

Electroweak corrections to W/Z+jet production at the LHC

Alexander Mück

in collaboration with

A. Denner (PSI), S. Dittmaier (Freiburg), T. Kasprzik (Karlsruhe)

$\mathrm{HP}^2_{\cdot}\mathrm{3rd}$

Florence, 14th September 2010

EW corrections for W/Z+jet production – Alexander Mück – p.1/18

- W/Z production at the LHC
- W/Z+jet production:

$$pp \rightarrow W/Z + \text{jet} \rightarrow l\nu_l/ll + \text{jet}$$

- motivation and theoretical status
- Electroweak and QCD corrections
- Numerical results for the LHC
- Conclusions

Charged-current Drell-Yan:

$$pp \to W^\pm \to l^\pm \nu_l$$

RHEINISCH

ECHNISCHE HOCHSCHULE

• clean signal: lepton + missing $p_{\rm T}$

• huge cross section: $\sigma_{W^+ \to \mu^+ \nu_{\mu}} = 3 \text{ nb}$ (Atlas cuts at 7 TeV)

 \Rightarrow 2 events per minute at LHC right now

Charged-current Drell-Yan:

$$pp \to W^{\pm} \to l^{\pm} \nu_l$$

RHEINISCH

ECHNISCHE HOCHSCHULE

• clean signal: lepton + missing $p_{\rm T}$

- huge cross section: $\sigma_{W^+ \rightarrow \mu^+ \nu_{\mu}} = 3 \text{ nb}$ (Atlas cuts at 7 TeV)
- very useful: M_W , Γ_W , luminosity, PDFs, calibration

Charged-current Drell-Yan:

$$pp \to W^{\pm} \to l^{\pm} \nu_l$$

- clean signal: lepton + missing $p_{\rm T}$
- huge cross section: $\sigma_{W^+
 ightarrow \mu^+
 u_{\mu}} = 3 \text{ nb}$ (Atlas cuts at 7 TeV)
- very useful: M_W , Γ_W , luminosity, PDFs, calibration

Neutral-current Drell-Yan:

$$pp \to Z/\gamma \to l^+ l^-$$

clean signal: charged lepton pair

 ν_l

- huge cross section: $\sigma_{Z \to \mu^+ \mu^-} = 0.5 \text{ nb}$ (Atlas cuts at 7 TeV)
- very useful: calibration, luminosity, PDFs

Theory status:

RHEINISCH-WESTFÄLISCHE

- QCD: NNLO, resummation, parton shower matching
- EW: NLO, leading higher order contributions

Theory status:

RHEINISCH

HOCHSCHULE

- QCD: NNLO, resummation, parton shower matching
- EW: NLO, leading higher order contributions
- combined EW and QCD corrections?

Theory status:

IOCHSCHULE

- QCD: NNLO, resummation, parton shower matching
- EW: NLO, leading higher order contributions
- combined EW and QCD corrections?

 $d\sigma = d\sigma_{MC@NLO} + (d\sigma_{EW}^{HORACE} - d\sigma_{Born})_{HERWIG-PS}$ etc.

Balossini et al. [arXiv:0907.0276]

hard QCD radiation + EW corrections?

 \Rightarrow look at EW corrections for W/Z+jet production

W/Z+jet production

 $pp \rightarrow l\nu_l/l^+l^- + \text{jet:}$

RHEINISCH

ECHNISCHE HOCHSCHULE

• large cross section $(\sim 10\% \text{ of inclusive sample})$

- dominant SM channel for high p_T leptons
- precision tests for jet dynamics
- W+jet(s) important background for many searches (high p_T lepton, missing energy, jet(s))

W/Z+jet production

 $pp \rightarrow l\nu_l/l^+l^- + \text{jet:}$

RHEINISCH

• large cross section $(\sim 10\% \text{ of inclusive sample})$

- dominant SM channel for high p_T leptons
- precision tests for jet dynamics
- W+jet(s) important background for many searches

Theoretical status:

NLO QCD corrections known and available

DYRAD: Giele et al. [hep-ph/9302225] MCFM: Campbell, Ellis [hep-ph/0202176] and as part of NNLO single W: Melnikov, Petriello [hep-ph/0609070] Catani et al. [arXiv:0903.2120]

EW corrections for W/Z+jet production - Alexander Mück - p.5/18

W/Z+jet production

 $pp \rightarrow l\nu_l/l^+l^- + \text{jet:}$

RHEINISCH

• large cross section $(\sim 10\% \text{ of inclusive sample})$

- dominant SM channel for high p_T leptons
- precision tests for jet dynamics
- W+jet(s) important background for many searches

Theoretical status:

- NLO QCD corrections known and available
- EW corrections for stable (on-shell) W/Z bosons
 Z+jet: Kühn, Kulesza, Pozzorini, Schulze [hep-ph/0408308], [hep-ph/0507178]
 W+jet: Kühn, Kulesza, Pozzorini, Schulze [hep-ph/0703283], [arXiv:0708.0476] Hollik, Kasprzik, Kniehl [arXiv:0707.2553]

EW corrections for W/Z+jet production – Alexander Mück – p.5/18

Complete EW corrections calculated

W+jet: Denner, Dittmaier, Kasprzik, AM [arXiv:0906.1656] Z+jet: internal comparison just finished

+

 $\mathcal{O}(100)$ diagrams for W, $\mathcal{O}(200)$ diagrams for Z per partonic channel

- physical final state
- all off-shell effects included
- part of the $\mathcal{O}(\alpha \alpha_s)$ corrections for incl. W production

Complete EW corrections calculated

W+jet: Denner, Dittmaier, Kasprzik, AM [arXiv:0906.1656] Z+jet: internal comparison just finished

+ tops in the loop for Z in bottom initiated processes

- W/Z+jet very similar in general
- more partonic channels, diagrams, helicities for Z+jet

RHEINISCHE TECHNISCHE AACHEN EW corrections

Complete EW corrections calculated

stable reduction scheme for tensor integrals

Denner, Dittmaier [hep-ph/0509141]

- avoid inverse Gram determinants for pentagon reduction
- expand around vanishing determinants in critical phase-space regions

RNNH EW corrections

Complete EW corrections calculated

stable reduction scheme for tensor integrals

Denner, Dittmaier [hep-ph/0509141]

• complex mass scheme for resonances

Denner, Dittmaier, Roth, Wieders [hep-ph/0505042]

 use complex W and Z masses everywhere by means of complex renormalization:

$$M_{V,0}^2 = \mu_V^2 + \delta \mu_V^2$$
 with: $M_{V,0}^2$ = bare mass (V = W, Z)
 μ_V^2 = ren. complex mass
 $\delta \mu_V^2$ = complex counterterm

- \Rightarrow complex $s_{\mathrm{W}}^2 = 1 \mu_{\mathrm{W}}^2 / \mu_{\mathrm{Z}}^2$
- Ioop-integrals for complex masses needed

RNNH EW corrections

Complete EW corrections calculated

stable reduction scheme for tensor integrals

Denner, Dittmaier [hep-ph/0509141]

• complex mass scheme for resonances

Denner, Dittmaier, Roth, Wieders [hep-ph/0505042]

dipole subtraction for infrared divergencies

Catani, Seymour [hep-ph/9605323] Dittmaier [hep-ph/9904440]

subtraction formalism also for non-collinear safe observables
 e.g. for bare muons (without lepton-photon recombination)
 muon-mass logarithms extracted analytically

Dittmaier, Kabelschacht, Kasprzik [arXiv:0802.1405]

• phase-space slicing used as a check

NOT COllinear-safe subtract.

usual subtraction procedure:

RHEINISCH

$$\int \mathrm{d}\Phi_{n+1} \left|\mathcal{M}\right|^2 = \int \mathrm{d}\Phi_{n+1} \left(\left|\mathcal{M}\right|^2 - \left|\mathcal{M}_{\mathrm{Sub}}\right|^2\right) + \int \mathrm{d}\Phi_n \int \mathrm{d}k_\gamma \left|\mathcal{M}_{\mathrm{Sub}}\right|^2$$

• clever choice of $|\mathcal{M}_{Sub}|^2$

$$\Rightarrow \left(|\mathcal{M}|^2 - |\mathcal{M}_{Sub}|^2 \right)$$
 is integrable

 $\Rightarrow \int dk_{\gamma} |\mathcal{M}_{Sub}|^2$ can be done analytically

NTH non collinear-safe subtract.

• usual subtraction procedure:

$$\int \mathrm{d}\Phi_{n+1} \left|\mathcal{M}\right|^2 = \int \mathrm{d}\Phi_{n+1} \left(\left|\mathcal{M}\right|^2 - \left|\mathcal{M}_{\mathrm{Sub}}\right|^2\right) + \int \mathrm{d}\Phi_n \int \mathrm{d}k_\gamma \left|\mathcal{M}_{\mathrm{Sub}}\right|^2$$

• $\mathcal{M}_{Sub} = \sum_{f} \mathcal{M}_{Sub}(p_{jet}, z_{f})$ where $z_{f} \to p_{f}^{0}/(p_{f}^{0} + p_{\gamma}^{0}), p_{jet} \to p_{f}^{0} + p_{\gamma}^{0}$ for collinear events

• only cuts on p_{jet} , no cuts on $p_f \Rightarrow$ cuts independent of z_f

 $\Rightarrow z_f$ integration can be done analytically

NTH non collinear-safe subtract.

• usual subtraction procedure:

$$\int \mathrm{d}\Phi_{n+1} \left|\mathcal{M}\right|^2 = \int \mathrm{d}\Phi_{n+1} \left(\left|\mathcal{M}\right|^2 - \left|\mathcal{M}_{\mathrm{Sub}}\right|^2\right) + \int \mathrm{d}\Phi_n \int \mathrm{d}k_\gamma \left|\mathcal{M}_{\mathrm{Sub}}\right|^2$$

• $\mathcal{M}_{Sub} = \sum_{f} \mathcal{M}_{Sub}(p_{jet}, z_{f})$ where $z_{f} \to p_{f}^{0}/(p_{f}^{0} + p_{\gamma}^{0}), p_{jet} \to p_{f}^{0} + p_{\gamma}^{0}$ for collinear events

• only cuts on p_{jet} , no cuts on $p_f \Rightarrow$ cuts independent of z_f

 $\Rightarrow z_f$ integration can be done analytically

• non-collinear safe implementation:

- no recombination: cuts on p_f allowed
- cut on z_f in \mathcal{M}_{Sub} to ensure cancellation of singularities
- integrate over z_f in dk_γ numerically

(soft divergence treated via Plus-distribution in analogy to treatment of initial-state emitters/spectators)

EW corrections for W/Z+jet production – Alexander Mück – p.7/18

Treat photon like another parton?

Treat photon like another parton?

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE

• Yes: Photon–jet recombination mandatory for infrared safe observables (poles in $q \rightarrow q\gamma$ splitting)

Treat photon like another parton?

- Yes: Photon-jet recombination mandatory for infrared safe observables (poles in $q \rightarrow q\gamma$ splitting)
- No: a gluon in a gluon-photon jet can become soft (in accidentally collinear configurations)
 IR singularity

Treat photon like another parton?

- Yes: Photon-jet recombination mandatory for infrared safe observables (poles in $q \rightarrow q\gamma$ splitting)
- No: a gluon in a gluon-photon jet can become soft (in accidentally collinear configurations)
 IR singularity
- soft gluon pole cancelled by virt. QCD corr. to V+photon

Treat photon like another parton?

ISCHULF

- Yes: Photon-jet recombination mandatory for infrared safe observables (poles in $q \rightarrow q\gamma$ splitting)
- No: a gluon in a gluon-photon jet can become soft (in accidentally collinear configurations) → IR singularity
- soft gluon pole cancelled by virt. QCD corr. to V+photon

The problem: V+jet ⇔ V+photon

- do not distinguish (also calculate V+ γ and its NLO QCD corr.)
- or use a sophisticated isolation Frixione [hep-ph:9801442]
- or cut on photon energy fraction z_{γ} inside a jet

Treat photon like another parton?

ISCHULF

- Yes: Photon–jet recombination mandatory for infrared safe observables (poles in $q \rightarrow q\gamma$ splitting)
- No: a gluon in a gluon-photon jet can become soft (in accidentally collinear configurations) → IR singularity
- soft gluon pole cancelled by virt. QCD corr. to V+photon

The problem: V+jet ⇔ V+photon

- do not distinguish (also calculate V+ γ and its NLO QCD corr.)
- or use a sophisticated isolation Frixione [hep-ph:9801442]
- or cut on photon energy fraction z_{γ} inside a jet
 - \Rightarrow this is what we want; But: not infrared safe

EW corrections for W/Z+jet production - Alexander Mück - p.8/18

PARTHEN photon-jet recombination

What does z_{γ} cut imply?

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE

- sensitivity to $\mathbf{q} \rightarrow \mathbf{q}\gamma$ splitting
- non-perturbative corrections to be included

What does z_{γ} cut imply?

- sensitivity to $\mathbf{q} \rightarrow \mathbf{q}\gamma$ splitting
- non-perturbative corrections to be included
- introduce quark-to-photon fragmentation function $D_{q \rightarrow \gamma}(z_{\gamma}, \mu_F)$
 - measured in hadronic Z decays at LEP ($m Z
 ightarrow q ar q
 ightarrow q ar q \gamma$)

using ALEPH fit:

$$D_{q \to \gamma}(z_{\gamma}, \mu_F) = \frac{\alpha Q_q^2}{2\pi} P_{q \to \gamma}(z_{\gamma}) \left(\ln \frac{m_q^2}{\mu_F^2} + 2\ln z_{\gamma} + 1 \right) + D_{q \to \gamma}^{\text{ALEPH}}(z_{\gamma}, \mu_F),$$

where

$$D_{q \to \gamma}^{\text{ALEPH}}(z_{\gamma}, \mu_F) = \frac{\alpha Q_q^2}{2\pi} \left(P_{q \to \gamma}(z_{\gamma}) \ln \frac{\mu_F^2}{(1 - z_{\gamma})^2 \mu_0^2} + C \right)$$
$$P_{q \to \gamma}(z_{\gamma}) = \frac{1 + (1 - z_{\gamma})^2}{z_{\gamma}}$$

EW corrections for W/Z+jet production – Alexander Mück – p.9/18

also full NLO QCD corrections

• variable (phase-space dependent) scale supported

EW corrections for W/Z+jet production - Alexander Mück - p.10/18

- also full NLO QCD corrections
 - variable (phase-space dependent) scale supported
- photon-induced processes

at NLO QCD (phenomenologically irrelevant)

EW corrections for W/Z+jet production - Alexander Mück - p.10/18

- also full NLO QCD corrections
 - variable (phase-space dependent) scale supported
- photon-induced processes

at NLO QCD (phenomenologically irrelevant)

QCD-EW interference terms in 4-quark processes

(phenomenologically irrelevant, dropped for Z+jet)

EW corrections for W/Z+jet production - Alexander Mück - p.10/18

Monte-Carlo programs

- two completely independent calculations
 - in mutual agreement

RHFINISCH

HOCHSCHULE

FeynArts 1.0

 in-house Mathematica Routines
 loop integral library: DD
 Vegas integration

[Böhm, Denner, Küblbeck]

[Dittmaier]

- FeynArts 3.2,FormCalc 3.1 [Hahn]
 loop integral library: Coli [Denner]
 Pole [Meier, AM]
 - using Weyl-van der Waerden formalism

Dittmaier [hep-ph/9805445]

- automatic generation of subtraction/slicing terms
- automatic multi-channeling using Lusifer Dittmaier, Roth [hep-ph/0206070]

RHEINISCH-WESTFÄLISCHE HOCHSCHULE AACHEN RNNTH Setup

basic cuts

- $p_{\mathrm{T},l/\mathrm{miss/jet}} > 25~\mathrm{GeV}$
- $|y_{l/\mathrm{jet}}| <$ 2.5
- lepton isolation: $R_{l,jet} > 0.5$
- photon-energy fraction inside jets: $z_{\gamma} < 0.7$

recombination

- do not recombine photons and muons (bare μ^+)
- photons and electrons: $R_{\gamma,l} < 0.1$ (γ rec.)
- photons and partons: $R_{\gamma, \text{jet}} < 0.5$

renormalization and factorization scale

• fixed scale ($\mu = M_{W/Z}$)

• variable scale: $\mu = \sqrt{M_{W/Z}^2 + p_T^{had}}$ (our default choice)

EW corrections for W/Z+jet production - Alexander Mück - p.12/18

- PDF choice:
 - MRST2004QED \Rightarrow modern PDFs
 - almost no dependence of EW corrections on PDFs
- LHC energy
 - almost no dependence of EW corrections on energy
 - also Tevatron results very similar

$p_{T,jet}$ distribution for W+jet at the LHC:

large corrections at large energies (Sudakov logs) (on-shell W/Z good approximation)

$p_{T,jet}$ distribution for Z+jet at the LHC:

large corrections at large energies (Sudakov logs) (on-shell W/Z good approximation)

 $p_{T,jet}$ distribution for W/Z+jet at the LHC:

large corrections at large energies (Sudakov logs) (on-shell W/Z good approximation)

$M_{\rm T}$ distribution for W+jet at the LHC:

corrections dominated by (collinear) final state radiation

EW corrections for W/Z+jet production - Alexander Mück - p.15/18

$M_{\rm T}$ distribution for Z+jet at the LHC:

larger correction due to second charged lepton

EW corrections for W/Z+jet production - Alexander Mück - p.15/18

$p_{\rm T}$ distribution for W+jet at the LHC: (similar results for the Tevatron)

EW corrections for W/Z+jet production – Alexander Mück – p.16/18

$p_{\rm T}$ distribution for Z+jet at the LHC: (similar results for the Tevatron)

EW corrections for W/Z+jet production – Alexander Mück – p.16/18

Z lineshape in Z+jet events at the LHC:

EW corrections for W/Z+jet production - Alexander Mück - p.17/18

Z lineshape in Z+jet events at the LHC:

corrections hardly differ at 7 TeV

EW corrections for W/Z+jet production - Alexander Mück - p.17/18

comparison with inclusive Z production: (incl. Z production: Dittmaier, Huber [arXiv:0911.2329])

lineshape (and corrections) depends on $p_{T,Z}$ in the tails

EW corrections for W/Z+jet production - Alexander Mück - p.17/18

RVTH Summary

HOCHSCHULE

- W/Z+jet are SM benchmark process
- our calculation
 - flexible Monte Carlo programs for NLO EW+QCD
 - physical final state (all off-shell effects included)
 - for single W, single Z, W+jet, Z+jet
- EW corrections
 - typically at the percent level
 - larger corrections in some distributions
 - growing with energy ($\sim -25\%$ at $p_{\rm T,jet} = 1$ TeV)
- outlook
 - more pheno, e.g. W+jet \leftrightarrow Z+jet, incl. V \leftrightarrow V+jet
 - Z/W+ γ , Z/W+Higgs production

Back-up slides

EW corrections for W/Z+jet production – Alexander Mück – p.19/18

QCD corrections

 $p_{\mathrm{T,jet}}$ distribution for the LHC:

RHEINISCH

ECHNISCHE HOCHSCHULE

huge NLO QCD corrections:

new kinematical configuration:

back-to-back jets balance $p_{\rm T}$

- \Rightarrow 2 jet events with W emission
- ⇒ no genuine QCD correction for W+jet

use simple jet veto:

veto second jet with $p_{\rm T} > \frac{1}{2} p_{\rm T}^{\rm lead.}$

EW corrections for W/Z+jet production - Alexander Mück - p.20/18

RHEINISCHE TECHNISCHE HOCHSCHULE AACHEN EW corrections

$M_{\rm T}$ distribution for the LHC: (similar results for the Tevatron)

EW corrections for W/Z+jet production – Alexander Mück – p.21/18

RHEINISCHE TECHNISCHE HOCHSCHULE AACHEN EWcorrections

$M_{\rm T}$ distribution for the LHC: (similar results for the Tevatron)

corrections very similar to single W production

EW corrections for W/Z+jet production - Alexander Mück - p.21/18

$p_{\rm T}$ distribution for the LHC: (similar results for the Tevatron)

EW corrections for W/Z+jet production – Alexander Mück – p.22/18

$p_{\rm T}$ distribution for the LHC: (similar results for the Tevatron)

no similarity to single W production

EW corrections for W/Z+jet production - Alexander Mück - p.22/18

RNNE STFÄLISCHE HOCHSCHULE AACHEN BRNN Bingle W vs. W+jet

 $p_{\rm T}$ distribution for the LHC:

single W reweighting:

- boost W+jet event to
 W-boson rest frame
- reweight event with EW correction for single W in rest-frame $p_{T,l}$ bin

still big differences due to high- p_T jets

EW corrections for W/Z+jet production - Alexander Mück - p.23/18

$\ensuremath{p_{\mathrm{T}}}$ distribution for the LHC:

• only look at jets with $p_{T,jet} = 20 - 25 \text{ GeV}$

good but not perfect agreement

EW corrections for W/Z+jet production - Alexander Mück - p.23/18

$p_{\rm T}$ distribution for the LHC:

- only look at jets with $p_{T,jet} = 3 5 \text{ GeV}$
- cross-section not reliably predicted in this region
- one can still estimate the EW corrections for the limited kinematical region

very good agreement

EW corrections for W/Z+jet production – Alexander Mück – p.23/18

EW corrections: single W

EW corrections distort shapes:

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE

- in particular due to final state photon radiation
- also for $M_{\rm T}$ distribution
- strong dependence on lepton-photon recombination

EW corrections: single W

EW corrections distort shapes:

HSCHULE

- in particular due to final state photon radiation
- also for $M_{\rm T}$ distribution
- strong dependence on lepton-photon recombination

exclusive (bare) leptons (muons): inclusive leptons (electrons): $\alpha \log(M_W^2/M_l^2)$ corrections no large logs (KLN theorem)

EW corrections: single W

EW corrections distort shapes:

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE

- in particular due to final state photon radiation
- also for $M_{\rm T}$ distribution
- strong dependence on lepton-photon recombination

EW corrections for W/Z+jet production – Alexander Mück – p.24/18