Defects in AdS₄/CFT₃

Johanna Erdmenger

Max-Planck-Institut für Physik, München

Probe branes in AdS/CFT: Added flavour degrees of freedom

In $AdS_5 \times S^5$:

 D7 probe: Codimension zero defect Application example: Holographic Superconductor

[Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864]

D5 (D3) probe: Codimension 1 (2) defect

In the ABJM geometry $AdS_4 \times CP^3$:

Four embeddings constructed, including dual field theories

[Ammon, J. E., Meyer, O'Bannon, Wrase 0909.3845]

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applications: Aspects of Quantum Hall effect

[work in progress]

Outline

Motivation

AdS_5/CFT_4

- Adding flavour
- Holographic Superconductors from D7 brane probes
- Defects

- Review
- Adding flavour
- Defects

Outline

Motivation

2 AdS₅/CFT₄

- Adding flavour
- Holographic Superconductors from D7 brane probes
- Defects
- The ABJM model: AdS₄/CFT₃
 - Review
 - Adding flavour
 - Defects

A (10) A (10)

Motivation

Motivation

Embedding probe branes in $AdS_5 \times S^5$

- generates gravity duals of defect CFT's
- adds flavour degrees of freedom

 \Rightarrow many applications

AdS₄/CFT₃

- Recently established from M2 branes [Aharony, Bergman, Jafferis, Maldacena 2008]
- Chern-Simons theory with gauge group $SU(N)_k \times SU(N)_{-k}$

Goal:

Determine general recipe for adding supersymmetric flavour and defects to AdS₄/CFT₃ in field theory and gravity description

Motivation

Motivation

Embedding probe branes in $AdS_5 \times S^5$

- generates gravity duals of defect CFT's
- adds flavour degrees of freedom

 \Rightarrow many applications

AdS_4/CFT_3

- Recently established from M2 branes [Aharony, Bergman, Jafferis, Maldacena 2008]
- Chern-Simons theory with gauge group $SU(N)_k \times SU(N)_{-k}$

Goal:

Determine general recipe for adding supersymmetric flavour and defects to AdS₄/CFT₃ in field theory and gravity descriptio

Motivation

Motivation

Embedding probe branes in $AdS_5 \times S^5$

- generates gravity duals of defect CFT's
- adds flavour degrees of freedom

 \Rightarrow many applications

AdS_4/CFT_3

- Recently established from M2 branes [Aharony, Bergman, Jafferis, Maldacena 2008]
- Chern-Simons theory with gauge group $SU(N)_k \times SU(N)_{-k}$

Goal:

Determine general recipe for adding supersymmetric flavour and defects to AdS₄/CFT₃ in field theory and gravity description

J. Erdmenger (MPI for Physics)

Defects in AdS₄/CFT₃

Outline

Motivation

AdS_5/CFT_4

- Adding flavour
- Holographic Superconductors from D7 brane probes
- Defects

- Review
- Adding flavour
- Defects

4 A N

- **→ → →**

 $N \rightarrow \infty$ (standard Maldacena limit), N_f small (probe approximation)

Duality acts twice:

J. Erdmenger (MPI for Physics)

Defects in AdS₄/CFT₃

Phenomenological models for studying quarks and mesons in QCD-like theories

Fluctuations of brane probes ⇒ Mesons

- Brane embeddings in confining 10d backgrounds ⇒ Chiral symmetry breaking
- Brane probes in AdS black hole geometry ⇒ Quarks added to finite temperature field theory
- Finite density \Rightarrow Phase diagram
- Hydrodynamics

Condensed matter:

- Superfluids/Superconductors, Quantum Hall Effect
- Quarks ⇒ 'electrons'

Holographic superconductor from D7 brane probes

Holographic superconductor with (3+1)-dimensional field theory in for which

• the dual field theory is explicitly known

• there is a ten-dimensional string theory picture of condensation

[Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864]

p-wave superconductor

Holographic superconductor from D7 brane probes

Holographic superconductor with (3+1)-dimensional field theory in for which

- the dual field theory is explicitly known
- there is a ten-dimensional string theory picture of condensation

[Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864]

p-wave superconductor

Holographic superconductor from D7 brane probes

Holographic superconductor with (3+1)-dimensional field theory in for which

- the dual field theory is explicitly known
- there is a ten-dimensional string theory picture of condensation

[Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864]

p-wave superconductor

- Embed two coincident D7-branes into AdS-Schwarzschild gauge fields $A_{\mu} = A_{\mu}^{a} \sigma^{a} \in u(2) = u(1)_{B} \oplus su(2)_{I}$
- Finite isospin density: $A_0^3 \neq 0 \Rightarrow$ Explicit breaking to $u(1)_3$
- Dynamics of Flavour degrees is described by non-abelian DBI action

Field theory described:

 $\mathcal{N}=4$ Super Yang-Mills plus two flavors of fundamental matter at finite temperature and finite isospin density

- Embed two coincident D7-branes into AdS-Schwarzschild gauge fields $A_{\mu} = A^{a}_{\mu} \sigma^{a} \in u(2) = u(1)_{B} \oplus su(2)_{I}$
- Finite isospin density: $A_0^3 \neq 0 \Rightarrow$ Explicit breaking to $u(1)_3$
- Dynamics of Flavour degrees is described by non-abelian DBI action

Field theory described:

 $\mathcal{N}=4$ Super Yang-Mills plus two flavors of fundamental matter at finite temperature and finite isospin density

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Embed two coincident D7-branes into AdS-Schwarzschild gauge fields $A_{\mu} = A^{a}_{\mu} \sigma^{a} \in u(2) = u(1)_{B} \oplus su(2)_{I}$
- Finite isospin density: $A_0^3 \neq 0 \Rightarrow$ Explicit breaking to $u(1)_3$
- Dynamics of Flavour degrees is described by non-abelian DBI action

Field theory described:

 $\mathcal{N}=4$ Super Yang-Mills plus two flavors of fundamental matter at finite temperature and finite isospin density

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There is a new solution to the equations of motion with non-zero vev for $A_3^1 \sigma^1$ in addition to the non-zero $A_0^3 \sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

This new solution has lower free energy

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$

There is a new solution to the equations of motion with non-zero vev for $A_3^1 \sigma^1$ in addition to the non-zero $A_0^3 \sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

This new solution has lower free energy

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$

There is a new solution to the equations of motion with non-zero vev for $A_3^1 \sigma^1$ in addition to the non-zero $A_0^3 \sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi \alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi \alpha'} \frac{\rho_H}{\rho^2} + \dots$$

This new solution has lower free energy

Order parameter $ilde{d}_3^1 \propto \langle ar{\psi}_u \gamma_3 \psi_d + ar{\psi}_d \gamma_3 \psi_u + \textit{bosons} \,
angle
eq 0$

There is a new solution to the equations of motion with non-zero vev for $A_3^1 \sigma^1$ in addition to the non-zero $A_0^3 \sigma^3$

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi \alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi \alpha'} \frac{\rho_H}{\rho^2} + \dots$$

This new solution has lower free energy

Order parameter $\tilde{d}_3^1 \propto \langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle \neq 0$

Free energy (Grand potential) vs. temperature

- infinite DC conductivity, gap in the AC conductivity
- second order phase transition, critical exponent of 1/2 (mean field)
- a remnant of the Meissner–Ochsenfeld effect

• infinite DC conductivity, gap in the AC conductivity

- second order phase transition, critical exponent of 1/2 (mean field)
- a remnant of the Meissner–Ochsenfeld effect

- infinite DC conductivity, gap in the AC conductivity
- second order phase transition, critical exponent of 1/2 (mean field)
- a remnant of the Meissner–Ochsenfeld effect

- infinite DC conductivity, gap in the AC conductivity
- second order phase transition, critical exponent of 1/2 (mean field)
- a remnant of the Meissner–Ochsenfeld effect

Frequency-dependent conductivity
$$\sigma(\omega) = rac{i}{\omega} G^{R}(\omega)$$

G^R retarded Green function for fluctuation a_2^3

$$\mathfrak{w} = \omega/(2\pi T)$$

 T/T_c : Black: ∞ , Red: 1, Orange: 0.5, Brown: 0.28.

Interpretation: Frictionless motion of mesons through plasma

J. Erdmenger (MPI for Physics)

Defects in AdS₄/CFT₃

Fermions

Use fermionic part of D7 DBI action to study fermionic fluctuations

Defects in AdS₄/CFT₃

D3/D7:

Codimension zero defect theory

Even before:

- D3/D5 (codimension 1) [Karch, Randall 2001; Freedman, Ooguri, DeWolfe 2001]
- D3/D3 (codimension 2) [Constable, J.E., Guralnik, Kirsch 2002]
- Dictionary for fluctuations of probe brane established

イロト イ団ト イヨト イヨト

D3/D7:

Codimension zero defect theory

Even before:

- D3/D5 (codimension 1) [Karch, Randall 2001; Freedman, Ooguri, DeWolfe 2001]
- D3/D3 (codimension 2) [Constable, J.E., Guralnik, Kirsch 2002]
- Dictionary for fluctuations of probe brane established

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

D3/D7:

Codimension zero defect theory

Even before:

- D3/D5 (codimension 1) [Karch, Randall 2001; Freedman, Ooguri, DeWolfe 2001]
- D3/D3 (codimension 2) [Constable, J.E., Guralnik, Kirsch 2002]
- Dictionary for fluctuations of probe brane established

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetric embeddings

[Skenderis, Taylor 2002]

Brane	ND = 4 intersections	Embedding
D1	$(0 D1 \perp D3)$	AdS ₂
D3	$(1 D3 \perp D3)$	$AdS_3 imes S^1$
D5	$(2 D5 \perp D3)$	$AdS_4 imes S^2$
D7	$(3 D7 \perp D3)$	$\textit{AdS}_5 imes \textit{S}^3$
	ND = 8 intersections	
D5	$(0 D5 \perp D3)$	$AdS_2 imes S^4$
D7	$(1 D7 \perp D3)$	$AdS_3 imes S^5$

イロト イヨト イヨト イヨト

D3/D5

[J.E., Guralnik, Kirsch 2002]

Action in $\mathcal{N} = 2$, d = 3 superspace

$$\begin{split} S_{\text{bulk}} &= \frac{1}{g^2} \int \mathrm{d}z \mathrm{d}^3 x \mathrm{d}^2 \theta \mathrm{d}^2 \bar{\theta} \left(\Sigma^2 - \frac{1}{2} (\sqrt{2} \partial_z V + \Phi + \bar{\Phi})^2 + \bar{Q}_i Q_i \right) \\ &+ \int \mathrm{d}z \mathrm{d}^3 x \mathrm{d}^2 \theta \epsilon_{ij} Q_i \partial_z Q_j + \int \mathrm{d}z \mathrm{d}^3 x \mathrm{d}^2 \bar{\theta} \epsilon_{ij} \bar{Q}_i \partial_z \bar{Q}_j , \\ S_{\text{bdy}}^{3\text{d}} &= \int d^3 x d^2 \theta d^2 \bar{\theta} \left(\bar{B}^+ e^{gV} B^+ + \bar{B}^- e^{-gV} B^- \right) \\ &+ \frac{ig}{\sqrt{2}} \left[\int d^3 x d^2 \theta B^+ Q_2 B^- + c.c. \right] \end{split}$$

J. Erdmenger (MPI for Physics)

イロト イヨト イヨト イヨト

D3/D5

[J.E., Guralnik, Kirsch 2002]

Non-renormalization

Write field theory action in N = 2, d = 3 superspace

No contributions possible to divergence of supercurrent

 $ar{D}^{\dot{lpha}}J_{lpha\dot{lpha}}=D_{lpha}S\,,\qquad S=0$ here! ($V\Sigma$ is vector multiplet)

SO(3,2) conformal symmetry preserved even in quantized theory

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

D3/D5

[J.E., Guralnik, Kirsch 2002]

Non-renormalization

Write field theory action in $\mathcal{N} = 2$, d = 3 superspace

No contributions possible to divergence of supercurrent

 $ar{D}^{\dot{lpha}}J_{lpha\dot{lpha}}=D_{lpha}S\,,\qquad S=0$ here! ($V\Sigma$ is vector multiplet)

SO(3,2) conformal symmetry preserved even in quantized theory

D3/D5

[J.E., Guralnik, Kirsch 2002]

Non-renormalization

Write field theory action in $\mathcal{N} = 2$, d = 3 superspace

No contributions possible to divergence of supercurrent

 $ar{D}^{\dot{lpha}} J_{lpha \dot{lpha}} = D_{lpha} S , \qquad S = 0 ext{ here!} \ (V\Sigma ext{ is vector multiplet})$

SO(3,2) conformal symmetry preserved even in quantized theory

D3/D5

[J.E., Guralnik, Kirsch 2002]

Non-renormalization

Write field theory action in $\mathcal{N} = 2$, d = 3 superspace

No contributions possible to divergence of supercurrent

 $ar{D}^{\dot{lpha}} J_{lpha \dot{lpha}} = D_{lpha} S \,, \qquad S = 0 ext{ here!} \ (V\Sigma ext{ is vector multiplet})$

SO(3,2) conformal symmetry preserved even in quantized theory

Applications

Defect systems described are useful for

 uncovering universal behaviour of systems at quantum critical points

due to conformal invariance and strong coupling

Recent developments

- Conductivities, specific heat, speed of sound [Myers, Wapler; Karch, Parnachev, ...]
- BKT-Transitions [Karch, Son et al; Evans et al]
- Fractional Quantum Hall Effect [Keski-Vakkuri, Kraus et al '09] [Fujita, Li, Ryu, Takayanagi '09]

Outline

Motivation

2 AdS₅/CFT₄

- Adding flavour
- Holographic Superconductors from D7 brane probes
- Defects

3 The ABJM model: AdS₄/CFT₃

- Review
- Adding flavour
- Defects

4 A N

- **→ → →**

Low–Energy descriptions of M2–Branes

[Aharony, Bergman, Jafferis, Maldacena, '08]

	0	1	2	3	4	5	6	7	8	9	10
N _c M2	•	٠	٠	-	-	-	-	-	-	-	-

 N_c M2–Branes on C^4/Z_k :

two different low–energy descriptions for $N_c \rightarrow \infty$ and $N_c \gg k$:

Gravity side

- For $N_c \gg k^5$: 11D Supergravity on asymptotically $AdS_4 \times S^7/Z_k$
- For $N_c \ll k^5$: 10D IIA Supergravity on asymptotically $AdS_4 \times CP^3$

Gauge theory side

- $U(N_c)_k \times U(N_c)_{-k}$ Chern-Simons Matter Theory (CSM)
- $\mathcal{N} = 6$ supersymmetric for general k
- conformal, invariant under parity, $SU(4)_{\mathcal{R}} \simeq SO(6)_{\mathcal{R}}$

Deriving AdS₄ / CFT₃ from type IIB setup

Four steps:

- Write D3-brane theory, add 2 NS5-branes
- 2 Add k D5-branes, form (1, k) 5-brane bound state $(\Rightarrow$ Chern-Simons theory)
- Lift to M-theory
- Low-energy limit

(4) (5) (4) (5)

A D M A A A M M

IIB Brane construction (Step 1)

Low–Energy Field Theory

 $\mathcal{N} = 4, 3 + 1$ dim. $U(N_c) \times U(N_c)$ gauge theory + bifundamental fields, Vector Multiplet (A_{μ}^{0126} , 345789).

Dimensional reduction along 6 direction: Vector multiplet splits into $\mathcal{N} = 4, 2 + 1$ dim. Vector ($A_{\mu}^{012}, 345$) and $\mathcal{N} = 4, 2 + 1$ dim. Hyper ($A_6, 789$)

IIB Brane construction (Step 1)

Low–Energy Field Theory

 $\mathcal{N} = 4, 3 + 1$ dim. $U(N_c) \times U(N_c)$ gauge theory + bifundamental fields, Vector Multiplet (A_{μ}^{0126} , 345789).

Dimensional reduction along 6 direction: Vector multiplet splits into $\mathcal{N} = 4, 2 + 1$ dim. Vector ($A_{\mu}^{012}, 345$) Hyper removed by NS5 - Branes

イロト イヨト イヨト イヨト

IIB Brane construction (Step 2)

Chern – Simons terms

Brane Setup

	0	1	2	3	4	5	6	7	8	9
N D3	•	٠	٠	-	-	-	٠	-	-	-
2 NS5	•	٠	٠	٠	٠	٠	-	-	-	-
k D5	•	•	•	•	٠	-	-	-	-	٠

[Bergman, Hanany, Karch, Kol '99]

Low – Energy Field Theory

- In 3–5 strings ⇒ "Flavour" Fields
- Supersymmetry broken down to $\mathcal{N} = 2$.
- Give mass to "flavour" fields and integrate them out
- Via parity anomaly generate Chern–Simons terms.

Defects in AdS₄/CFT₂

IIB Brane construction (Step 2)

Maximally supersymmetric mass deformation: Bind k D5–Branes to NS5 forming (1, k)5–Brane and rotate in (37), (48), (59) plane.

	0	1	2	3	4	5	6	7	8	9
N D3	•	٠	٠	-	-	-	٠	-	-	-
1 <i>NS</i> 5	•	٠	٠	•	•	•	-	-	-	-
(1, <i>k</i>)5	•	٠	٠	$[3,7]_{ heta}$	$[4, 8]_{ heta}$	$[5,9]_{ heta}$	-	-	-	-

Low – Energy Field Theory

- Chern-Simons term generated
- *N* = 3 *U*(*N_c*)_{*k*} × *U*(*N_c*)_{-*k*} Yang-Mills theory with a Chern-Simons term
- 4 massless bifundamental matter fields (*A_a*, *B_a*)

IIB Picture

IIB Brane construction (Step 2)

Maximally supersymmetric mass deformation: Bind k D5–Branes to NS5 forming (1, k)5–Brane and rotate in (37), (48), (59) plane.

	0	1	2	3	4	5	6	7	8	9
N D3	•	٠	٠	-	-	-	٠	-	-	-
1 <i>NS</i> 5	•	٠	٠	•	•	•	-	-	-	-
(1, <i>k</i>)5	•	٠	•	$[3,7]_{ heta}$	$[4, 8]_{\theta}$	$[5,9]_{ heta}$	-	-	-	-

Low – Energy Field Theory

- Chern-Simons term generated
- *N* = 3 *U*(*N_c*)_{*k*} × *U*(*N_c*)_{-*k*} Yang-Mills theory with a Chern-Simons term
- 4 massless bifundamental matter fields (*A_a*, *B_a*)

IIB Picture

Uplift to M-theory (Step 3)

T–Dualize in x^6 –direction

	0	1	2	3	4	5	6	7	8	9
N D2	•	•	٠	-	-	-	-	-	-	-
KK	•	٠	٠	•	•	•	-	-	-	-
KK + D6 flux	•	٠	٠	$[3,7]_{ heta}$	$[4, 8]_{\theta}$	$[5,9]_{ heta}$	-	-	-	-

Lift to M-theory

	0	1	2	3	4	5	6	7	8	9	10
N M2	•	•	٠	-	-	-	-	-	-	-	-
X ₈				•	•	•	٠	٠	٠	•	•

where X_8 is the intersection of two KK monopoles.

Field Theory

Still $\mathcal{N} = 3$ SYM + CS + matter

Near-Horizon Limit (Step 4)

Enhancement to $\mathcal{N} = 6$ supersymmetry:

Gravity side

- X_8 has singularity; near singularity spacetime locally C^4/Z_k .
- take "near-horizon" limit

Field Theory side

- Iow-energy limit
- write effective theory at scales below $\sim g_{YM}^2 k$
 - \Rightarrow discard YM terms, only CS terms survive
- $\mathcal{N} = 6$ supersymmetric.

< □ > < □ > < □ > < □ > < □ > <

Chern-Simons Matter Theory

Field content

- Two $\mathcal{N} = 2$ vector superfields V_i , one for each gauge group,
- Two $\mathcal{N} = 2$ chiral superfields Φ_i in the adjoint representation,
- Four $\mathcal{N} = 2$ chiral superfields, A_1 , A_2 , B_1 and B_2 , where A_k in $(N_c, \overline{N_c})$ and B_k in $(\overline{N_c}, N_c)$ representation.

Action

$$S_{\text{ABJM}} = S_{\text{CS}} + S_{\text{bifund}} + S_{\text{pot}}$$

with

•
$$S_{CS} = kS_{CS,1} - kS_{CS,2},$$

• $S_{\text{bifund}} = \int d^3x d^4\theta \left[\bar{A}_a e^{-V_1} A_a e^{V_2} + \bar{B}_a e^{-V_2} B_a e^{V_1} \right],$
• $S_{\text{pot}} = \int d^3x d^2\theta W + c.c.,$

and superpotential $W = -\frac{k}{8\pi} \text{Tr} \left(\Phi_1^2 - \Phi_2^2 \right) + \text{Tr} \left(B_a \Phi_1 A_a \right) + \text{Tr} \left(A_a \Phi_2 B_a \right)$

Chern-Simons Matter Theory

Field content

- Two $\mathcal{N} = 2$ vector superfields V_i , one for each gauge group,
- Two $\mathcal{N} = 2$ chiral superfields Φ_i in the adjoint representation,
- Four $\mathcal{N} = 2$ chiral superfields, A_1 , A_2 , B_1 and B_2 , where A_k in $(N_c, \overline{N_c})$ and B_k in $(\overline{N_c}, N_c)$ representation.

Action

$$S_{\text{ABJM}} = S_{\text{CS}} + S_{\text{bifund}} + S_{\text{pot}}$$

with

- $S_{CS} = kS_{CS,1} kS_{CS,2},$ $S_{CS,k} = -\frac{i}{4\pi} \int d^3x \, d^4\theta \int_0^1 dt \, \text{Tr} \, V_k \bar{D}^\alpha \left(e^{tV_k} D_\alpha e^{-tV_k} \right)$ • $S_{\text{bifund}} = \int d^3x d^4\theta \left[\bar{A}_a e^{-V_1} A_a e^{V_2} + \bar{B}_a e^{-V_2} B_a e^{V_1} \right],$
- $S_{\text{pot}} = \int d^3x \, d^2\theta \, W + c.c.,$
- and superpotential $W = -\frac{k}{8\pi} \text{Tr} \left(\Phi_1^2 \Phi_2^2 \right) + \text{Tr} \left(B_a \Phi_1 A_a \right) + \text{Tr} \left(A_a \Phi_2 B_a \right)$

Chern-Simons Matter Theory

Field content

- Two $\mathcal{N} = 2$ vector superfields V_i , one for each gauge group,
- Two $\mathcal{N} = 2$ chiral superfields Φ_i in the adjoint representation,
- Four $\mathcal{N} = 2$ chiral superfields, A_1 , A_2 , B_1 and B_2 , where A_k in $(N_c, \overline{N_c})$ and B_k in $(\overline{N_c}, N_c)$ representation.

Action

$$S_{\text{ABJM}} = S_{\text{CS}} + S_{\text{bifund}} + S_{\text{pot}}$$

with

- $S_{\text{CS}} = kS_{\text{CS},1} kS_{\text{CS},2},$ $S_{\text{CS},k} = -\frac{i}{4\pi} \int d^3x \, d^4\theta \int_0^1 dt \, \text{Tr} \, V_k \bar{D}^{\alpha} \left(e^{tV_k} D_{\alpha} e^{-tV_k} \right)$ • $S_{\text{bifund}} = \int d^3x d^4\theta \left[\bar{A}_a e^{-V_1} A_a e^{V_2} + \bar{B}_a e^{-V_2} B_a e^{V_1} \right],$
- $S_{\text{pot}} = \int d^3x \, d^2\theta \, W + c.c.,$

and superpotential $W = \frac{2\pi}{k} \varepsilon^{ab} \varepsilon^{cd} \operatorname{Tr} (A_a B_c A_b B_d)$ after integrating out Φ_1 and Φ_2

Add in type IIB flavour branes and follow the four steps:

Supersymmetric flavour branes in type IIB

Type IIB	Type IIA	M theory	codim	wrapping	SUSY	SUSY (anti)
D1	D2	M2	2	0(7)	2	2
D3	D2	M2	0	0126	6	0
D3	D4	M5	1	01(37)	3	3
D3	D4	M5	1	01(38)	2	2
D3	D2	M2	2	0(34)6	2	2
D3	D2	M2	2	06(78)	2	2
D5	D6	KK	0	012(347)	2	2
D5	D6	KK	0	012(349)	4	2
D5	D6	KK	0	012789	6	0
D5	D4	M5	1	013456	3	3
D5	D4	M5	1	01(378)6	2	2
D5	D4	M5	1	01(389)6	3	3
D5	D6	KK	2	0(34)789	2	2
D7	D6	KK	0	0126(3478)	2	4
D7	D6	KK	0	0126(3479)	2	2
D7	D8	M9	1	01345789	3	3

[Ammon, J.E., Meyer, O'Bannon, Wrase 2009]

J. Erdmenger (MPI for Physics)

イロト イヨト イヨト イヨト

The ABJM model: AdS₄/CFT₃

Adding flavour

Codimension zero Flavour, Step 1

Consider D5–Brane in 012789 direction.

[Hohenegger, Kirsch], [Hikida, Li, Takayanagi], [Gaiotto, Jafferis]

N_c D3–Branes and N_f D5–Branes

	0	1	2	3	4	5	6	7	8	9
N _c D3	•	٠	٠	-	-	-	•	-	-	-
N _f D5	•	٠	٠	-	-	-	-	٠	٠	٠

- 2+1 dimensional $\mathcal{N} = 4$ supersymmetry
- Action of Flavour degrees in $\mathcal{N} = 2$ superspace

$$S_{fl} = \int d^3x \, d^4 heta \, \left(ar{Q} e^V Q + ar{Q} e^{-V} ar{ar{Q}}
ight) + \int d^3x \, d^2 heta ar{Q} \Phi Q \, ,$$

where (V, Φ) is the $\mathcal{N} = 4$ Vector Multiplet

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Add NS5–Branes

• Dimensionally reduce on x₆, set hypermultiplet to zero

 $\Rightarrow S_{\it fl}$ unchanged

Compactify x_6

Add N_f D5–Branes intersecting <u>each</u> stack of N_c D3–Branes \Rightarrow massless flavour in each gauge group.

$$S_{fl} = \int d^3x \, d^4 heta \, \left(ar{Q}_k e^{V_k} Q_k + ar{Q}_k e^{-V_k} ar{ar{Q}}_k
ight) + \int d^3x \, d^2 heta ar{Q}_k (-1)^k \Phi_k Q_k \, ,$$

Codimension zero Flavour, Step 2+3

(1, *k*)5–Brane

- Supersymmetry broken to $\mathcal{N} = 3$.
- Flavour action unchanged

T-duality along x_6 and Lift to M-theory

- type IIA configuration:
 - $N_f D5 \rightarrow N_f D6$ -Branes.
- M-theory configuration:
 - $N_f D6 \rightarrow KK$ –Monopole associated with M–theory circle.
- action S_{fl} unchanged.

Adding flavour

Codimension zero Flavour, Step 4

Gravity side

- zoom in on C^4/Z_k .
- For $N_c \gg k^5$: *KK*–Monopole wrapping a three cycle on S^{\prime}/Z_k .
- For $N_c \ll k^5$: D6–Brane wrapping $AdS_4 \times RP^3$.
- preserves 12 supercharges, i.e. $\mathcal{N} = 3$ in 2+1 dimensions, as well as $U(1)_b$ and $SU(2)_B \times SU(2)_D \simeq SO(4) \subset SO(6)_R$.

Field theory side

- Determine effective theory valid on scales $\ll g_{VM}^2 k$.
- In S_{fl} , write down all terms consistent with 2+1 dimensional $\mathcal{N}=3$ supersymmetry and $SO(3)_B$.
 - \Rightarrow No such terms! \Rightarrow S_{fl} unchanged.
- Integrate out Φ_1 and Φ_2 .

[Gaiotto, Yin '07]

Adding flavour

Codimension zero Flavour, Action

Action

$$S = S_{\mathrm{fl}} + S_{\mathrm{ABJM}} = S_{\mathrm{fl}} + S_{\mathrm{CS}} + S_{\mathrm{bifund}} + S_{\mathrm{pot}} \, ,$$

where

• S_{CS} and S_{bifund} unchanged, $S_{\text{pot}} = \int d^3x \, d^2\theta \, W + c.c.$, with

$$W = \frac{2\pi}{k} \operatorname{Tr} \left[(A_a B_a + Q_1 \tilde{Q}_1)^2 - (B_a A_a - Q_2 \tilde{Q}_2)^2 \right]$$

•
$$S_{\mathrm{fl}} = \int d^3x \, d^4 heta \, \left(ar{Q}_k e^{V_k} Q_k + ar{Q}_k e^{-V_k} ar{ar{Q}}_k
ight) \, ,$$

Symmetries of the action

- preserves 12 supersymmetry charges, i.e. $\mathcal{N} = 3$ in 2+1 D
- $U(1)_b$ Symmetry as well as $SU(2)_D \times SU(2)_R = SO(4)_R$
- Symmetries on gravity and field theory side match

J. Erdmenger (MPI for Physics)

Defects in AdS₄/CFT₃

Example: codimension one $\mathcal{N} = (0, 6)$ chiral flavour

D7 brane probe Repeat the four steps given above

J. Erdmenger (MPI for Physics)

Defects in AdS₄/CFT₃

09/09/2010 36 / 43

$\mathcal{N} = (0, 6)$ codimension one flavour, Step 1

Consider D7–Brane in 01345789 direction. [Fujita, Li, Ryu, Takayanagi]

N_c D3–Branes and N_f D7–Branes

8 supercharges, Flavour fields confined to 1+1 dimensional defect.

Flavour fields

- study spectrum of 3–7 strings \rightarrow single 1+1 dim. Weyl fermion ψ .
- Fermions are left-handed, preserved supercharges right-handed, i.e. $\mathcal{N} = (0, 8)$.

•
$$\mathcal{S}_{def} = \int dx_+ dx_- \psi^\dagger (i\partial_- - A_-)\psi$$

[Harvey, Royston '08]

イロト イヨト イヨト

Add NS5–Branes

- Dimensionally reduce on x₆, set N = 4 Hypermultiplet to zero Supersymmetry broken down to N = (0, 4).
- $\Rightarrow S_{def}$ unchanged

Compactify x₆

Add N_f D7–Branes intersecting each stack of N_c D3–Branes

$$\mathcal{S}_{def} = \int dx_+ dx_- \psi^{\dagger}_{(k)} (i\partial_- - \mathcal{A}_{(k)-})\psi_{(k)}.$$

J. Erdmenger (MPI for Physics)

(1, *k*)5–Brane

• Bind k D5 and NS5 into (1, k)5–Brane

	0	1	2	3	4	5	6	7	8	9
N _c D3	•	٠	٠	-	-	-	•	-	-	-
N _f D7	•	٠	-	•	•	•	-	•	•	٠
1 <i>NS</i> 5	•	•	•	•	•	•	-	-	-	-
(1, <i>k</i>)5	•	•	•	$[3,7]_{ heta}$	$[4, 8]_{\theta}$	$[5,9]_{ heta}$	-	-	-	-

• Supersymmetry broken to $\mathcal{N} = (0,3)$.

• Flavour action S_{def} unchanged

T-duality along x₆ and Lift to M-theory

- type IIA configuration: $N_f D7 \rightarrow N_f D8$ -Branes.
- M-theory configuration: $N_f D8 \rightarrow "M9"$ -Branes.
- action *S*_{def} unchanged.

Gravity side

- zoom in on C^4/Z_k .
- For $N_c \gg k^5$: "M9"–Branes wrapping $AdS_3 \times S^7/Z_k$.
- For $N_c \ll k^5$: D8–Branes wrapping $AdS_3 \times CP^3$.
- preserves 6 real supercharges, as well as $U(1)_b$ and $SU(4)_R$.

Field theory side

- Determine effective theory valid on scales $\ll g_{VM}^2 k$.
- For S_{def}, write down all terms consistent with 1+1 dimensional $\mathcal{N} = (0,3)$ supersymmetry, $SO(3)_{\mathcal{R}}$, 1+1 D Lorentz- and gauge invarance \Rightarrow No such terms! \Rightarrow S_{def} unchanged.
- Integrate out Φ_1 and Φ_2 (trivial) \Rightarrow action $S = S_{AB,IM} + S_{def}$.

Gravity side

- zoom in on C^4/Z_k .
- For $N_c \gg k^5$: "M9"–Branes wrapping $AdS_3 \times S^7/Z_k$.
- For $N_c \ll k^5$: D8–Branes wrapping $AdS_3 \times CP^3$.
- preserves 6 real supercharges, as well as $U(1)_b$ and $SU(4)_R$.

Field theory side

- Determine effective theory valid on scales $\ll g_{VM}^2 k$.
- For S_{def}, write down all terms consistent with 1+1 dimensional $\mathcal{N} = (0,3)$ supersymmetry, $SO(3)_{\mathcal{R}}$, 1+1 D Lorentz- and gauge invarance \Rightarrow No such terms! \Rightarrow S_{def} unchanged.
- Integrate out Φ_1 and Φ_2 (trivial) \Rightarrow action $S = S_{AB,IM} + S_{def}$.
- $\mathcal{N} = (0, 6)$ susy, $SU(4)_{\mathcal{R}} \times U(1)_{b}$

Gravity side

- zoom in on C^4/Z_k .
- For $N_c \gg k^5$: "M9"–Branes wrapping $AdS_3 \times S^7/Z_k$.
- For $N_c \ll k^5$: D8–Branes wrapping $AdS_3 \times CP^3$.
- preserves 6 real supercharges, as well as $U(1)_b$ and $SU(4)_R$.

Field theory side

- Determine effective theory valid on scales $\ll g_{VM}^2 k$.
- For S_{def}, write down all terms consistent with 1+1 dimensional $\mathcal{N} = (0,3)$ supersymmetry, $SO(3)_{\mathcal{R}}$, 1+1 D Lorentz- and gauge invarance \Rightarrow No such terms! \Rightarrow S_{def} unchanged.
- Integrate out Φ_1 and Φ_2 (trivial) \Rightarrow action $S = S_{AB,IM} + S_{def}$.
- $\mathcal{N} = (0, 6)$ susy, $SU(4)_{\mathcal{R}} \times U(1)_{b} \Rightarrow$ Symmetries match!

Generalizations

Further examples

arXiv: 0909.3845.

- D3-brane in type IIB (D4-brane in type IIA, M5-brane in M-theory) \rightarrow codimension one, non-chiral, $\mathcal{N} = (3,3)$ flavour fields.
- D3-brane in type IIB (D2-brane in type IIA, M2-brane in M-theory) \rightarrow codimension two, $\mathcal{N} = 4$ flavour fields.

Applications of chiral codimension one theory

Chiral fermions on 1+1-dimensional defect coupled to Chern-Simons theory

- \Rightarrow compare to Quantum Hall theory with edge states
- \Rightarrow Calculate Phase diagram at finite temperature and density

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

D6 brane embedding at finite temperature and density

Conclusion

Summary

General recipe for adding flavour to AdS_4/CFT_3 , in particular

• codimension zero $\mathcal{N} = 3$ flavour

Defect theories:

- $\bullet\,$ codimension one $\mathcal{N}=(0,6)$ chiral flavour
- codimension one $\mathcal{N} = (3,3)$ non-chiral flavour
- codimension two $\mathcal{N} = 4$ flavour

Conclusion

Summary

General recipe for adding flavour to AdS_4/CFT_3 , in particular

• codimension zero $\mathcal{N} = 3$ flavour

Defect theories:

- $\bullet\,$ codimension one $\mathcal{N}=(0,6)$ chiral flavour
- codimension one $\mathcal{N} = (3,3)$ non-chiral flavour
- codimension two $\mathcal{N} = 4$ flavour

Future Directions

- More examples, complete classification!
- Introduce mass, compute meson spectra.
- Study thermodynamics and hydrodynamics.

Conclusion

Summary

General recipe for adding flavour to AdS_4/CFT_3 , in particular

• codimension zero $\mathcal{N} = 3$ flavour

Defect theories:

- $\bullet\,$ codimension one $\mathcal{N}=(0,6)$ chiral flavour
- codimension one $\mathcal{N} = (3,3)$ non-chiral flavour
- codimension two $\mathcal{N} = 4$ flavour

Future Directions

- More examples, complete classification!
- Introduce mass, compute meson spectra.
- Study thermodynamics and hydrodynamics.