

LHC Detectors : Part 2

What is measured, how and why?

- Basic processes, rates
- Resulting difficulties and requirements
- Basic detector layout

ATLAS and CMS

- Overview
- Construction status
- Comparison

Experimental issues

- Some examples of experimental issues to be addressed
- such as Jet Energy Calibration
- and background estimations

Disclaimer 2 : Some slides or slide content taken from seminars/lectures of other LHC colleagues, eg. K. Jakobs, O. Buchmüller, L. Dixon, M. Dittmar, D. Froidevaux, F. Gianotti

The Detectors ATLAS and CMS

ATLAS

and 1900 physicists from

165 Institutions from 35 countries air-core toroids with muon chambers from 5 continents Tracking ($|\eta| < 2.5$, B=2T) Si pixels and strips

~10⁸ electronic channels ~3000 km cables

Calorimetry ($|\eta|$ <5) /

EM : Pb-LAr HAD : Fe/scintillator (central), Cu/W-Lar (fwd)

Muon Spectrometer ($|\eta| < 2.7$)

Diameter	25 m
Barrel toroid length	26 m
End-cap end-wall chamber span	46 m
Overall weight	7000 tons

TRD (e/ π separation)

The Underground Cavern at Pit-1 for the ATLAS Detector

Length= 55 mWidth= 32 mHeight= 35 m

G. Dissertori : LHC Detectors - Part 2

Magnet System : Central Solenoid

- T field with a stored energy of 38 MJ
- Integrated design within the barrel LAr cryostat

 Solenoid has been inserted into the Lar cryostat end Feb 04 and tested at full current (8 kA) during July 04

July – August 2006:

The solenoid has been fully commissioned in-situ up to 8.0 kA

ETH Institute for Particle Physics

The operation current is 7.73 kA for a field of 2.0 T

Successful accurate field mapping

1st August 2006: the solenoid is fully operational

Magnets : Toroid System

Barrel Toroid parameters

25.3 m length
20.1 m outer diameter
8 coils
1.08 GJ stored energy
370 tons cold mass
830 tons weight
4 T on superconductor
56 km Al/NbTi/Cu conductor
20.5 kA nominal current
4.7 K working point

End-Cap Toroid parameters 5.0 m axial length 10.7 m outer diameter 2x8 coils 2x0.25 GJ stored energy 2x160 tons cold mass 2x240 tons weight 4 T on superconductor 2x13 km Al/NbTi/Cu conductor 20.5 kA nominal current 4.7 K working point

Barrel Toroid coil transport...

...and lowering into the underground cavern

The first coil was installed in October 2004

The last coil was moved into position on 25th August 2005

Ġ

... and tested!

9 November 2006

In steps to 20.5 kA nominal current, to 21kA to prove margin, back to 20.5 kA, provoke quench, fast dump, very safe operation demonstrated!

ATLAS : most famous picture D ETH Institute for Particle Physics

G First bent muons seen!

G. Dissertori : LHC Detectors - Part 2

During stability test of the barrel toroid 18-19 Nov 06

 The Inner Detector
 (ID) is organized into four sub-systems:

- Pixels (0.8 10⁸ channels)
- Silicon Tracker (SCT) (6 10⁶ channels)
- Transition Radiation Tracker (TRT) (4 10⁵ channels)
- Common ID items

TRT+SCT barrel traveled to the pit, 24th Aug 2006

From the trolley to the support rails

A tight fit between BT and EC Calorimeter

Pixel Detector

- All modules delivered with good yield
- Both EC integrated
- All barrel cylinders integrated

Each one of these modules contains ~45000 pixel sensors

Pixel (+ beam pipe) insertion June 2007

LAr and Tile Calorimeters

 Oct 2004 : Barrel cryostat transported to the pit and lowered...

Barrel LAr and Tile Calorimeters

The barrel calorimeters are in their final position at the centre of the detector since November 2005

The final cool-down of the LAr cryostat took place over April and May 2006

Calorimeter barrel after its move into the center of the detector (4th November 2005)

O ATLAS : Preparations

ATLAS side A (with the calorimeter end-cap partially inserted)

Installation of one of the ATLAS Endcap Tracking Detectors (completed on 29. May 2007)

Muon Stations : Barrel

first combined MDT + RPC + Tile Calorimeter cosmic ray muon run

Muon Stations : Endcaps

First TGC 'Big-Wheel' assembled in the cavern early September 2006.

ATLAS : Cabling

~ 800 man-months of installation work over

- ~18 months, ~ 45 people involved/day
- ~ 9300 SCT cable-bundles
- ✓ ~ 3600 pixel cable-bundles
- ~ 30100 TRT cables
- ~ 2800 cooling & gas pipes

All tested and qualified

K. Jakobs, CSS07

Similar huge effort in CMS....

CNS

Compact Muon Solenoid

Tracker

- Pixel : module production and testing under way. Full pixel to be installed in 2008.
- SI : all sensors produced and integrated in support tube, commissioned with cosmic muons, ready for installation in CMS later this year

9,648,128 electronics channels

Pixel module:

O Tracker production

Ġ

The CMS Crystal Calorimeter

Goal : Attain best possible precision

for the energy measurement of photons and electrons

The CMS Crystal Calorimeter

ECAL : Construction

ECAL electronics integration centre:

Barrel crystal production finished in March 07; Endcaps spring 2008.

Ġ **ECAL** installation

Installation of ECAL Barrel completed very recently!

Experimental area : Point 5

CMS: surface hall installations Φ ETH Institute for Particle Physics

Comissioning of the muon system...

G. Dissertori : LHC Detectors - Part 2

CMS : Magnet

Magnet has been built out of 5 modules, connected and leak-tested.

Magnet Swivelling: Aug 05

CMS : Preparations

Magnet Test and Cosmic Challenge (MTCC)

SC Magnet: 4 Tesla, I = 13 m, $\emptyset = 6 \text{ m}$, weight > 10'000 tons

August 28: Stable magnet operation at 4 Tesla ! 19.14 kA, 2.5 GJ stored energy, sufficient to melt 18 tonnes of gold

Muon system, HCAL, 2 ECAL SMs and part of tracker installed

A big success !

Field mapping done in October

Run 2605 / Event 3981 / B 3.8 T/27.08.06

CERN PRESS RELEASE 13 September 2006

Mammoth CMS magnet reaches full-field at CERN

Tests show CMS detector will be ready for data

Heavy Lowering!

Ġ Heavy Lowering...

Heavy Lowering...

Observed Served Served

Comparison

	$ATLAS \equiv A \text{ Toroidal LHC ApparatuS}$	CMS ≡ Compact Muon Solenoid
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO₄ crystals σ/E ~ 2-5%/√E no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) σ/E ~ 50%/√E ⊕ 0.03	Cu-scint. (> 5.8 λ +catcher) σ/Ε ~ 100%/√E ⊕ 0.05
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV only combining with tracker

Commissioning

Detectors : Commissioning

No Beam :

- Cosmic Muons
- Initial alignment/detector calibration (barrel)
- Debugging, dead-channels mapping
- One Beam :
 - Beam-Halo Muons
 - Alignment/calibration in end-caps
 - Beam-Gas events
 - resemble pp, with soft spectrum ($p_T < 2 \text{ GeV}$)
 - eg. first alignment of inner trackers to about 100 μm or better
- Two Beams :
 - very early low lumi : Min Bias interactions, QCD di-jet events
 - then : get quickly access to SM processes as standard calibration candles: W, Z, top production

Expted Detector Performance $\Phi^{\text{ETH Institute for Particle Physics}}$

Construction quality checks and beam tests of series detector modules show that the detectors as built should give a good starting-point performance

	Expected performance day 1	Physics samples to improve (examples)
ECAL uniformity	~ 1% (ATLAS), 4% (CMS)	Minimum-bias, Z → ee, W→ev
e/γ scale	1-2 % ?	Z → ee
HCAL uniformity	2-3 %	Single pions, QCD jets
Jet scale	< 10%	Z (\rightarrow II) +1j, W \rightarrow jj in tt events
Tracking alignment	20-500 μm in Rφ ?	Generic tracks, isolated μ , Z $\rightarrow \mu\mu$

However, a lot of data (and time ...) will be needed at the beginning to

- Commission the detector and trigger in situ
- Reach the performance needed to optimize the physics potential
- Understand "basic" physics at 14 TeV and normalize (tune) the MC generators
- Measure backgrounds to new physics and extract "early" convincing signals

Using in-situ calibration, control samples, and based on experience from previous exps: an educated guess :

F. Gianotti

Expted Detector Performance Φ ETH Institute for Particle Physics

"Isolated" electrons, photons: $\Delta E/E_{e,\gamma} = \text{few } \% / \sqrt{E} + 0.5\%$ (goal) excellent angular resolution, "high" efficiency and "small/negligible" backgrounds for $p_t \ge 10$ GeV (?) and $|\eta| \le 2.5(?)$ $\delta \epsilon \approx 1\%$

"Isolated" (100 GeV?) muons: $\Delta p_t/p_t \approx 2 - 5\%$ excellent angular resolution "high" efficiency and "small/negligible" backgrounds for $p_t \ge 10$ GeV (?) and $|\eta| \le 2.5(?)$ $\delta \epsilon \approx 1\%$

"Isolated(??)" jets: $\Delta E_t/E_t \approx 100 - 200\%/\sqrt{E} + 5\%$ (??) good angular resolution and efficiency, but "difficult" systematics (nonlinearity) for $p_t \geq 30$ GeV (??) and $|\eta| \leq 4.5(??)$

Missing transverse momentum: depends on final state! in general a mixture between lepton and jet accuracies

Summary of Part 2

"Hofstadter's Law : It always takes longer than you think, even if you take into account Hofstadter's Law"

Douglas R. Hofstadter

G. Dissertori : LHC Detectors - Part 2

Summary Part 2

The Detectors

- are designed to optimally exploit the physics offered by the LHC
- and cope with the harsh conditions at the same time

ATLAS and CMS

- are both general purpose experiments
- but are different in their overall layout and in their specific subdetector (design) choices
- Detector constructions and installations at full speed,
- many sub-systems completed
- Preparations: We see the light at the end of the tunnel

