

MADFKS AUTOMATION OF THE FKS SUBTRACTION METHOD

Rikkert Frederix University of Zurich

HP2.3rd, Florence, September 14 - 17, 2010

NEXT-TO-LEADING ORDER

WHY AUTOMATE?

To save time

NLO calculations can take a long time. It would be nice to spend this time doing phenomenology instead.

To reduce the number of bugs in the calculation Having a code that does everything automatically will be without* bugs once the internal algorithms have been checked properly.

* To have all processes within one framework To learn how to use a new code for each process is not something all our (experimental) colleagues are willing to do.

IR DIVERGENCE

$$\sigma^{\text{NLO}} = \int_{m+1} d^{(d)} \sigma^R + \int_m d^{(d)} \sigma^V + \int_m d^{(4)} \sigma^B$$

- Real emission -> IR divergent
- % (UV-renormalized) virtual corrections
 -> IR divergent
 - After integration, the sum of all contributions is finite (for infrared-safe observables)
 - * To see this cancellation the integration is done in a noninteger number of dimensions: Not possible with a Monte-Carlo integration

SUBTRACTION TERMS $\sigma^{\text{NLO}} = \int_{m+1} d^{(d)} \sigma^{R} + \int_{m} d^{(d)} \sigma^{V} + \int_{m} d^{(4)} \sigma^{B}$

 $\sigma^{\text{NLO}} = \int_{m+1} d^{(d)} \sigma^R + \int_m d^{(d)} \sigma^V + \int_m d^{(4)} \sigma^B$ $\sigma^{\text{NLO}} = \int_{m+1} \left[d^{(4)} \sigma^R - d^{(4)} \sigma^A \right] + \int_m \left[d^{(4)} \sigma^B + \int_{\text{loop}} d^{(d)} \sigma^V + \int_1 d^{(d)} \sigma^A \right]_{\epsilon=0}$

Include subtraction terms to make real emission and virtual contributions separately finite

#All can be integrated numerically

In collaboration with Stefano Frixione, Fabio Maltoni e³ Tim Stelzer, arXiv: 0908.4247

$$\mathbf{FKS SUBTRACTION}$$

$$\sigma^{\text{NLO}} = \int_{m+1} \left[d^{(4)}\sigma^{R} - d^{(4)}\sigma^{A} \right] + \int_{m} \left[d^{(4)}\sigma^{B} + \int_{\text{loop}} d^{(d)}\sigma^{V} + \int_{1} d^{(d)}\sigma^{A} \right]_{\epsilon=0}$$

- FKS subtraction: Frixione, Kunszt & Signer 1996.
- * Also known as "residue subtraction"
- Sased on partitioning the phase space such that each partition has at most one soft and/or collinear divergence
- * Use simple plus-distributions to regulate the divergences
- ** Are relevant formulae can be found in our MadFKS paper, arXiv:0908.4247

FKS -- TECHNICALITIES

- * Naive scaling of the number of subtraction terms is n² (as opposed to n³ of CS dipoles). Can be greatly reduced by using symmetry of the matrix elements
 - Adding additional gluons does not lead to more phase-space partitions
- In a given phase space partition, Born amplitudes need be computed only once for each real-emission event, and can be used for the Born and collinear, soft and soft-collinear counter events (and their remainders)
- Trivially extended to BSM physics. Massive particles have only soft singularity which is independent of the spin

MADFKS

- * Automatic FKS subtraction for QCD within the MadGraph/MadEvent framework
- Siven the (n+1) process, it generates the real, all the subtraction terms and the Born processes
- Completely general & all automatic, using the same user-friendly interface as MadGraph
- MadFKS works also for any BSM physics model implemented in MadGraph, e.g. MSSM
- * Color-linked Borns generated by MadDipole *RF, Gehrmann & Greiner*
- MC-ing over helicities possible; only more efficient for high-multiplicity final states
- Phase-space generation for the (n)-body is the same as in standard MG. It has been heavily adapted to generate (n+1)-body emission events at the same time

FULL NLO

- Solution Structure Stru
- Interface to link with the virtual corrections following the Binoth-Les Houches Accord
 - Standardized way to link MC codes to one-loop programs
- We are also working on an interface to CutTools In collaboration with Hirschi, Garzelli & Pittau

5 JETS AT LEP @ NLO

RF, Frixione, Melnikov, Zanderighi arXiv:1008.5313

- Durham jet algorithm
- Scale dependence: +45% -30% at LO; ±20% at NLO
- * LO and NLO bands overlap (LO uses $\alpha_s(M_Z)=0.130$)
- Point-by-point agreement with BlackHat (*Berger et al.*) for the virtuals Rikkert Frederix, September 14, 2010

HADRONIZATION CORRECTIONS

- * Historically, for LEP, hadronization corrections have been estimated by using Ariadne, Herwig & Pythia, which are tuned to data
- [∞] However, they are based on 2→2 and 2→3 matrix elements. Therefore, for these 5 jet observables, they rely strongly on the showers.
- We have estimated the hadronization corrections using Sherpa, with CKKW matching up to 5 hard partons
- Corrections are mild up to
 -ln(y₄₅) ~ 6

α_s extraction

			LEP1	, hadr.	LEP1,	no hadr.		
		$\sigma_{ m tot}^{-1} { m d}\sigma/$		dy_{45}, R_5	$\sigma_{\rm tot}^{-1} {\rm d}\sigma_{\rm A}$	$/\mathrm{d}y_{45},R_5$		
	stat. syst.		+0.0002		+0.0002			
			-0.0002		-0.0002			
			+0.0027		+0.0027			
			-0.0029		-0.0029			
	nert		+0.0062		+0.0068			
pert			-0.0043		-0.0047			
	fit range		+0.0014		+0.0005			
	110	range	-0.0	0014	-0	.0005		
	h	adr	+0.0	0012				
	11	aur.	-0.0	0012				
		(M_{π})	0 1150	+0.0070	0 1163	+0.0073		
	α_s	(WIZ)	0.1109	-0.0055	0.1105	-0.0055		
		LEP2	no hadr	LEP2 r	o hadr	LEP2 no	hadr	
		$\sigma_{\rm tot}^{-1} d$	$\sigma/\mathrm{d}y_{45}$	R	5	$\sigma_{\rm tot}^{-1} {\rm d}\sigma/{\rm d}y$	$_{45}, R_{10}$	
4	Ŧ	+0.0020		+0.0022		+0.0015		
sta	t. $-0.$		0022	-0.0025		-0.0016		
SVS	t	+0.0008		+0.0012		+0.0008		
5y5	-0.		0009	-0.0012		-0.0008		
per	·t.	+0.0049		+0.0029		+0.0029		
P 97		-0.0034		-0.0020		-0.0020		
fit rai	+0		0038	+0.0030		+0.0028		
	0	-0.0038		-0.0030		-0.0028		
$\alpha_s(M$	(Z)	0.1189 + 0.0066		0.1120 + 0.0050		0.1155 + 0.0044		
3(2)		-0.0057	-	-0.0047	-0	-0.0039	

- Statistical uncertainties negligible at LEP1; larger at LEP2
- Systematic and Perturbative uncertainties
 larger at LEP1 than LEP2, fit range
 uncertainties are opposite
- Uncertainties from hadronization corrections already negligible at LEP1, not even considered for LEP2
- Correlations between bins and LEP energies taken into account conservatively

$$\alpha_s(M_Z) = 0.1156^{+0.0041}_{-0.0034}$$

α_s extraction -correlations

- Statistical uncertainties are uncorrelated between different center-of-mass energies. At a given c.o.m. energy, y₄₅ is uncorrelated, while R₅ is assumed to be fully correlated.
- Systematic uncertainties are assumed to be fully correlated at a given c.o.m. energy and between all LEP2 energies, however completely uncorrelated between LEP1 and LEP2.
- * Perturbative uncertainties are assumed to be fully correlated.
- # Hadronization uncertainties (considered only at LEP1) are assumed to be fully correlated.

COMPARISON WITH OTHER MEASUREMENTS

Observable	$\alpha_s(M_Z)$	Ref.
au decays	0.1197 ± 0.0016	S. Bethke
Υ decays	0.119 ± 0.0055	N. Brambilla <i>et al.</i>
3 jet observables	0.1224 ± 0.0039	G. Dissertori et al.
jets in DIS	0.1198 ± 0.0032	H1 collaboration
DIS	0.1142 ± 0.0021	J. Blümlein
thrust	0.1135 ± 0.0011	R. Abbate <i>et al.</i>
lattice	0.1183 ± 0.0008	HPQCD collaboration
EW fits	0.1193 ± 0.0028	H. Flacher <i>et al.</i>
world average	0.1184 ± 0.0007	S. Bethke
$e^+e^- \to \text{five jets}$	0.1156 ± 0.0038	RF, S. Frixione, K. Melnikov & G. Zanderighi

- # Uncertainty competitive with other measurements
- Slightly smaller than world average, but consistent within uncertainties

VIRTUAL CORRECTIONS

In collaboration with Valentin Hirschi and Maria-Vittoria Garzelli e³ Roberto Pittau

VIRTUAL CORRECTIONS

- Interface using the Binoth-LHA is available
- * For more flexibility (e.g. massive particles & BSM) we also started working on generating the virtual corrections ourselves
- Solution Using the OPP method as implemented in CutTools
 Ossola, Papadopoulos & Pittau

IMPLEMENTATION

- MadGraph generates the loop diagrams by cutting one of the particles in the loop: simple tree-level diagrams remain
 → Passed to CutTools
- ** NLOComp filters duplicates and sets-up the interference with the Born diagrams: computation of the color factors.
- Ghosts also needed
- R2 terms are computed using tree-level Feynman Rules Draggiotis, Garzelli, Papadopoulos & Pittau
- Point-by-point agreement found with MCFM (and private codes): Drell-Yan, 2-jet production, top pair, W/Z+1 jet...
- * Not yet optimized in any way. This will be done only in the MGv5 framework

WBB ASSOCIATED PRODUCTION

- # First new results with MadFKS+NLOComp/CutTools
- $\gg pp \to W^+ (\to e^+ \nu_e) b\overline{b}$, with massive b's
- ** Similar calculation by Febres Cordero, Reina & Wackeroth
- * However, here the W boson decay is included, and stable enough to generate results without cuts on the bottom quarks

Febres Cordero et al. WBB RESULTS

- o of the bardest
- Transverse momentum of the hardest and 2nd hardest b-jets regulated by the b quark mass
- W boson decay included
- Unfortunately, slight disagreement between calculations when cuts are also applied to our results

work in progress

MATCHING TO A PARTON SHOWER

In collaboration with Stefano Frixione & Paolo Torrielli

AUTOMATION OF MC@NLO

$$d\sigma_{\text{mconlo}}^{(\mathbb{H})} = d\phi_{n+1} \left(\mathcal{M}^{(r)}(\phi_{n+1}) - \mathcal{M}^{(\text{mc})}(\phi_{n+1}) \right)$$

$$d\sigma_{\text{MCONLO}}^{(\mathbb{S})} = \int_{+1}^{} d\phi_{n+1} \Big(\mathcal{M}^{(b+v+rem)}(\phi_n) - \mathcal{M}^{(c.t.)}(\phi_{n+1}) + \mathcal{M}^{(\text{MC})}(\phi_{n+1}) \Big)$$

- In black: pure NLO, fully tested in MadFKS
- In red: already implemented for Herwig 6;
 Pythia and Herwig++ are work in progress
 - FKS is based on a collinear picture, so are the MC counter terms: branching structure is for free
 - % Automatic determination of color partners
- ** Automatic computation of leading-color matrix elements
 ** Works also when MC-ing over helicities
 Rikkert Frederix, September 14, 2010

MADFKS MATCHED TO PARTON SHOWER

In MadFKS many process fully tested and working (e.g. e⁺e⁻ to jets, Drell-Yan, top pair production, ...)

* New result: t-channel single top production

T-CHANNEL SINGLE TOP

** Already implemented in MC@NLO and POWHEG
Frixione, Laenen, Motylinski & Webber (2006);
Alioli, Nason, Oleari & Re (2009)

* However, due to the massless initial state b quark in the fixed order calculation, some strange behavior at low pT and for forward B hadrons

INITIAL STATE B QUARK

"Standard" way of looking at this process

leading order

5-flavor scheme

4-flavor

scheme

(contribution to) NLO

But there is an equivalent description with no bottom PDF and an explicit gluon splitting to b quark pairs

(part of) leading order

THE TWO SCHEMES

5-flavor scheme: " $2 \rightarrow 2$ "

At all orders both description should agree;
 otherwise, differ by:

- * evolution of logarithms in PDF: they are resummed
- * available phase space
- ** approximation by large logarithm

FOUR-FLAVOR SCHEME

Campbell, RF, Maltoni, Tramontano (2009)

- We the 4-flavor (2 → 3) process as the Born and calculate NLO
 - Much harder calculation due to extra mass and extra parton

- Spectator b for the first time at NLO
- Process implemented in the MCFM-v5.7 parton-level NLO code

** Starting point for future NLO+PS beginning at $(2 \rightarrow 3)$

Rikkert Frederix, September 14, 2010

ALSO BSM

% squark-gluino associated production

% real emission corrections included, but virtual correction not (yet)

Rikkert Frederix, September 14, 2010

TO CONCLUDE

- Sor any QCD NLO computation (SM & BSM) MadFKS takes care of:
 - Senerating the Born, real emission, subtraction terms, phase-space integration and overall management of symmetry factors, subprocess combination etc.
- Substitution Structure Structure
- With the shower subtraction terms, interface to showers to generate automatically unweighted events with NLO precision is working with Herwig and work in progress with Pythia and Herwig++
- First physics results at NLO are being produced within the MadGraph/MadEvent framework using the MadFKS code Rikkert Frederix, September 14, 2010