NmSuGra, LHC & dark matter

Csaba Balazs Emerald Univercity, Land of OZ

Balazs, Carter PRD78 055001 (0808.0770) Lopez-Fogliani, Roszkowski, Ruiz de Austri, Varley PRD80 095013 (0906.4911) Balazs, Carter JHEP03 016 (0906.5012)

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 1/33

The idea

Constrain the simplest supersymmetric models using experiments

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 2/33

The results (for NmSuGra)

There's a beautiful complementarity between the LHC and direct dark matter detection experiments

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 3/33

Outline

LHC detectability

Dark matter direct detection

Supersymmetric models are robust

They explain the origin of

- naturalness: Higgsinos → Higgs mass protected by chiral symmetry
- (inertial) mass: SUSY breaking & radiative dynamics → EWSB
- \bigcirc light Higgs boson: $m_h^{tree} \leq m_Z \&$ loop corrections $\rightarrow m_h \leq 135 \text{ GeV}$
 - dark matter: conserved $R = (-1)^{3(B-L)+2S} \rightarrow LSP$ is a stable WIMP
 - baryonic matter: baryo or lepto–genesis \rightarrow baryon asymmetry
- \bigcirc gauge unification: sparticle loops \rightarrow unification w/ $M_{GUT} \sim 10^{16}$ GeV
- G gravity: gauged supersymmetry → supergravity

and more experimental and theoretical puzzles unanswered by the standard models of particle & astrophysics

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 8/33

The Minimal Supersymmetric Standard Model (MSSM) Minimal particle content:

standard fields \rightarrow superfields

 \bigcirc Supersymmetry & gauge symmetry ightarrow

all interactions

 \bigcirc Standard electroweak symmetry breaking \rightarrow

particle masses

Model parameters are the same as in the standard model

(with 2 Higgs doublets)

Superpotential

 $W_{\text{MSSM}} = y_u \hat{H}_u \cdot \hat{Q} \hat{U} - y_d \hat{H}_d \cdot \hat{Q} \hat{D} - y_e \hat{H}_d \cdot \hat{L} \hat{E} + \mu \hat{H}_u \cdot \hat{H}_d$

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 9/33

The Minimal Supersymmetric Standard Model (MSSM) Minimal particle content:

standard fields \rightarrow superfields

 \bigcirc Supersymmetry & gauge symmetry ightarrow

all interactions

 \bigcirc Standard electroweak symmetry breaking \rightarrow

particle masses

Model parameters are the same as in the standard model

(with 2 Higgs doublets)

Superpotential

$$W_{\text{MSSM}} = y_u \hat{H}_u \cdot \hat{Q} \hat{U} - y_d \hat{H}_d \cdot \hat{Q} \hat{D} - y_e \hat{H}_d \cdot \hat{L} \hat{E} + \mu \hat{H}_u \cdot \hat{H}_d$$

Supersymmetry ⇒ super-partner masses = particle massesC. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nbGalilei Institute 11 Jun 2010 | page 10/33

Supersymmetry breaking

However beautiful, attractive and smart SUSY is, she's broken! One of the simplest: minimal supergravity motivated model mSuGra universality at M_{GUT} Spin O (spartner) masses → Mo \bigcirc spin 1/2 (gaugino) masses \rightarrow $M_{1/2}$ Gall tri-linear couplings → Ao \bigcirc vacuum expectation values \rightarrow $tan\beta = \langle H_{\mu} \rangle / \langle H_{d} \rangle$ \bigcirc electroweak symmetry breaking $\Rightarrow \mu^2 \rightarrow$ sign(µ) $\mathcal{L}_{soft}^{MSSM} = y_{u} \mathcal{A}_{O} \mathcal{H}_{u} \cdot \tilde{Q} \tilde{U} - y_{d} \mathcal{A}_{O} \mathcal{H}_{d} \cdot \tilde{Q} \tilde{D} - y_{e} \mathcal{A}_{O} \mathcal{H}_{d} \cdot \tilde{L} \tilde{E} + \mu \mathcal{B} \mathcal{H}_{u} \cdot \mathcal{H}_{d} + hc +$ $+ \mathcal{M}_{1/2} \tilde{\lambda}_{i}^{*} \tilde{\lambda}_{i} + \frac{1}{2} \mathcal{M}_{O}^{2} \tilde{\psi}_{i}^{\dagger} \tilde{\psi}_{i}$

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 11/33

Problems with the MSSM

μ problem

 $W_{MSSM} \supset \mu \hat{H}_{u} \cdot \hat{H}_{d}$ unnatural $\leftarrow EW$ size for μ is not justified

Little hierarchy problem

SUSY stabilizes M_{EW} , by protecting m_h against $O(M_P)$ fluctuations

 $m_{h} = \cos^{2}(2\beta) m_{Z}^{2} + m_{EW}^{2} \left(log\left(\frac{m_{SUSY}^{2}}{m_{t}^{2}}\right) + \frac{\chi_{t}^{2}}{m_{SUSY}^{2}} \left(1 - \frac{\chi_{t}^{2}}{12m_{SUSY}^{2}}\right) \right)$

 Δm_h small if $m_{SUSY} \sim m_t \leftrightarrow EW$ precision data $\rightarrow m_{SUSY} \sim O(1 \text{ TeV})$

Electroweak fine-tuning problem

 $\max_i(\frac{1}{m_z}\frac{dm_z}{dp_i})$ large in most constrained MSSM scenarios

Dark matter fine-tuning problem

$$\max_i(\frac{1}{\Omega}\frac{d\Omega}{dp_i})$$
 large in most constrained MSSM scenarios

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 14/33

Singlet extensions of the MSSM

Root of the μ , hierarchy & fine-tuning problems is the Higgs sector extending the EWSB sector of the MSSM, problems are alleviated

in the (n,N,S)MSSM the $W \supset \mu \hat{H}_{u} \cdot \hat{H}_{d}$ dynamically generated by $W \supset \lambda \hat{S} \hat{H}_{u} \cdot \hat{H}_{d}$

all these fields (H_i and S) acquire vev.s at the weak scale little hierarchy and fine-tunings are also alleviated

Next-to-minimal MSSM: $W_{\text{NMSSM}} = W_{\text{MSSM},Y} + \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + \frac{\kappa}{3} \hat{S}^3$

mSuGra \rightarrow universality fixes all NMSSM parameters, but λ

5 free parameters:

 $M_0, M_{1/2}, A_0, \tan\beta, \lambda$

Single parameter extension of mSuGra solving several MSSM problems

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 15/33

NmSuGra para count

Discreet symmetries of super- & Kahler potentials: $Z_3 \times Z_2^{MP}$ solve domain wall problem

Next-to-minimal MSSM: $W_{NMSSM} = W_{MSSM} + \lambda \hat{S} \hat{H}_{1} \cdot \hat{H}_{2} + \frac{\kappa}{3} \hat{S}^{3}$ New parameters $\langle S \rangle$, λ , κ , A_{λ} , A_{κ} , m_{S} SUSY breaking mSuGra \rightarrow universality: fixes $A_{\kappa} = A_{\lambda} = A_{0}$ 9 parameters left M_{0} , $M_{1/2}$, A_{0} , $\langle H_{1} \rangle$, $\langle H_{2} \rangle$, $\langle S \rangle$, λ , κ , m_{S} 3 minimization eq. & $V^{2} = \langle H_{1} \rangle^{2} + \langle H_{2} \rangle^{2}$ eliminates 4 para & $\tan\beta = \langle H_{1} \rangle / \langle H_{2} \rangle$, $\mu = \lambda \langle S \rangle$ exchanges β and μ with 2 para \rightarrow

5 free parameters:

$M_0, M_{1/2}, A_0, \tan\beta, \lambda$

Single parameter extension of mSuGra – no new dimensionful para.s

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 16/33

The logic of science: How NOT to discover SUSY

A SUSY model parametrized by $P = \{p_1, ..., p_n\}$ predicts an experimental outcome $D = \{d_1, ..., d_n\}$ Assume that the LHC measures the predicted D! Ask the simplest question: Has SUSY been discovered? It's (very-very) tempting to answer: Yes!

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

The logic of science: How NOT to discover SUSY

A SUSY model parametrized by $P = \{p_1, ..., p_n\}$ predicts an experimental outcome $D = \{d_1, ..., d_n\}$ Assume that the LHC measures the predicted D! Ask the simplest question: Has SUSY been discovered? In reality the answer is: No! Because $P \Rightarrow D$ does NOT imply $D \Rightarrow P$ or in terms of conditional probabilities $\mathbb{P}(P|D) \neq \mathbb{P}(D|P)$

where $\mathbb{P}(\mathbb{P}|\mathbb{D})$ is a measure of the plausibility that P is true given D

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 18/33

How to extract parameters

The correct relation between conditional probabilities is Bayes theorem: $\mathbb{P}(\mathbb{P}|\mathbb{D}) \mathbb{P}(\mathbb{D}) = \mathbb{P}(\mathbb{D}|\mathbb{P}) \mathbb{P}(\mathbb{P})$

 \bigcirc $\mathbb{P}(\mathbb{P}|D)$ posterior distribution – this is what we want to know $\mathbb{P}(D)$ evidence – here only plays the role of normalization $\mathbb{P}(D|P)$ likelihood function – probability that D is measured given P $\mathbb{P}(D|P) = \prod \exp(-\chi_i^2/2)/\sqrt{2\pi}\sigma_i$ $\chi_{i}^{2} = (d_{i} - t_{i}(p_{i}))^{2} / (\sigma_{i,exp}^{2} + \sigma_{i,the}^{2})$ i=1...N data points $\mathbb{P}(\mathbb{P})$ prior, describes the a-priori (D independent) distribution of P

for para extraction have been shown to be close to Jeffrey's

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 19/33

Posterior distributions

Marginalized posteriors

$$\begin{split} \mathbb{P}(p_i | D) &= \int \mathbb{P}(P | D) \prod_{j \neq i} dp_j & i, j = 1, ..., N_{parameters} \\ \mathbb{P}(p_i, p_j | D) &= \int \mathbb{P}(P | D) \prod_{k \neq i, j} dp_k & i, j, k = 1, ..., N_{parameters} \\ are probability distributions of the parameters \end{split}$$

Marginalization implements Occam's razor

 $\mathbb{P}(p_i | D) = \int \mathbb{P}(P | D) \prod_{j \neq i} dp_j = \int \mathbb{P}(D | P) \mathbb{P}(P) / \mathbb{P}(D) \prod_{j \neq i} dp_j$ where

 $1 = \int \mathbb{P}(D|P) \mathbb{P}(P)/\mathbb{P}(D) \prod_{j} dp_{j} \text{ and } 1 = \int \mathbb{P}(P) \prod_{j} dp_{j}$ A model with a fewer parameters has a higher prior density leading to a higher posterior (assuming same likelihood)

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 20/33

Experimental input

Experimental data, constraining supersymmetry, available today

lower limits on spartner, Higgs masses & cross sections LEP (dozens of upper limits - most restrictive m_h , $m_{\widetilde{W}_1}$, $m_{\widetilde{Z}_1}$) as for LEP & upper limit on $Br(B_s \rightarrow /^+ /^-)$ Tevatron 🍙 b fact. $Br(b \rightarrow s \gamma), Br(B^+ \rightarrow / v_l), \Delta M_d, \Delta M_s, ...$ anomalous magnetic moment of muon *G*_μ−2 plays strong role: constraining high M_0 and $M_{1/2}$ WIMP abundance upper limit WMAP very important: excluding significant para-space CDMS/Xe WIMP-proton elastic recoil

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 21/33

Probability distributions for input para

C. Balázs, Monash U., Melbourne NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 22/33

Probability maps for input para

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 23/33

Probability maps for input para

) mSuGra features can be identified: $\tilde{\tau}$ coann., h funnels, FP, ...

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 24/33

An old mSuGra movie ...

) mSuGra features: $\tilde{\tau}$ coann., h funnels, FP, ...

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 25/33

Probability maps for input para

MSuGra features can be identified: τ̃ coann., h funnels, focus p, ...

Galilei Institute 11 Jun 2010 page 27/33

Probability maps for input para

Do we need this NmSuGra at all?

) Data prefer a small λ – just a small deviation from mSuGra!

Is this a theoretical triumph or an experimental challenge? C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 28/33

LHC detectability

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 page 29/33

LHC reach

Part of the focus point is out of the LHC reach!

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 30/33

CDMS reach

Direct detection experiments complement the LHC well!

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 31/33

Summary

NmSuGra phenomenology is very similar to that of mSuGra

The LHC and near future underground dark matter searches are guaranteed to discover (N)mSuGra

There's a beautiful complementarity between the LHC and direct dark matter detection experiments

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb

Galilei Institute 11 Jun 2010 | page 33/33