The GOLEM Project: Progress, Status and Prospects

Gavin Cullen

in collaboration with A. Guffanti, J.P. Guillet, G. Heinrich, S. Karg, N. Kauer, T. Kleinschmidt, E. Pilon, T. Reiter, M. Rodgers, I. Wigmore

HP².3rd, Florence, Italy

14th September 2010

High Precision...

The LHC era is upon us

- ➤ 1 million Higgs bosons per year ($\sigma \sim 10$ pb at yearly luminosity of ~ 100 fb⁻¹)
- ► LHC runs for ~ 10 years at a cost of ~ 4 bn euro

э

イロト イポト イヨト イヨト

High Precision...

The LHC era is upon us

- ➤ 1 million Higgs bosons per year ($\sigma \sim 10$ pb at yearly luminosity of ~ 100 fb⁻¹)
- ► LHC runs for ~ 10 years at a cost of ~ 4 bn euro

High Precision...

The LHC era is upon us

- ► ~ 1 million Higgs bosons per year (σ ~ 10 pb at yearly luminosity of ~ 100 fb⁻¹)
- ► LHC runs for ~ 10 years at a cost of ~ 4 bn euro
- ► ⇒ 400 euro for each Higgs boson!

Precise knowledge of signal and background gives us value for money

...for Hard Processes

$$\sigma_{AB} = \int dx_a dx_b f_{a/A}(x_a, \mu_F^2) f_{b/B}(x_b, \mu_F^2) \left[\hat{\sigma}_0 + \alpha_s(\mu_R) \hat{\sigma}_1 \cdots \right]_{ab \to X}$$

Truncating series introduces scale dependence: calculation at N^{th} order

...for Hard Processes

$$\sigma_{AB} = \int dx_a dx_b f_{a/A}(x_a, \mu_F^2) f_{b/B}(x_b, \mu_F^2) \left[\hat{\sigma}_0 + \alpha_s(\mu_R) \hat{\sigma}_1 \cdots \right]_{ab \to X}$$

Truncating series introduces scale dependence: calculation at N^{th} order

Outline

- NLO calculations
- The Golem Method
- Golem-2.0
 - Spinney
 - Golem95
- Results
 - $q\overline{q}
 ightarrow b\overline{b}b\overline{b}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{n} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{n} d\sigma^{A} \right) + \int_{n+1} \left(d\sigma^{R} - d\sigma^{A} \right)$$

Tree level

- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{n} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{n} d\sigma^{A} \right) + \int_{n+1}^{n} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{} d\sigma^{A} \right) + \int_{n+1}^{} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{} d\sigma^{A} \right) + \int_{n+1}^{} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{n} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{n} d\sigma^{A} \right) + \int_{n+1}^{n} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

<u>Automated</u> Multi Leg LO Tools

- AlpGen [Mangano et al]
- CalcHEP [Pukhov, Belyaev, Christensen]
- MadGraph [Maltoni, Stelzer]
- Grace [Fujimoto et al]
- ► Whizard [Kilian et al]
- Sherpa [Krauss et al]

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{} d\sigma^{LO} + \int_{n}^{} \left(d\sigma^{V} + \int_{1}^{} d\sigma^{A} \right) + \int_{n+1}^{} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

<u>Automated</u> <u>Infrared Subtraction Tools</u>

- AutoDipole [Hasegawa, Moch, Uwer]
- MadDipole [Frederix,Gehrmann,Greiner]
- HELAC dipole
 [Czakon,
 Papadopoulus, Worek]
- Sherpa [Krauss et al]

TevJet
 [Seymour,Tevlin]

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{} d\sigma^{A} \right) + \int_{n+1}^{} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

Automated Public NLO Tools

- FeynArts/FormCalc [Hahn et al]
- MCFM [Campbell et al]
- MC@NLO [Frixione, Webber]

What Tools are on the Market?

$$\sigma_{NLO} = \int_{n}^{} d\sigma^{LO} + \int_{n} \left(d\sigma^{V} + \int_{1}^{} d\sigma^{A} \right) + \int_{n+1}^{} \left(d\sigma^{R} - d\sigma^{A} \right)$$

- Tree level
- Virtual corrections
- Real emissions
- Subtraction terms for soft and collinear singularities

Towards automated merging of NLO with parton showers

> powheg-box, powheg-sherpa, herwig-menlops, ...

GOLEM : General One Loop Evalulator of Matrix elements

The Golem Collaboration

- The Golem Method: a method for evaluating one-loop Feynman diagrams
- Golem95: a library for one-loop integrals
- ► Golem-2.0:
 - a one-loop matrix element generator

GOLEM : General One Loop Evalulator of Matrix elements

- The Golem Collaboration
- The Golem Method: a method for evaluating one-loop Feynman diagrams
- Golem95:
 a library for one-loop integrals
- ► Golem-2.0:
 - a one-loop matrix element generator

GOLEM : General One Loop Evalulator of Matrix elements

- The Golem Collaboration
- The Golem Method: a method for evaluating one-loop Feynman diagrams
- Golem95: a library for one-loop integrals
- ► Golem-2.0:
 - a one-loop matrix element generator

GOLEM : General One Loop Evalulator of Matrix elements

- The Golem Collaboration
- The Golem Method: a method for evaluating one-loop Feynman diagrams
- Golem95: a library for one-loop integrals
- ► Golem-2.0:
 - a one-loop matrix element generator

Aim: Automate the evaluation of one loop amplitudes for multi-leg and multi-scale processes within and beyond the Standard Model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Golem Method Overview

- ► The Golem method:
 - Feynman Diagrammatic
 - Uses Helicity projections
 - Improved tensor reduction
- and is designed for
 - ≤ 6 external particles
 - Massless and massive particles

- QCD and EW corrections...
- …and beyond the standard model

Golem-2.0 [T.Reiter]

Golem-2.0: One loop matrix element generator based on Python scripts, using QGRAF, FORM and translation to golem95 form factor representation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Golem-2.0 [T.Reiter]

Golem-2.0 [T.Reiter]

Golem-2.0

Spinney- A Form Library for Helicity Spinors [GC, M. Koch-Janusz, T. Reiter]

Numerator Algebra

Form [Vermaseren] is a symbolic manipulation program

- Form can handle large intermediate expressions
- Form's language = tensors, Lorentz indices, Dirac algebra, traces

Problem:

Many approaches (including Golem) use helicity projections

Not implemented in Form

Spinney- A Form Library for Helicity Spinors

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spinney is a Form library Uses the language of Form to

implement helicity spinors

Helicity amplitude for $u\overline{u} \rightarrow d\overline{d}$

Spinor helicity conventions

$$\Pi_{+}u(p_{i}) = \Pi_{+}v(p_{i}) = |i\rangle$$

$$\Pi_{-}u(p_{i}) = \Pi_{-}v(p_{i}) = |i]$$

$$\overline{u}(p_{i})\Pi_{-} = \overline{v}(p_{i})\Pi_{-} = [i|$$

$$\overline{u}(p_{i})\Pi_{+} = \overline{v}(p_{i})\Pi_{+} = \langle i|$$

$$A = \frac{g_{\mu\nu}}{s} [\overline{\nu}(p_2)(\Pi_+ + \Pi_-)\gamma^{\mu}(\Pi_+ + \Pi_-)u(p_1)]$$
$$[\overline{u}(p_4)(\Pi_+ + \Pi_-)\gamma^{\nu}(\Pi_+ + \Pi_-)\nu(p_3)]$$
$$= A^{++++} + A^{----} + A^{++--} + A^{--++}$$
$$\Rightarrow A^{++++} = \frac{g_{\mu\nu}}{s} [2|\gamma^{\mu}|1\rangle [4|\gamma^{\nu}|3\rangle$$

Local Amp = d4(mu, nu) * UbarSpb(k2) * Sm4(mu)* USpa(k1) * UbarSpb(k4) * Sm4(nu) * USpa(k3);

Helicity amplitude for $u\overline{u} \rightarrow d\overline{d}$

```
Vectors k1, k2, k3, k4;
Indices mu, nu;
#include spinney.hh
Local Amp = UbarSpb(k2) * Sm4(mu) * USpa(k1) *
UbarSpb(k4) * Sm4(mu) * USpa(k3)*d4(mu, nu);
#call SpCollect
#call SpContractMetrics
#call SpContract
#call SpOpen
print;
. end
```

$$\label{eq:main_state} \begin{split} Amp =& UbarSpb(k2) * Sm4(mu) * USpa(k1) * UbarSpb(k4) * \\ Sm4(nu) * USpa(k3)*d4(mu,nu) \end{split}$$

Helicity amplitude for $u\overline{u} \rightarrow d\overline{d}$

```
Vectors k1.k2.k3.k4:
Indices mu, nu;
#include spinney.hh
Local Amp = UbarSpb(k2) * Sm4(mu) * USpa(k1) *
UbarSpb(k4) * Sm4(nu) * USpa(k3)*d4(mu,nu);
#call SpCollect
#call SpContractMetrics
#call SpContract
#call SpOpen
print;
. end
```

Amp =d4(mu,nu)*Spba(k2,mu,k1)*Spba(k4,nu,k3)

Helicity amplitude for $u\overline{u} \rightarrow d\overline{d}$

```
Vectors k1, k2, k3, k4;
Indices mu, nu;
#include spinney.hh
Local Amp = UbarSpb(k2) * Sm4(mu) * USpa(k1) *
UbarSpb(k4) * Sm4(nu) * USpa(k3)*d4(mu,nu);
#call SpCollect
#call SpContractMetrics
#call SpContract
#call SpOpen
print;
. end
```

Amp =Spba(k2,nu,k1)*Spba(k4,nu,k3)

Helicity amplitude for $u\overline{u} \rightarrow d\overline{d}$

```
Vectors k1, k2, k3, k4;
Indices mu, nu;
#include spinney.hh
Local Amp = UbarSpb(k2) * Sm4(mu) * USpa(k1) *
UbarSpb(k4) * Sm4(nu) * USpa(k3)*d4(mu, nu);
#call SpCollect
#call SpContractMetrics
#call SpContract
#call SpOpen
print;
. end
```

Amp =2*Spaa(k3,k1)*Spbb(k2,k4)

Helicity amplitude for $u\overline{u} \rightarrow d\overline{d}$

```
Vectors k1, k2, k3, k4;
Indices mu, nu;
#include spinney.hh
Local Amp = UbarSpb(k2) * Sm4(mu) * USpa(k1) *
UbarSpb(k4) * Sm4(nu) * USpa(k3)*d4(mu,nu);
#call SpCollect
#call SpContractMetrics
#call SpContract
#call SpOpen
print;
. end
```

Amp = -2*Spa2(k1,k3)*Spb2(k2,k4)

Helicity amplitude for $u\overline{u}
ightarrow d\overline{d}$

$$Amp = - 2*Spa2(k1, k3)*Spb2(k2, k4);$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

i.e. $A^{++++} = -2\langle 13 \rangle \langle 24 \rangle$

Spinney: An Example Helicity amplitude for $u\overline{u} \rightarrow t\overline{t}$

#call LightConeDecomposition(p3, k4, k2, m);

Amp = -2*Spa2(k1, k4)*Spb2(k2, k3);

Spinney- A Form Library for Helicity Spinors

Spinney is a Form library Uses the language of Form to

- implement helicity spinors
- massive and massless
- includes flipping rules for Majorana fermions
- includes t'Hooft-Veltman scheme for dimensional splitting
- ► functions and procedures named to allow easy migration to S@M [D. Maitre, P. Mastrolia, 0710.5559] ⇒ numerical evaluation of spinor products

Golem-2.0

Golem95

[T. Binoth, GC, J.Ph. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, T. Reiter, M. Rodgers]

 ${\sf One-loop} \ {\sf amplitudes} \Rightarrow$

Dimensionally regulated one-loop integrals

$$I_{N}^{d,\mu_{1}\cdots\mu_{r}}(S) = \int \frac{d^{d}k}{i\pi^{d/2}} \frac{k^{\mu_{1}}\cdots k^{\mu_{r}}}{\prod_{j=1}^{N} \left[(k+r_{j})^{2} - m_{j}^{2} + i\delta \right]}$$

with $S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2$.

• Strip away Lorentz structure \rightarrow Form Factor rep.

$$I_{N}^{d,\mu_{1}...\mu_{r}}(S) = \sum_{j_{1},...,j_{r}} [r_{j_{1}}^{\cdot}...r_{j_{r}}^{\cdot}]^{\mu_{1}...\mu_{r}} A_{N}^{r}(j_{1},\cdots,j_{r};S)$$

+
$$\sum_{j_{1},...,j_{r-2}} [r_{j_{1}}^{\cdot}...r_{j_{r-2}}^{\cdot}g^{\cdot\cdot}]^{\mu_{1}...\mu_{r}} B_{N}^{r}(j_{1},\ldots,j_{r-2};S)$$

+
$$\sum_{j_{1},...,j_{r-4}} [r_{j_{1}}^{\cdot}...r_{j_{r-4}}^{\cdot}g^{\cdot\cdot}g^{\cdot\cdot}]^{\mu_{1}...\mu_{r}} C_{N}^{r}(j_{1},\ldots,j_{r-4};S)$$

Golem95

Form Factors are linear combinations of

$$I_N^d(I_1,\ldots,I_p,S) = (-1)^N \Gamma\left(N-\frac{d}{2}\right) \int d^N z \frac{\delta(1-\sum z_j) z_{I_1} \ldots z_{I_p}}{\left[-\frac{1}{2} z^T S z - i\delta\right]^{N-d/2}}$$

- Reduce to scalar integrals
- ► can introduce dangerous inverse gram determinants for N=3,4
- ▶ if det G small Golem95 ⇒ avoids this step, instead completes numerical one-dimensional integration

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Golem95: Simple Example

3-point, rank 2

$$I_{3}^{\mu\nu}(S) = \int d\overline{k} \frac{k^{\mu}k^{\nu}}{[(k+r_{1})^{2} - m_{1}^{2}][(k+r_{2})^{2} - m_{2}^{2}][k^{2} - m_{3}^{2}]}$$

= $r_{1}^{\mu}r_{1}^{\nu}A_{1,1}^{3,2}(S) + r_{1}^{\mu}r_{2}^{\nu}A_{1,2}^{3,2}(S) + r_{2}^{\mu}r_{1}^{\nu}A_{2,1}^{3,2}(S) + r_{2}^{\mu}r_{2}^{\nu}A_{2,2}^{3,2}(S)$
+ $g^{\mu\nu}B^{3,2}(S)$

and

$$A_{i,j}^{3,2}(S) = I_3^n(i,j,S) \sim rac{1}{(detG)^2} I_3^n(S) \quad B^{3,2}(S) = -rac{1}{2} I_3^{n+2}(S)$$

For N=3,4:

- (N=3) Infra-red divergent \rightarrow explicit expressions
- ▶ det G small → one-dimensional numerical integration (only for massless propagtors so far)
- otherwise: reduce to scalar integrals

Golem95

Dedicated Fortran 95 library for the reduction and evaluation of tensor integrals

Latest version 1.1.1 available online

http://lappweb.in2p3.fr/lapth/Golem/golem95.html
including:

- Inclusion of internal masses (Internal call to OneLOop [A. van Hameren] for finite massive scalar box/triangle)
- Scale μ has been added
- Contains all tensor coefficients up to rank six, six point integrals for massive and massless integrals (IR/ UV divergent and finite)

Can also be used as a library for all types of scalar integrals

Future plans:

- completion of numerical option for all types of integrals
- complex masses

Golem-2.0: Summary and Outlook

New features:

- Can handle massive loops
- \blacktriangleright Implementation of Majorana Fermions and higher spins \Rightarrow BSM
- import of CalcHep Feynman Rules
- interface to SAMURAI (unitary based) [Mastrolia, Ossola, Reiter, Tramontano, hep-ph 1006.0710]

In progress:

- Check of MSSM model file
- FeynRules model files [C. Duhr et al]
- Les Houches interface
- PowHeg-Box interface [Alioli,Nason,Oleari,Reiter]
- user-friendly "black box" with detailed documentation

Aim: Public and open source: after validation of $gg
ightarrow b\overline{b}b\overline{b}$

Golem Results

Golem method has been used for

- $\gamma\gamma
 ightarrow 4\gamma$ [Binoth, Gehrmann, Heinrich, Mastrolia]
- $gg
 ightarrow W^* W^*
 ightarrow I
 u I'
 u$ [Binoth,Ciccolini,Kauer,Krämer]
- ▶ $gg \rightarrow HH, HHH$ [Binoth,Karg,Kauer,Rückl]
- ▶ $pp \rightarrow Hjj$ (VBF/GF) [Andersen,Binoth,Heinrich,Smillie]
- ▶ $q\overline{q}
 ightarrow b\overline{b}b\overline{b}$ [Binoth,Greiner,Guffanti,Guillet,Reiter,Reuter]

- ▶ $pp \rightarrow VVj$ [Binoth,Gleisberg,Karg,Kauer,Sanguinetti]
- $pp \rightarrow \text{Graviton } +j \text{ [Karg et al.]}$
- $gg \rightarrow b\overline{b}b\overline{b}$ (in progress)

Golem Results

Golem method has been used for

- $\gamma\gamma
 ightarrow 4\gamma$ [Binoth, Gehrmann, Heinrich, Mastrolia]
- $gg
 ightarrow W^* W^*
 ightarrow I
 u I'
 u$ [Binoth,Ciccolini,Kauer,Krämer]
- ▶ $gg \rightarrow HH, HHH$ [Binoth,Karg,Kauer,Rückl]
- ▶ $pp \rightarrow Hjj$ (VBF/GF) [Andersen,Binoth,Heinrich,Smillie]
- ▶ $q\overline{q} \rightarrow b\overline{b}b\overline{b}$ [Binoth,Greiner,Guffanti,Guillet,Reiter,Reuter]

- ▶ $pp \rightarrow VVj$ [Binoth,Gleisberg,Karg,Kauer,Sanguinetti]
- $pp \rightarrow \text{Graviton } +j \text{ [Karg et al.]}$
- $gg \rightarrow b\overline{b}b\overline{b}$ (in progress)

The four b amplitude

[T. Binoth, N. Greiner, A. Guffanti, T.Reiter, J. Reuter]

An important background for BSM Higgs searches: For example: in MSSM: at large tan β the $Hb\overline{b}$ coupling is enhanced

• Approximations: $m_b = 0$, $m_t \to \infty$, $q \in \{u, d, s, c\}$

- LHC kinematics and cuts
 - $\sqrt{s} = 14 \text{TeV}$
 - ▶ *p*_T cut: *p*_T > 30 GeV
 - rapidity cut: $|\eta| < 2.5$
 - separation cut: $\Delta R > 0.8$

The process $q\overline{q} \rightarrow b\overline{b}b\overline{b}$

Method:

- virtual corrections: Golem-2.0
- born part: Madgraph [F. Maltoni, T. Steltzer]
- real corrections: MadGraph
- subtraction terms: MadDipole [R. Frederix, T. Gehrmann, N. Greiner]
- integration/analysis (MadEvent [Maltoni, Stelzer])
- "plug and play" single subroutine call from Madevent to Golem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $q\overline{q} \rightarrow b\overline{b}b\overline{b}$: Results

$$\mu_R = x\mu_0; \ \mu_0 = \sqrt{\sum_{j=1}^4 |p_T(b_j)|^2}$$

- reduction of scale dependence
- stabilization of result
- study of dependence on µ_F after all channels computed
- the error bands $\mu_0 < \mu_R < 2\mu_0$

$q\overline{q} \rightarrow b\overline{b}b\overline{b}$: Results

 m_{bb} of leading b-jets

- reduction of scale dependence
- stabilization of result
- study of dependence on μ_F after all channels computed
- the error bands $\mu_0 < \mu_R < 2\mu_0$

Conclusions and outlook

- high precision = beyond leading order
- Golem
 - Golem is designed for automated one-loop calculations
 - Numerically safe (avoids inverse Gram determinants)
 - massive and massless particles
 - Golem95- tensor integral library available at http://lappweb.in2p3.fr/lapth/Golem/golem95.html

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Spinney- Form Library for Helicity Spinors available at http://www.nikhef.nl/~thomasr/
- Golem techniques being used for processes beyond the Standard Model
- Golem-2.0- matrix element generator public soon