DM Signatures generated by anomalies in hidden sectors

Yann Mambrini

Laboratoire de Physique Théorique Orsay, Université Paris XI

E. Dudas, S. Pokorski, A. Romagnoni

GGI, Florence,, May 20th 2010

Polytechnique + Sacla^(Antoniadis,) (Cirelli, Zaharijas) + + Orsay

- I) <u>The DM puzzle</u>
- II) Gamma ray lines signals
- **III)** Importance of Anomalies in Particle Physics
- **IV)** Anomalies cancelation mechanisms
- V) Gamma-ray lines generated by anomalies
- VI) FERMI analysis
- VII) <u>Conclusions</u>

Dark Matter Evidences

-

CMB (WMAP)

Galactic Scale

SUSY : neutralino, gravitino.. (N. Fornengo, P. Ullio, L. Covi) KK modes (Extra Dim.) (Servant, Tait)

Extra U(1) boson (Arkani-Ahmed, T. Hambye)

Sterile right handed neutrino (Shaposhnikov)

Weak scale scalar (Gustafsson, Tytgat)

γ ray lines (annihilation)

χ Z,γ χ SUSY/KK 10-2 [...]

H⁰

H⁰

B

B

Inert Higgs Doublet [Gustafsson, Lundstrom, Bergstrom, Edsjo 07]

Visible X [Baek & Ko, 08] [Bergstrom,

Bringmann, Edsjo 08]

Chiral Square [Bertone et al. 09] If $m_{H0} < M_W$

 $\chi X f$ $\chi \chi \chi f$ $\chi f'$

3 visible lines

No visible line

h

Ζ, γ

Ζ, γ

 $\wedge \wedge \gamma$

2 lines

or yy line

γ

H

ν

T. Hambye 09

 $\tilde{\mathbf{G}}$

K.Y. Choi, C. Munoz 08 G. Bertone, W. Buchmuller, L. Covi, A. Ibarra 07

Anomalies in particle physics

Anomalies : quantum corrections destroy the symmetries of the classical theory

If the symmetry is local, the gauge anomaly causes the loss of unitarity, which is to say the consistency of the theory

A mechanism of anomaly cancellation should be imposed to the model

Example : leptophylic DM

μ-

 $X_{\mu} \sim \mu_{L} \qquad \mu_{L$ **INDEPENDENT OF THE MASSES OF THE FERMIONS RUNNING IN THE LOOPS (decoupling theorem)**

Solving the problem..

Lost of unitarity

Anomalie cancellation : Green-Schwarz mechanism

Anastopoulos, Bianchi, Dudas, Kiritsis 06 Anastopoulos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

$$\mathcal{L}_{inv} = \mathbf{F}^{Y\mu\nu} \mathbf{F}^{Y}_{\mu\nu} - (\mathbf{d}_{\mu}\mathbf{a} - \mathbf{M}_{X} \mathbf{X}_{\mu})^{2} - \mathbf{i} \ \mathbf{\Psi}_{h} \ \mathbf{\gamma}^{\mu} \ \mathbf{D}_{\mu} \ \mathbf{\Psi}_{h}$$

$$\mathcal{L}_{var} = \mathbf{B} \ \mathbf{a} \ \epsilon^{\mu\nu\rho\sigma} \mathbf{F}^{Y}_{\mu\nu} \ \mathbf{F}^{Y}_{\rho\sigma} + \mathbf{C} \ \epsilon^{\mu\nu\rho\sigma} \mathbf{X}_{\mu} \ \mathbf{Y}_{\nu} \ \mathbf{F}^{Y}_{\rho\sigma}$$
Peccei-Quinn terms
Chern-Simons terms
$$\delta \ \mathcal{L}_{var} = -\delta \ \left(\begin{array}{c} \mathbf{X}_{\mu} & & & \\ \mathbf{X}_{\mu} & & & \\ \mathbf{Y}_{\rho} \end{array} \right)$$

Heavy Fermions (Ψh)

Effective couplings : $\mathcal{L}_{eff} = \mathcal{L}_{loops} + \mathcal{L}_{var}$

$$\begin{split} &\Gamma^{\alpha}_{\mu\nu\rho} = t^{\alpha} \left\{ \begin{array}{l} A_{1} \ \epsilon^{\mu\nu\rho\sigma} \ k_{2\sigma} - A_{2} \ \epsilon^{\mu\nu\rho\sigma} \ k_{1\sigma} \\ + \ B_{1} \ k_{2\nu} \ \epsilon^{\mu\rho\sigma\tau} \ k_{2\sigma} \ k_{1\tau} + B_{2} \ k_{1\nu} \ \epsilon^{\mu\rho\sigma\tau} \ k_{2\sigma} \ k_{1\tau} + B_{3} \ k_{2\rho} \ \epsilon^{\mu\nu\sigma\tau} \ k_{2\sigma} \ k_{1\tau} + B_{4} \ \epsilon^{\mu\nu\sigma\tau} \ k_{2\sigma} \ k_{1\tau} \\ + \ C \ k_{3\mu} / k_{3}^{2} \ \epsilon^{\nu\rho\sigma\tau} \ k_{2\sigma} \ k_{1\tau} \ + \ D \ \epsilon^{\mu\nu\rho\sigma} (k_{2\sigma} - k_{1\sigma}) \right\} \\ \hline & Peccei-Quinn \qquad Chern-Simons \qquad \begin{bmatrix} Kumar, Rajaraman, Wells \ 08] \\ [YM \ 09] \\ \delta \ \mathcal{L}_{eff} = 0 \quad 3 \ Ward \ identities + \ (k_{1};k_{2}) \ symmetries \\ -> \ the \ vertex \ can \ be \ express \ as \ function \ of \ |B_{2} - B_{1}| = 1 / \Lambda^{2}_{X} \end{split}$$

With $B_1, B_2 = computable loops integrals$

Cc : only 3 parameters : $\Lambda_X [\langle S \rangle]$; $M_X [g_X]$; $M\chi [Y_{heavy}]$

Interpretation as higher dimensional operators

Antoniadis, Boyarski, Ruchavki, Wells 09 Dudas, YM, Pokorski, Romagnoni 09

 $\mathcal{L}_{1} = \frac{1/M^{2}}{4} * \{b \operatorname{Tr}[F' F^{Y} F^{Y}] + c \varepsilon^{\mu\nu\rho\sigma}(\mathcal{D}_{\mu} a) (D_{\nu} H)^{+} F^{Y}{}_{\rho\sigma} H \},\$ with

$$\mathcal{D}_{\mu}a = d_{\mu}a - g'A'_{\mu}$$
; $D_{\nu} = d_{\nu} - ig Y_{\nu} - ig' A'_{\nu}$

Masses suppression coming from the fermions which decouple after U'(1) breaking

Equivalent to the D'Hoker-Farhi term {1/(H+H) $\varepsilon^{\mu\nu\rho\sigma}$ (\mathcal{D}_{μ} a) (D_v H)+ F^Y_{po} H} for SM

Remark : if two Z' are present, we can build an unsupressed operator, $\epsilon^{\mu\nu\rho\sigma} (\mathcal{D}_{\mu}a_1) (\mathcal{D}_{\nu}a_2) F^{Y}_{\ \rho\sigma}$

Dark matter: Annihilation channels

Z χ χ χ X X $M_x < M\chi$ (unatural) $M_x > M\chi$ (natural) χ X χ Ζ χ

LHC production

Kumar, Wells 08 Antoniadis Boyarski Ruchavski, Wells 09

The relic density

 $1/\Lambda_{X}^{2} = |\mathbf{B}_{2}-\mathbf{B}_{1}| = g_{h}^{*}g^{2}/(8\pi^{2})^{*} \operatorname{Tr}[X' X^{2}/M_{heavy}^{2}]^{*}$ Integral

Indirect detection astro-parameters

Signal to noise ratio 12 time greater than GC

Galactic Centered Annulus (Stoehr et al 2003, GLAST col. 2008) **Independant of the Galactic profile**

 $J \Delta \Omega \sim 10$

Galprop conventional model for the background

5 years of data, signals at 5σ and 95% CL [FERMI estimates, Morselli et al. 08]

Observability

No excess with courent constraints (EGRET, HESS.. [Jacques, Bell 08])

Consequences on Mx and Mchi

An extension : Higgs in Space

Jackson, Servant, Shaughnessz, Tait, Taoso 09

Direct detection

Mini-conclusions

An (In)visible Z' can be quite visible

Indirect detection could be THE ONLY WAY to observe it

1 γ ray line is a smoking gun signal distinguishing it clearly from other constructions

Possibility to test up to 5TeV BSM scale at FERMI telescope