

Status of ATLAS and CMS

A. Di Simone Università & INFN Roma Tor Vergata

On behalf of the ATLAS and CMS collaborations

High precision for Hard Processes at the LHC GGI, Arcetri, 14-17/09/2010

- Introduction
- The ATLAS and CMS detectors
 - Operation
 - Performances
- Physics highlights
 - Minimum bias and UE
 - Jets
 - b/c mesons
 - EW bosons
 - Top production
 - NP searches
- Conclusions

Introduction

- LHC performance is constantly improving
 - 3.7/pb delivered up to now (~3.4/pb recorded by each of CMS and ATLAS)
 - Peak stable luminosity 1.03x10³¹cm⁻¹s⁻¹
- Data is processed promptly, and analyses are digesting it as fast as possible (while also studying detector performance, trigger efficiencies, ...)
 - A large amount of interesting results already presented/published
 - Will give here an overview of some of the latest public results by ATLAS and CMS

- The size of the detectors is reflected in the size of the collaborations designing/building/operating them and analyzing their data
 - Each has ~3000 scientists from ~170 institutes, from ~40 countries
- In spite of the intrinsic complexity, all detectors are operating very well, with sub detectors operational status close to 100%, and data taking efficiency >90%

Detector performance

- Detector material distribution already fairly well described in simulation
 - and constantly improving
- Reconstruction and tracking efficiencies as measured from data are very close to their expected value from simulation
 - "Tag&Probe" exploits invariant mass constraints on particle pairs from resonances, together with two independent tracking systems, to measure the efficiency of one tracker wrt the other

Use γ conversions and secondary hadronic interactions for material mapping

Minimum bias and UE

- Very first benchmark for LHC experiments
- Requires detailed understanding of tracking performances to unfold all experimental systematics
- Allows detailed tunes of MC generators at unexplored CM energies
- UE, in particular, studies the part of the final state not due to the hard scattering (BBR+MPI)
 - "Soft physics", not calculable within pQCD

Minimum bias (1)

- Studies crucial for tuning of MC generators
 - Also in view of the higher luminosity phase of the LHC
- None of the existing (LEP/Tevatron) tunes reproduces correctly 7TeV measurements

Minimum bias (2)

 First MB results already used to produce tunes optimized for LHC (e.g. ATLAS AMBT1), including UE measurements as well (see next slide)

Firen:

P2.3.

Т

ATLAS: corrected to particle level

<u>Roma T. Vergata</u>

Univ. & INFN

Simone -

D

Andrea

Underlying event (2)

Jets

- Multi-jet events produced copiously @ LHC
- Interesting *per se*, since they are an important probe of pQCD predictions
- From the experimental point of view, crucial to study the performance of the detectors (e.g. di-jet momentum imbalance)
- They are also the main source of background for many SM and NP events
- All results shown here refer to anti-kT jet algorithm

Inclusive cross section

- Different jet reconstruction algorithms tested
- Agreement with NLO predictions (within exp uncertainties)

Multi-jet cross section

Andrea Di Simone - Univ. & INFN Roma T. Vergata

15

6

Azimuthal decorrelation (1)

- Measure angle between the two highest-pT jets in the event
 - Allows to study higher-order QCD radiation effects without the need to explicitly reconstruct additional jets in the event

Azimuthal decorrelation (2)

Distributions are, to some extent, sensitive to tuning of LO generators

Azimuthal decorrelation (3)

• NLO shows, overall, better agreement, as expected

b/c mesons

- Prompt quarkonium production extremely interesting to test models describing the observed differential pT cross section and polarization
- Non-prompt J/Psi production related to b-hadron production
- Theoretical predictions for Y more robust due to higher b mass, hence allowing more precise comparison
- From the experimental point of view, decay products can be used to assess from data the detector performance (e.g. tag & probe)

b/c mesons (2)

Intermezzo: the dimuon landscape

- Statistics collected in just a few months
- Already reached the point where EW bosons can be studied

EW bosons

- The physics of the W and Z bosons plays a crucial role in LHC experiments
 - The clean and fully reconstructed Z leptonic final states can be used to measure from data the detector performance
 - High precision cross section calculation, including higher order corrections, allows to use these measurements as a stringent test of QCD
 - Last, but not least, these channels are important backgrounds to several new-physics studies

High-pT leptons

- First chance (here) to look at events with high-pT leptons
- After a loose preselection: 1 "good quality" lepton
 - muon pT>15GeV, electron ET>20GeV

Shapes in good agreement with MC expectations, W signal already visible in the Missing Et distribution

Roma

W signal extraction

- Signal extraction similar to W, using invariant mass constraint on the two leptons
- Example: Z selection yields for ATLAS @ 219/nb (electrons) and 229/nb (muons)

	Electron channel	Muon channel
Requirement	Number of	Number of
	candidates	candidates
Triggered	4.4×10^{6}	3.8×10^{6}
$\ell^+\ell^-$ pairs	51	85
$66 < m_{\ell^+\ell^-} < 116 \text{ GeV}$	46	79

Top physics

- Integrated luminosity allows by now to observe the first top-pair candidate events
 - At 7 TeV, expect production of 1 ttbar event into e/µ+jets per 20/nb and 1 ttbar into ee/µµ/eµ+jets per 110/nb
- Studies ongoing in both the di-lepton and lepton plus jets channel
- Selections require high-pT isolated leptons, missing transverse energy, refine/cross check selection with b-tagging of jets

Top physics (2)

- Inclusive searches, trying to be as model-independent as possible
- Look for "anomalous" topologies
 - Unexpected mass peaks in multi-body final states
 - Extremely massive particles
 - Large missing transverse energy

New physics searches (1)

New physics searches (2)

Firenze

က

20100914 HP2

Vergat

- Further LHC performance improvements are expected
 - Aim at $1x10^{32}$ cm⁻¹s⁻¹ by the end of this year
 - 1/fb by the end of 2011
 - 4 weeks HI operation starting from end october 2010
 - More NP channels become accessible for exclusion/discovery

- LHC operation at 7TeV is proceeding smoothly, and the experiments are already producing many interesting results
- We are just starting to explore our vast collision physics programme
- Standard Model physics is the very first benchmark
 - At an unexplored CM energy
- Already many W and Z bosons
- Top-pair candidates are pouring-in as we speak
- Searches for new physics already started
 - Limited statistics forces analyses to be as inclusive as possible
 - Model independent!
 - Exclusion of some models already possible, in regions of phase space not yet covered by Tevatron
 - As well as close inspection of interesting events...
 - ... stay tuned!

Further reading

- Some references to notes and papers
 - Minimum bias, UE:
 - ATLAS-CONF-2010-081, ATLAS-CONF-2010-046, CMS-PAS-QCD-10-010, CMS-PAS-QCD-10-004, arXiv:1003.3124 (Phys Lett B 688, Issue 1, 21-42), arXiv:1006.2083, arXiv:1005.3299 (Phys. Rev. Lett. : 105 (2010)), arXiv:1002.0621 (J. High Energy Phys. 02 (2010) 041)
 - Jets:
 - ATLAS-CONF-2010-083, CMS-PAS-QCD-10-015, ATLAS-CONF-2010-050, CMS-PAS-QCD-10-011, ATLAS-CONF-2010-084, CMS-PAS-QCD-10-012
 - c/b mesons:
 - ATLAS-CONF-2010-062, CMS-PAS-BPH-10-002, ATLAS-CONF-2010-034, CMS-PAS-BPH-10-003
 - EW bosons:
 - ATLAS-CONF-2010-051, CMS-PAS-EWK-10-002, ATLAS-CONF-2010-076
 - Top physics:
 - ATLAS-CONF-2010-063, ATLAS-CONF-2010-087, CMS-PAS-TOP-10-004
 - New physics:
 - ATLAS-CONF-2010-079, ATLAS-CONF-2010-080, ATLAS-CONF-2010-088, CMS-PAS-EXO-10-002, CMS-PAS-EXO-10-003, CMS-PAS-EXO-10-004, CMS-PAS-EXO-10-005, CMS-PAS-EXO-10-010, ATLAS-PHYS-PUB-2010-009, arXiv:1008.2461 (accepted by PRL) 35