Extreme QCD at RHIC and LHC

Jamal Jalilian-Marian Baruch College, New York, NY, USA

OUTLINE

*** QCD at high temperature**

* Phase transition: hadrons to partons (**QGP**)

*** QCD at high energy**

* Unitarity: small to large (<u>CGC</u>)

*** RHIC and LHC**

QCD at high T

Hadrons vs. partons: energy density

Hadronic Matter: quarks and gluons confined up to T ~ 200 MeV, 3 pions with spin=0

Quark Gluon Matter: 8 gluons; 2 quark flavors, antiquarks, 2 spins, 3 colors

s,
lors
$$\epsilon = \left\{ 2.8_{g} + \frac{7}{8} \cdot 2_{s} \cdot 2_{a} \cdot 2_{f} \cdot 3_{c} \right\} \frac{\pi^{2}}{30} T^{4}$$

 $37 >> 3$

 $\epsilon = \mathbf{n} \frac{\pi^2}{22} \mathbf{T}$

 $\epsilon = 3 \frac{\pi^2}{22} T^4$

QGP vs. Hadron Gas

Lattice QCD

Assumes thermal system

NEED TO CREATE \varepsilon >> \varepsilon_c

RHIC

Central:

maximum overlap

Center of mass energy: 20, 60, 130, 200 GeV

Hot nuclear matter: gold-gold, copper-copper Cold nuclear matter: deuteron-gold **Baseline**: proton-proton **RHIC-II**

Peripheral: "Almond" of overlap region

Colliding heavy ions at high energies

<u>Bjorken</u>: high p_t partons scatter from the medium and "lose energy" (radiate gluons)

path length

00000

Probing the medium

From CGC to QGP: Space-Time History of a Heavy Ion Collision

Degrees of Freedom in a Nucleus?

It depends on the scales probed!

A point particle

 $\lambda >> 10 \text{ fm}$

A collection of protons and neutrons $\lambda \sim 1 \text{ fm}$

A dense system of quarks and gluons $\lambda \ll 1$ fm

Deeply Inelastic Scattering (DIS)

THE SIMPLEST WAY TO STUDY QCD IN A HADRON/NUCLEUS

e p (A) ---> e X

Kinematic Invariants:

Center of mass energy squared

 $\mathbf{S} \equiv (\mathbf{p} + \mathbf{q})^2$

Momentum resolution squared $\mathbf{Q^2} \equiv -\mathbf{q^2}$ $\mathbf{X_{bj}} \equiv \frac{\mathbf{Q^2}}{\mathbf{2p} \cdot \mathbf{q}}$

The hadron at high energy \star Bjorken: \mathbf{Q}^2 , $\nu \to \infty$ but $\frac{\mathbf{Q}^2}{\nu}$ fixedstructure functions \mathbf{F}_1 , \mathbf{F}_2 depend only on \mathbf{x}_{bj} \star Feynman:

Parton constituents of proton are "quasi-free" on interaction time scale $1/Q \ll 1/\Lambda$ (interaction time scale between partons)

 $x_F P + q$

 \mathbf{X}_{bi} = fraction of hadron momentum carried by a parton = \mathbf{X}_{F}

The hadron at high energy

Parton model

x

QCD - bound quarks

pQCD--RG evolution (radiation)

 $\int_{0}^{1} \frac{dx}{x} [xq(x) - x\bar{q}(x)] = 3 \quad \text{# of valence quarks}$ $\int_{0}^{1} \frac{dx}{x} [xq(x) + x\bar{q}(x)] \rightarrow \infty \text{ # of quarks}$

pQCD--RG evolution (radiation)

pQCD--RG evolution (radiation)

of gluons grows rapidly at small x...

Resolving the hadron: DGLAP evolution

00

Radiated gluons have smaller and smaller sizes (~ $1/Q^2$) as Q^2 grows

The number of gluons increases but the phase space density decreases: hadron becomes more dilute

QCD in the Regge-Gribov limit

 $\begin{array}{ll} \mathbf{Q^2\,fixed}, \ \ S \to \infty \\ & \mathbf{X_{bj}} \to \mathbf{0} \end{array}$

Regge

Gribov

BFKL evolution

The infrared sensitivity of bremsstrahlung favors the emission of 'soft' (= small-x) gluons

BFKL evolution: Unitarity violation

The 'last' gluon at small x can be emitted off any of the 'fast' gluons with x' > x radiated in the previous steps :

Dipole scattering amplitude: $T \sim \alpha_s n$

• Unitarity bound : $SS^{\dagger} = 1 \implies T \leq 1 - \text{violated by BFKL }!$

The hadron at high energy

QCD Bremsstrahlung

Non-linear evolution-Gluon recombination:

this is essential if proton is a dense object

Proton

How to achieve high gluon density

Increase the energy

Radiated gluons have the same size $(1/Q^2)$ - the number of partons increase due to the increased longitudinal phase space

or/and large nuclei

Parton saturation

Competition between "attractive" bremsstrahlung and "repulsive" recombination effects

maximal phase space density

$$\frac{1}{2(N_c^2 - 1)} \frac{x G(x, Q^2)}{\pi R^2 Q^2} = \frac{1}{\alpha_S(Q^2)}$$

saturated for

 $\mathbf{Q} = \mathbf{Q_s}(\mathbf{x}) \gg \boldsymbol{\Lambda_{\mathbf{QCD}}} \simeq 0.2\,\mathbf{GeV}$

Born-Oppenheimer: separation of large x and small x modes

The effective action

$$\begin{split} S &= -\frac{1}{4} \int d^4x \, G^2 \longrightarrow \text{Yang-Mills} & \begin{array}{c} \text{coupling of color} \\ \text{charges to gluon fields} \\ &+ \frac{i}{N_c} \int d^2x_t \, dx^- \, \delta(x^-) \operatorname{tr} \, \rho(x_t) \, U_{-\infty,\infty}[A^-](x^-, x_t) \\ &+ i \int d^2x_t F[\rho^a(x_t)] \longrightarrow & \begin{array}{c} \text{weight function for} \\ \text{color charge configurations} \\ \end{split}$$

where $U[A^-] \equiv \hat{P} e^{-ig \int dx^+ A_a^- T_a}$ MV: $F[\rho] \rightarrow \frac{\rho^2}{\mu^2} \quad \operatorname{tr} \rho \operatorname{U} \rightarrow \rho \operatorname{A}^-$

Hadron/nucleus at high energy is a Color Glass Condensate

***** Gluons are colored

Random sources evolving on time scales much larger than natural time scales - very similar to spin glasses

 $\alpha_{\mathbf{s}}$

lpha Bosons with a large occupation number $~{
m n} \sim -$

* Typical momentum of gluons is $\mathbf{Q_s}(\mathbf{x})$

B-JIMWLK equations describe evolution of all N-point correlation functions with energy

the 2-point function: Tr $[1 - U^+(x_t) U(y_t)]$

(probability for scattering of a quark-anti-quark dipole on a target)

I) Strong field: exact scaling - $f(Q^2/Q^2_s)$ for $Q < Q_s$ II) Weak field: BFKL

BK: mean field + large N_c

A closed form equation

$$\partial_Y \langle T_{\mathbf{x}\mathbf{y}} \rangle = \frac{\bar{\alpha}}{2\pi} \int d^2 z \, \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} \left[\langle T_{\mathbf{x}\mathbf{z}} \rangle + \langle T_{\mathbf{z}\mathbf{y}} \rangle - \langle T_{\mathbf{x}\mathbf{y}} \rangle - \langle T_{\mathbf{x}\mathbf{z}} \rangle \langle T_{\mathbf{z}\mathbf{y}} \rangle \right]$$

The simplest equation to include unitarity: T < 1 Exhibits geometric scaling

$$\begin{array}{c} \mathbf{T}(\mathbf{x},\mathbf{r_t}) \rightarrow \mathbf{T}[\mathbf{r_t}\mathbf{Q_s}(\mathbf{x})] \\ \stackrel{\textit{for}}{}_{\mathbf{Q_s} < \mathbf{Q} < \frac{\mathbf{Q_s^2}}{\Lambda_{\mathbf{QCD}}}} \end{array}$$

Geomtric scaling at HERA

A New Paradigm of QCD

Saturation region: dense system of gluons

Extended scaling region: dilute system -anomalous dimension

Double Log: BFKL meets DGLAP

DGLAP: collinearly factorized pQCD

Beyond B-JIMWLK (BK)

some undesirable features

merging vs. splitting 2 --> 1 *vs.* 1 --> 2

reaction-diffusion in statistical mechanics: sF-KPP **Pomeron loops**

The new phase diagram

The "phase-diagram" revisited

Applications to RHIC and LHC

Colliding sheets of color glass

solve the classical eqs. of motion in the forward light cone: subject to initial conditions given by one nucleus solution

Colliding Sheets of Colored Glass

adding final state effects: hydro, energy loss

Colliding Sheets of Colored Glass

What happens to produced gluons? Is there thermalization of QCD matter? Can it be described by weak coupling? Bottom up scenario (Baier, Mueller, Schiff, Son) Production of "hard" gluons: k ~ Q_s

Radiation of "soft" gluons: $k << Q_s$ Soft gluons thermalizeHard gluons thermalizeThermalization time: $\tau \sim \frac{1}{\alpha_s^{13/5} Q_s}$

Instabilities?

$\alpha_{s} \neq Q_{s}$ Fast thermalization?

 $\mathbf{T}_{\mathbf{max}} \sim \alpha^{2/5} \, \mathbf{Q}_{\mathbf{s}}$

Signatures of CGC at RHIC: pA Multiplicities (dominated by p₊ < Q_s): energy, rapidity, centrality dependence Single particle production: hadrons, EM rapidity, pt, centrality dependence Fixed p_+ : vary rapidity (evolution in x) **i**) ii) Fixed rapidity: vary p_+ (transition from dense to dilute)

***** *Two particle production: back to back correlations*

CGC: qualitative expectations

$$\mathrm{R_{pA}}\equivrac{1}{\mathrm{A}}rac{\mathrm{d}\sigma^{\mathrm{pA}
ightarrow\mathrm{h}\,\mathrm{X}}}{\mathrm{d}\mathrm{y}\,\mathrm{d}^{2}\mathrm{p_{t}}} {rac{\mathrm{d}\sigma^{\mathrm{pp}
ightarrow\mathrm{h}\,\mathrm{X}}}{\mathrm{d}\mathrm{y}\,\mathrm{d}^{2}\mathrm{p_{t}}}}$$

Classical (multiple elastic scattering):

- $p_{+} \gg Q_{s}$: enhancement (Cronin effect)
- $R_{pA} = 1 + (Q_s^2/p_t^2) \log p_t^2/\Lambda^2 + ...$

 $R_{pA} (p_{t} \sim Q_{s}) \sim \log A$

position and height of enhancement are increasing with centrality

Evolution in x: can show analytically the peak disappears as energy/rapidity grows and levels off at $R_{pA} \sim A^{-1/6} < 1$

These expectations are confirmed at RHIC

CGC vs. RHIC

Rapidity and pt dependence

What we see is a transition from DGLAP to BFKL to CGC kinematics Centrality, flavor, species dependence

The future is promising!

