dark matter particle, call it parity
- the standard model particles have positive parity
- the dark matter particle and other yet undiscovered particles have negative parity, stabilizing them towards decay into standard model particles

$LOSP \equiv$ "Lightest Observable Sector Particle" which carries negative parity

 $m_{\rm LOSP} < m_{\rm FIMP}$ is possible \rightarrow the LOSP may be the dark matter particle

- FIMPs are produced by inverse decays, e.g. $B + LOSP \rightarrow FIMP$, which decay into LOSPs after LOSP freeze-out
 - the LOSP self-annihilation cross section can be large

Four possibilities

LOSP/FIMP Decays during BBN ?

- two-body decay: $\tau \sim 10^{-2} \sec \left(\Omega_X h^2 / 0.1\right)^{-1} g_{B_1}$
- for $\Omega_X h^2 \sim 0.1$ and $g_{B_1} \sim 1$ \rightarrow no effect
- three-body decay: $\tau \sim 3 \sec g^{-2} \left(\Omega_X h^2 / 0.1\right)^{-1} g_{B_1}$
- **possible effect**, especially when $\Omega_X h^2 < 0.1$ and/or $g_{B_1} \gg 1$
- three-body decay, for example, when LOSP not directly coupled to FIMP

Candidate Particles

Moduli determining soft SUSY breaking parameters

$$m^{2}\left(1+\frac{T}{M}\right) \left(\phi^{\dagger}\phi+h^{\dagger}h\right) \qquad \mu B\left(1+\frac{T}{M}\right)h^{2} \qquad Ay\left(1+\frac{T}{M}\right)\phi^{2}h$$
$$m_{\tilde{g}}\left(1+\frac{T}{M}\right)\tilde{g}\tilde{g} \qquad \mu y\left(1+\frac{T}{M}\right)\phi^{2}h^{*} \qquad \mu\left(1+\frac{T}{M}\right)\tilde{h}\tilde{h},$$

Dirac Neutrinos within weak scale supersymmetry

$\lambda LNH_u,$

• $\lambda \sim 10^{-13}$ for observed neutrino masses !! Right-handed sneutrino close to perfect candidate for FIMP (cf. Asaka *et al.* 06,07)

Firenze, 19th of May 2010 - p. 20

A CMS Experiment to find metastable particles

- consider FIMP is the dark matter
- in case, the LOSP is charged and/or strongly interacting, it may be stopped in the CMS detector (inner HCL region)
- decay of such stopped particles are easily seen in "beam-off" periods (only background cosmic rays)

How to convince oneself that FIMPs constitute the dark matter ?

- the LOSP is charged and/or strongly interacting, NOT a neutralino
- it is metastable
- Its life time falls is in the right ballpark to fulfill the $\tau_{LOSP} \gtrsim 10^{-2} \sec m_X / m_{LOSP}$ relationship
- FIMPs as dark matter is a very plausible scenario

how to really convince oneself

- \square one may determine $m_{
 m LOSP}$ and $m_{
 m X} \sim m_{
 m LOSP}$ from kinematics
- If the τ_{LOSP} - Ω_X relationship is consistent with/close to the WMAP value

Summary

- dark matter production via freeze-out may occur in (plausible) thermodynamic equilibrium conditions, is UV insensitive, and accelerator testable !
- when looking at other dark matter production mechanism with such attributes one is led to the process of freeze-in
- In fact, freeze-in and freeze-out may be unified in a dark matter interaction strength - mass diagram
- scandidate particles for *Feebly Interacting Massive Particles* as required in freeze-in do exist, in fact, the required interaction strength $\lambda \lesssim 10^{-12}$ is suggestive
- freeze-in production may lead to a simple testable correlation between the life time of a new fundamental metastable particle and the abundance of the dark matter