Aspects of Higgs portal DM models: light scalar singlet and intense γ -ray from hidden vector

Thomas Hambye Univ. of Brussels (ULB), Belgium

Firenze, 19/05/2010

Higgs portal interaction

Part I.

DAMA and/or CoGeNT: scalar DM??

in collab. with S.Andreas, C.Arina, F.-S. Ling and M.Tytgat

DAMA and/or CoGeNT ???

could have nothing to do with DM but makes sense to look for simplest possible DM explanations of them

Possible DM annihilations to SM particles

Predictivity of the Higgs exchange scenario

Annihilation cross section:

Cross section on Nucleon:

 \implies the ratio of cross sections depends only on $m_{DM}!$

$$R \equiv \frac{\sigma(DM DM \to f \bar{f}) v_{rel}}{\sigma(DM N \to DM N)} = fct''(m_{DM}, Y_f, g_{hNN})$$

if one fixes the Nucleon cross section to reproduce the DAMA and/or CoGeNT the relic density is fixed

 \implies intriguing result $R \sim m_S^2, \dots$

S.Andreas, C.Arina, F.-S. Ling, T.H., M. Tytgat 10'

Issues

Consequences for Higgs invisible decay width

 $m_H = 120 \,\text{GeV}$

 $98\% < BR(H \to DMDM) < 99.5\%$

->> the scalar DM particle doesn't necessarily need to be a weak singlet

→ also applies to inert doublet model ←

DM = one neutral component H_0 of a second Higgs doublet with other neutral component A_0 heavier than $\sim 80 \,\mathrm{GeV}$

(LEP invis. Z decay width)

 $\checkmark Z \rightarrow H_0 A_0$

→ same predictions as for the singlet

doesn't work!

Example: a Dirac fermion: $\mathcal{L} \ni \bar{\psi}(i\partial - m_0)\psi - \frac{Y_{\psi}}{\sqrt{2}}\bar{\psi}\psi h$ Annihilation: $\sigma(\bar{\psi}\psi \rightarrow \bar{f}f)v_{rel} = n_c \frac{Y_{\psi}^2}{16\pi} \frac{m_f^2 v_{rel}^2}{v^2 m_h^4} \frac{(m_{\psi}^2 - m_f^2)^{3/2}}{m_{\psi}} \leftarrow extra v_{rel}^2 \frac{m_{DM}^2}{v^2}$ suppression \uparrow P-wave and helicity suppressed Cross section on N: $\sigma(\psi N \rightarrow \psi N) = \frac{Y_{\psi}^2}{2\pi} \frac{\mu_r^2}{v^2 m_h^4} f^2 m_N^2$

$$\implies \text{much smaller predicted } R \equiv \frac{\sum_{f} \sigma(\bar{\psi}\psi \to \bar{f}f) v_{rel}}{\sigma(\psi N \to \psi N)} = \frac{\sum_{f} n_c m_f^2}{f^2 m_N^2 \mu_r^2} \frac{v_{rel}^2}{8} \frac{(m_{\psi}^2 - m_f^2)^{3/2}}{m_{\psi}}$$

Part II.

Intense γ -ray lines from hidden vector DM

in collab. with C.Arina, A. Ibarra and C.Weniger

Monochromatic γ -ray lines: a smoking gun for DM

 $\longrightarrow DM DM \rightarrow \gamma\gamma, \gamma Z$ annihilation leads to a monochromatic γ -ray line

(not expected in astrophysics background)

 \frown e.g. obtained at one loop level \Rightarrow rather suppressed

Boudjema, Semenov, Temes 05'; Bergstrom, Ullio, 97', 98';Bern, Gondolo, Perelstein 97'; Bergstrom, Bringmann, Eriksson, Gustafsson 04', 05'; Jackson, Servant, Shaughnessy, Tait, Taoso 09', ... one tree level exception: Dudas, Mambrini, Pokorski, Romagnoni 09'

e.g. needs for large boost factor or a TeV DM mass

But what about a γ -ray line from DM decay?????

has been considered from gravitino decay through R-parity violation

Buchmuller, Covi, Hamagushi, Ibarra, Tran 07'; Ibarra, Tran 07'; Ishiwata, Matsumoto, Moroi 08'; Buchmuller, Ibarra, Shindou, Takayama, Tran 09'; Choi, Lopez-Fogliani, Munoz, de Austri 09'

A scenario for large γ -ray lines through DM decays

C.Arina, T.H., A. Ibarra, C. Weniger 09'

 \Rightarrow DM model based on accidental symmetry decaying to γ from dim-6 operator

based on the existence of a accidental custodial symmetry:

- no possible dim-5 operators but dim-6 ones which all leads to a $\gamma\text{-ray line}$
- the stability can be "understood" only from the low-energy point of view as for the proton in the SM
- non-abelian global symmetry
- simple viable spin-1 DM model

Custodial symmetry \Rightarrow DM stability

T.H. 08'

← simplest example: a gauged SU(2) + a scalar doublet ϕ

 \Rightarrow spectrum: - 3 degenerate massive gauge bosons V_i: $m_V = \frac{g_{\phi} v_{\phi}}{2}$ - one real scalar η : $m_{\eta} = \sqrt{2\lambda_{\phi}} v_{\phi}$

This lagrangian has a custodial symmetry SU(2)_C or equivalently a SO(3)_C: $(V_1^{\mu}, V_2^{\mu}, V_3^{\mu}) =$ triplet and $\eta =$ singlet

 \implies the 3 V_i are stable! \leftarrow $V_i \rightarrow \eta \eta, \dots$ forbidden

$$\blacktriangleright$$
 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Hidden \, Sector} + \mathcal{L}_{Higgs \, portal}$

$$\mathcal{L}_{Hidden \, Sector} = -\frac{1}{4} F^{\mu\nu a} F^{a}_{\mu\nu} + (D^{\mu}\phi)^{\dagger} (D_{\mu}\phi) - \mu^{2}_{\phi}\phi^{\dagger}\phi - \lambda_{\phi}(\phi^{\dagger}\phi)^{2}$$

$$\mathcal{L}_{Higgs \, portal} = -\lambda_{m}\phi^{\dagger}\phi H^{\dagger}H$$

$$\stackrel{}{\longleftrightarrow} \ni -\lambda_{m}v_{\phi}vh\eta \rightarrow \underline{h-\eta \text{ mixing}}$$

$$\stackrel{}{\Downarrow}$$

doesn't spoil the stability of the V_i^μ

Dimension-6 operators breaking the custodial symmetry

Flux of monochromatic γ -rays

 $0 \le l \le 360^{\circ}, 10^{\circ} \le |b| \le 90^{\circ}$

C. Arina, T.H., A. Ibarra, C. Weniger 09'

Backup

Relic density

• $T \gtrsim m_V : V_{1,2,3}^{\mu}$ in thermal equilibrium with SM thermal bath $\Rightarrow \begin{array}{l} \eta \text{ with } h : \text{due to } \lambda_m \text{ coupling} \\ V_i \text{ with } \eta : \text{due to } g_\phi \text{ coupling} \end{array}$ • $T < m_V : n_V^{eq.} \sim e^{-m_V/T} \implies$ annihilation freeze out (WIMP) to two real η : with at least one SM part. in final state: $g_{\phi}(+\lambda_{\phi})$ $\lambda_m, g_\phi, ...$ η, h η, h η V_i h, η_{V_i} h,η h, η V_i with subsequent decay of η to SM particles via $h - \eta$ mixing

→ non abelian trilinear gauge couplings:

 \Rightarrow no dramatic effect for the freeze out (same order as other diagrams)

Small Higgs portal regime

Small Higgs portal regime

 $\longrightarrow \lambda_m \lesssim 10^{-3}$ \longleftarrow (but larger than $\sim 10^{-7}$ to have thermalization with the SM bath) $\bigvee V_i V_i \to \eta \eta, V_i V_j \to V_k \eta$ dominant \checkmark depend only on g_{ϕ} , v_{ϕ} , λ_{ϕ} with $m_V = \frac{g_{\phi}v_{\phi}}{2}$, $m_{\eta} \simeq \sqrt{2\lambda_{\phi}}v_{\phi}$ $\lambda_{\phi} = 10^{-1}$ $m_V \,({\rm GeV})$ \Rightarrow if λ_{ϕ} large: 1750 1500 1250 (95) 1000 \mathbf{M}_{A} 750 500 250 1.2 1.4 1.6 1.8 0.8 0.2 0.4 0.6 g_{ϕ}

g_ó

Large Higgs portal regime

large hidden sec- $\rightarrow \lambda_m \gtrsim 10^{-3} \implies \text{large } \eta - h \text{ mixing } \Rightarrow$ tor - SM mixing \rightarrow can lead to the right Ω_{DM} even for maximal mixing $m_{\eta} \,({\rm GeV})$ production at LHC of η just 1250 as for the Higgs in the SM but 1000 with possibly a larger mass M (GeV) 500 T parameter constraint: 250 if $m_h = 120 \,\mathrm{GeV} \implies m_\eta < \sim 240 \,\mathrm{GeV} \,(3\sigma)$ 250 500 1000 M_{A} (GeV) → or larger if non m_V (GeV) maximal mixing

if $m_{\eta} = m_h \Rightarrow m_h = m_{\eta} < 154 \text{ GeV}(3\sigma)$

Hidden vector: direct detection

 \Rightarrow can saturate the experimental bound easily

Hidden vector: cosmic ray fluxes

Pamela: can we reproduce the positron spectrum?

as in Arkani-Hamed et al. light mediator scenario

Pamela: can we get a large enough Sommerfeld boost?

 $\Rightarrow \phi$ confines: boundstates are eigenstates of the custodial sym.:

- scalar state: $S \equiv \phi^{\dagger} \phi^{\dagger}$ singlet of SO(3) expected the lightest

Relic density in the confined regime

confining non-abelian hidden sector coupled to the SM through the Higgs portal: perfectly viable DM candidate

Expected spectrum (in a similar case)

vector states e.g. expected heavier than scalar ones:

Kajantie, Laine. Rummukainen, Shaposhnikov '96

Possible effects on Electroweak Symmetry Breaking

contribution of the vev of the hidden scalar to the Higgs mass term:

 $\mathcal{L}_{Higgs \ portal} = -\lambda_m \phi^{\dagger} \phi H^{\dagger} H$ $\longrightarrow \exists -\lambda_m v_{\phi}^2 H^{\dagger} H$ gives a contribution to the Higgs vev: $v^2 \propto \frac{\lambda_m}{\lambda_m} v_\phi^2 \propto m_{DM}^2$ gives a hint for the m_{DM} versus v WIMP coincidence

see also T.H, M. Tytgat, arXiv 0707.0633, (PLB 659)