Dark Matter Motivated Searches for Exotic 4th Generation Mirror Quarks

Shufang Su • U. of Arizona

In collaboration with J. Alwall, J.L. Feng, J. Kumar arXiv: 1002.3366

chiral under SM gauge group

chiral under SM gauge group

same charge opposite chirality

chiral under SM gauge group

charge under hidden symmetry same charge opposite chirality

- Motivation: general / specific
- WIMPless model
- 🖗 Constraints
- Simulations and cut analysis
- Exclusion and discovery reach
- Conclusion

Dark matter motivation: general

<u>Dark Matter</u>: long-lived on cosmological time scale

Charge under a new unbroken symmetry \Rightarrow absolutely stable

- have only gravitational interaction with the SM
 - can not be discovered at colliders
- couple to SM through connector Y

YY production with $y \rightarrow f X$

Dark matter motivation: general

<u>Dark Matter</u>: long-lived on cosmological time scale

Charge under a new unbroken symmetry \Rightarrow absolutely stable

- have only gravitational interaction with the SM
 - can not be discovered at colliders
- couple to SM through connector Y

YY production with $y \to f \, X$

Dark matter motivation: general

<u>Dark Matter</u>: long-lived on cosmological time scale

Charge under a new unbroken symmetry \Rightarrow absolutely stable

- have only gravitational interaction with the SM \bigcirc
 - can not be discovered at colliders
- couple to SM through connector Y

YY production with $y \rightarrow f X$

SM charge & dark charge

SUSY	neutralino	squark	quark	R-parity
E×D	KK gauge boson	KK quark	quark	KK-parity
Our study	DM(no SM charge)	exotic quark	quark	dark charge

• $m_{WIMP} \sim m_{weak}$

• g~g_{weak}

$$\begin{array}{l} \Omega h^2 \sim \frac{2.6 \times 10^{-10} \mathrm{GeV}^{-2}}{\langle \sigma_A v \rangle} \\ \langle \sigma_A v \rangle \sim \frac{\alpha^2}{m_{weak}^2} 0.1 \sim 10^{-9} \mathrm{GeV}^{-2} \end{array} \right\} \Rightarrow \Omega \ \mathbf{h}^2 \sim \mathbf{0.3} \end{array}$$

naturally around the observed value

• $m_{WIMP} \sim m_{weak}$

• g~g_{weak}

$$\begin{array}{l} \Omega h^2 \sim \frac{2.6 \times 10^{-10} \mathrm{GeV}^{-2}}{\langle \sigma_A v \rangle} \\ \langle \sigma_A v \rangle \sim \frac{\alpha^2}{m_{weak}^2} 0.1 \sim 10^{-9} \mathrm{GeV}^{-2} \end{array} \right\} \Rightarrow \Omega \ \mathbf{h}^2 \sim \mathbf{0.3} \end{array}$$

WIMPless miracle

$$\Omega_X \propto rac{1}{\langle \sigma v \rangle} \sim rac{m_X^2}{g_X^4}$$

only fixes one combination of dark matter mass and coupling
 m_x/g_{x²} ~ m_{weak}/g_{weak²}, Ωh² ~ 0.3

could have $m_x \neq m_{weak}$ as long as the relation holds

WIMPless DM

J.L. Feng and J. Kumar, PRL 101, 231301 (2008)

dark matter: no SM gauge interactions, not WIMP
naturally obtain right relic density: similar to WIMP

$$\rightarrow \frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M} \rightarrow \Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$
right relic density !
(irrespective of its mass)

J.L. Feng, H. Tu and H. yu, CAP 0810:043,2008

If no direct coupling to SM:

- interact only through gravity
- impact on structure formation
- no direct/indirect/collider signals

Dark matter motivation: specific

To explain DAMA region: light DM with large σ_{SI}

see talk by T. Schwetz and related talks by A. Aprile, J. Jochum, P. Belli, G. Gelmini, T. Tait, N. Fornengo, T. Hambye ...

• not generic in typical WIMP see talk by N. Fornengo σ_{SI} : chirality flip, proportional to Yukawa coupling

A. Bottino, F. Donato, N. Fornengo and S. Scopel, PRD 68, 043506 (2003); PRD 77, 015002 (2008); PRD 78, 083520 (2008).

• can be easily accommodated in WIMPless model with connector Y

J.L. Feng, J. Kumar and L.E. Strigari, PLB 670, 37 (2008)

WIMPless model (discrete symmetry)

$$V = \lambda \left[X \bar{Q}'_L q_L + X \bar{B}'_R b_R + X \bar{T}'_R t_R \right]$$

$$egin{array}{rll} Q'_L & : & \left(3,2,rac{1}{6}
ight) \ T'_R & : & \left(3,1,rac{2}{3}
ight) \ B'_R & : & \left(3,1,-rac{1}{3}
ight) \end{array}$$

scattering: Xq \rightarrow Q' \rightarrow Xq, q=b,t, induce coupling to gluon at 1-loop

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78, 443 (1978).

S. Su

WIMPless model (discrete symmetry)

$$V = \lambda \left[X \bar{Q}'_L q_L + X \bar{B}'_R b_R + X \bar{T}'_R t_R \right]$$

not chirality opposite chirality of SM quark

scattering: Xq \rightarrow Q' \rightarrow Xq, q=b,t, induce coupling to gluon at 1-loop

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78, 443 (1978).

$\begin{aligned} \text{WIMPless model (discrete symmetry)} \\ V &= \lambda \left[X \bar{Q}'_L q_L + X \bar{B}'_R b_R + X \bar{T}'_R t_R \right] \\ \\ \hline \text{not chirality} \\ \text{opposite chirality} \\ \text{of SM quark} \end{aligned} \qquad \begin{array}{c} Q'_L : & (3, 2, \frac{1}{6}) \\ T'_R : & (3, 1, \frac{2}{3}) \\ B'_R : & (3, 1, -\frac{1}{3}) \end{array} \end{aligned} \qquad \begin{array}{c} \text{Exotic 4th-generation} \\ \text{mirror quarks} \end{array} \end{aligned}$

scattering: Xq \rightarrow Q' \rightarrow Xq, q=b,t, induce coupling to gluon at 1-loop

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78, 443 (1978).

WIMPless model

S. Su

$m_X \sim$ 1-10 GeV, $m_{Q'} \sim$ 300-500 GeV, $\lambda \sim$ 0.3-1, σ_{SI} in right range

J.L. Feng, J. Kumar and L.E. Strigari, PLB 670, 37 (2008)

11

3rd generation vs. the first two

• first two generations, tree level scattering $\Rightarrow \lambda \sim 0.03$

- third generation
 - = loop level scattering, $\lambda \sim 0.3$ -1, more natural
 - less constrained by FCNC

Collider Signature: exotic quarks

Y particle appears as exotic 4th generation mirror quarks Q'

Collider Signal T'T'→ttXX, B'B' →bbXX

- differ from SUSY searches: cascade decay
- differ from usual 4th generation quark T' \rightarrow Wb, B' \rightarrow Wt
- appears in a general set of new physics scenarios
 - little Higgs with T-parity H.C. Cheng and I. Low, JHEP 0408, 061 (2004)
 - baryon and lepton number as gauge symmetry
- P. Fileviez Perez and M. B. Wise, arXiv: 1002.1754

Constraints

- perturbativity constraints: $m_{Q'} = y_{Q'} v, m_{Q'} \le 600 \text{ GeV}$
- precision electroweak data: |m_T,-m_B 50 GeV
- direct searches limits

B'B'→bbXX, similar to sbottom pair production with $\tilde{b} \rightarrow b \tilde{\chi}_1^0$

Constraints

- perturbativity constraints: $m_{Q'} = y_{Q'} v, m_{Q'} \le 600 \text{ GeV}$
- precision electroweak data: |m_T,-m_B 50 GeV
- direct searches limits

B'B'→bbXX, similar to sbottom pair production with $\tilde{b} \rightarrow b \tilde{\chi}_1^0$

Constraints: direct search

CDF, Run II, 2.5 fb⁻¹, gluino pair production, $\tilde{g} \rightarrow b\tilde{b} \quad \tilde{b} \rightarrow b\tilde{\chi}_1^0$ two or more jets, large MET, 2b-tagging

T. Aaltonen et al. [CDF Collaboration], PRL 102, 221801 (2009).

Constraints: direct search

CDF, Run II, 2.5 fb⁻¹, gluino pair production, $\tilde{g} \rightarrow b\tilde{b} \quad \tilde{b} \rightarrow b\tilde{\chi}_1^0$ two or more jets, large MET, 2b-tagging

T. Aaltonen et al. [CDF Collaboration], PRL 102, 221801 (2009).

Constraints: direct search

CDF, Run II, 2.7 fb⁻¹, stop pair production, $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b \tilde{\chi}_1^0 l \nu$

m_{st} > 150 - 185 GeV, weaker than sbottom limit

A. G. Ivanov [CDF Collaboration], arXiv:0811.0788 [hep-ex].

Simulation

MadGraph - Pythia - PGS

Signal:

$$T'\bar{T}' \to t^{(*)}X\bar{t}^{(*)}X \to bW^+X\bar{b}W^-X$$

- hadronic channel: large cross section
 - SM backgrounds, tt, W, have MET with lepton
 - irreducible background: $Z \rightarrow vv + jets$
- semi-leptonic channel: isolated lepton, suppress QCD background
- purely leptonic channel: suppressed cross section

Similar analyses in the literature

- semileptonic mode, high mass, large luminosity
 - T. Han, R. Mahbubani, D. G. E. Walker and L. T. E. Wang, JHEP 0905, 117 (2009)
- hadronic mode, spin and mass determination

P. Meade and M. Reece, Phys. Rev. D 74, 015010 (2006).

Simulation

MadGraph - Pythia - PGS

Signal:

$$T'\bar{T}' \to t^{(*)}X\bar{t}^{(*)}X \to bW^+X\bar{b}W^-X$$

• hadronic channel: large cross section

- SM backgrounds, tt, W, have MET with lepton
- irreducible background: $Z \rightarrow vv + jets$
- semi-leptonic channel: isolated lepton, suppress QCD background
- purely leptonic channel: suppressed cross section

Similar analyses in the literature

- semileptonic mode, high mass, large luminosity
 - T. Han, R. Mahbubani, D. G. E. Walker and L. T. E. Wang, JHEP 0905, 117 (2009)
- hadronic mode, spin and mass determination

P. Meade and M. Reece, Phys. Rev. D 74, 015010 (2006).

Simulation

MadGraph - Pythia - PGS $T'\bar{T}' \to t^{(*)} X \bar{t}^{(*)} X \to bW^+ X \bar{b}W^- X$ Signal: Advance in the section is a section in the section in the section is a section in the section in the section is a section in the section is a section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the secti - SM backgrounds, tt, W, have MET with lepton - irreducible background: $Z \rightarrow vv + jets$ • emi-leptonic channel: isolated lepton, suppress QCD background • purely leptonic channel: suppressed cross section Similar analyses in the literature semileptonic mode, high mass, large luminosity

T. Han, R. Mahbubani, D. G. E. Walker and L. T. E. Wang, JHEP 0905, 117 (2009)

hadronic mode, spin and mass determination

P. Meade and M. Reece, Phys. Rev. D 74, 015010 (2006).

S. Su

Semileptonic channel: precuts

● large m_T^W

 $m_T^W \equiv m_T(p_T^l, \not p_T)$

 $= \sqrt{2|p_T^l|} \not p_T|\cos(\Delta\phi(p_T^l, \not p_T))$

Signal: T'T' \rightarrow ttXX \rightarrow bbjj I + MET

<u>Precuts</u>

• one isolated electron or muon

• large MET

Semileptonic channel: precuts

● large m_T^W

 $m_T^W \equiv m_T(p_T^l, \not p_T)$

Signal: T'T' \rightarrow ttXX \rightarrow bbjj I + MET

<u>Precuts</u>

Cross section / bin (pb) 10 1

10⁻²

10⁻³

0

5. 50

10╞

one isolated electron or muon \bigcirc

Iarge MET

50

100

150

200

250

0

350

400

M^W_T (GeV)

300

Semileptonic channel: precuts

• $N_{jet} \ge 4$

19

Semileptonic channel: Tevatron

Additional cuts: MET, m_T^w, H_T

Tevatron: semileptonic

						-
Cut	T'(300)	T'(400)	T' (500)	$t\bar{t}$	W+jets	
No cut	203.2	16.33	1.11	5619	(5179)	
$1~\mu/e,~{ m no}~ au$	36.1	2.88	0.194	1041	(2060)	
$\not\!\!\!E_T > 100 \mathrm{GeV}$	17.7	2.00	0.157	107.2	(728.8)	
$m_T^W > 100 { m ~GeV}$	10.7	1.38	0.114	22.6	(36.62)	
≥ 4 jets	4.81	0.64	0.062	2.6	0.30	
$ m_{jj} - m_W < 10 \text{ GeV}$	4.13	0.51	0.049	2.2	0.19	
All precuts	4.13	0.51	0.049	2.19	0.19	
$m_T^W > 150 { m ~GeV}$	1.93	0.325	0.036	0.62	0.035	
$\not\!\!\!E_T > 150 \mathrm{GeV}$	1.75	0.367	0.041	0.281	0.035	
$H_T > 300 \text{ GeV}$	1.93	0.353	0.042	1.18	0.07	
$E_T > 150, H_T > 300$	1.04	0.279	0.037	0.056	0.017	

2.4 fb

Semileptonic channel: LHC10

Additional cuts: MET, m^w, H_T

LHC10: semileptonic

Cut	T'(300)	T'(400)	T'(500)	$t\bar{t} (1 e/\mu)$	$t\bar{t}$ (1 τ)	$t\bar{t}~(2~e/\mu)$	W+jets
No cut	14.89	3.16	0.922	66.67	43.96	10.62	(42.28)
$1~\mu/e,~{ m no}~ au$	3.2	0.669	0.193	36.45	8.15	3.18	(15.74)
$E_T > 100 \text{ GeV}$	1.92	0.52	0.165	5.05	2.07	0.888	(10.33)
$m_T^W > 100 { m ~GeV}$	1.1	0.342	0.116	0.134	0.638	0.471	(0.235)
≥ 4 jets	0.357	0.116	0.043	0.056	0.091	0.062	0.028
$ m_{jj} - m_W < 10 \text{ GeV}$	0.165	0.049	0.016	0.026	0.03	0.014	0.01
All precuts	0.165	0.049	0.016	0.027	0.031	0.014	0.01

- Additional m_T^W cut: $m_T^W > 150,200$ GeV
- Additional $\not\!\!\!E_T$ cuts: $\not\!\!\!E_T > 150, 200, 250$ GeV.
- $H_T = \sum_{i=1}^4 |p_T^j|_i + |p_T^l|$ cuts: $H_T > 400$, 500 GeV.
- Combinations of the cuts above.

82 fb

Hadronic channel: precuts

Hadronic channel: precuts

• $\Delta \phi(p_T, p_T^j)$ suppress QCD bg

Hadronic channel: precuts

Hadronic channel: Tevatron

Additional cuts: MET, HT, Njet

							_
Cut	T' (300)	T' (400)	T' (500)	$t\bar{t}$	W+jets	Z+jets	
No cut	203.24	16.33	1.11	5619.1	(5179.06)	(3030.09)	
0 isolated leptons	82.88	6.97	0.499	2265.54	(1756.96)	(2545.12)	
$\not\!\!\!E_T > 100 \mathrm{GeV}$	42.86	5.28	0.422	125.93	(663.5)	(1219.22)	
≥ 5 jets	22.64	3.07	0.273	22.11	3.3	2.6	
$\Delta \phi { m cuts}$	19.0	2.74	0.245	15.8	2.8	2.2	
All precuts	19	2.74	0.245	15.8	2.8	2.2	21 f

Tevatron: hadronic

- Additional $\not\!\!E_T$ cuts: $\not\!\!E_T > 150, 200, 250$ GeV.
- $H_T = \sum_{i=1}^5 |p_T^j|_i$ cuts: $H_T > 300, 350, 400$ GeV.
- At least 6 jets with $|p_T^j| > 20$ GeV.
- Combinations of the cuts above.

Hadronic channel: LHC10

Additional cuts: MET, HT, Njet

T'(300)	T' (400)	T' (500)	$t\bar{t}$ (1 τ)	$t\bar{t} (1 e/\mu)$	$t\bar{t}$ (had)	W+jets	Z+jets
14.89	3.16	0.922	43.96	66.67	104.59	(42.28)	(18.86)
6.75	1.5	0.45	16.88	13.11	72.29	(16.8)	(15.71)
4.15	1.21	0.394	3.91	2.67	0.097	(11.25)	(11.48)
1.34	0.406	0.135	0.664	0.47	0.031	0.305	0.212
1.19	0.374	0.125	0.56	0.41	0.01	0.265	0.187
1.19	0.374	0.125	0.56	0.41	0.01	0.265	0.187
	$\begin{array}{c} T' (300) \\ 14.89 \\ 6.75 \\ 4.15 \\ 1.34 \\ 1.19 \\ 1.19 \end{array}$	$\begin{array}{c cccc} T' & (300) & T' & (400) \\ \hline 14.89 & 3.16 \\ 6.75 & 1.5 \\ 4.15 & 1.21 \\ 1.34 & 0.406 \\ 1.19 & 0.374 \\ \hline 1.19 & 0.374 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

LHC10: hadronic

- $H_T = \sum_{i=1}^5 |p_T^j|_i$ cuts: $H_T > 400,500$ GeV.
- At least 6 jets with $|p_T^j| > 40$ GeV.
- Combinations of the cuts above.

1.4 pb

Tevatron exclusion

- optimal cuts (after precuts)
- S/B > 0.1, more than 2 events
- Poisson statistics

Exclusion for T' $\overline{T'} \rightarrow t X \overline{t} X$ at the Tevatron

Exclusion for T' $\overline{T'} \rightarrow t X \overline{t} X$ at the Tevatron

Tevatron exclusion

- optimal cuts (after precuts)
- S/B > 0.1, more than 2 events
- Poisson statistics

Exclusion for T' $\overline{T'} \rightarrow t X \overline{t} X$ at the Tevatron

soft decay products

S. Su

27

off-shell top

LHC @7TeV, multiply lumonisity by a factor of 3.

S. Su

Conclusions

- Pair production of exotic quarks → DM + SM particles DM motivated, WIMPless scenario
 - natural obtain the right relic density
 - explain DAMA results: light DM, large σ_{si}
- \tilde{F} $T'\bar{T}' \rightarrow t\bar{t}XX$ semileptonic mode and hadronic mode
- Exclusion: LHC @ 10 TeV, 300 pb⁻¹
- Siscovery:

 m_X <130 GeV, $m_{T'}$ < 405 GeV for Tevatron 20 fb⁻¹ m_X <170 GeV, $m_{T'}$ < 490 GeV for LHC10 300 pb⁻¹

- $ilde{s}$ identify signal as $T'ar{T}' o tar{t}XX$, comparing with SUSY $ilde{t} ilde{t}^* o tar{t} ilde{\chi}^0_1 ilde{\chi}^0_1$
- complementary between collider studies and DM searches
 - \odot small λ , DM searches unsuccessful
 - displaced vertex at collider