Massive Quarks in Vincia

M. Ritzmann in collaboration with A. Gehrmann-De Ridder and P. Skands

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outline

- Introduction Parton Showers
- Vincia Principles
- Masses in Vincia

Parton Showers -Questions

- What governs the emission pattern?
- How are emissions ordered?
- How is colour coherence accounted for?

	Herwig++[1]	
based on	I → 2 Altarelli-Parisi splitting functions	\rightarrow \longrightarrow $\propto P_{q \rightarrow qg}$
ordering	angular ordering	
coherence		shower evolution

[1] M. Bähr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Plätzer, P. Richardson, M.H. Seymour, A, Sherstnev, J. Tully, B. R. Webber arXiv:0803.0883

	Herwig++[1]	Sherpa ^[2]	
I → 2based onAltarelli-Parisisplitting functions		I → 2 Altarelli-Parisi splitting functions	
ordering	angular ordering	particle virtuality	
coherence	angular ordering	angular ordering superimposed	

[2] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter arXiv: 0811.4622

	Herwig++[1]	Sherpa ^[2]	Sherpa ^[3]
based on	I → 2 Altarelli-Parisi splitting functions	I → 2 Altarelli-Parisi splitting functions	2 → 3 Catani-Seymour dipoles [a, b]
ordering	angular ordering	particle virtuality	transverse momentum p⊤
coherence	angular ordering	angular ordering superimposed	p⊤ ordering + 2 → 3 kinematics + CS. dipoles

[a] S. Catani, M. H. Seymour arXiv: hep-ph/9602277 [b] Z. Nagy, D. E. Soper arXiv: hep-ph/0601021 [3] S. Schumann, F. Krauss arXiv: 0709.1027

	Herwig++[1]	Sherpa ^[2]	Sherpa ^[3]	Pythia 8 ^[4]
based on	I → 2 Altarelli-Parisi splitting functions	I → 2 Altarelli-Parisi splitting functions	2 → 3 Catani-Seymour dipoles [a, b]	$I \rightarrow 2$ A-P s. functions $(2 \rightarrow 3 \text{ kinematics})$
ordering	angular ordering	particle virtuality	transverse momentum p⊤	transverse momentum p⊤
coherence		angular ordering superimposed	p⊤ ordering + 2 → 3 kinematics + CS. dipoles	p⊤ ordering + 2 → 3 kinematics

[4] T. Sjöstrand, S. Mrenna, P. Skands arXiv: 0710.3820

W. Giele, D. Kosower, P. Skands arXiv:0707.3652

W. Giele, D. Kosower, P. Skands arXiv:0707.3652

 based on 2→3 splittings (antenna cascade, as pioneered by Ariadne ^[1])

[1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988 based on 2→3 splittings (antenna cascade, as pioneered by Ariadne ^[1])

for other projects inspired by Ariadne, see e.g.

J.-C.Winter, F. Krauss arXiv: 0712.3913

A. J. Larkoski, M. E. Peskin arXiv: 0908.2450 [1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

W. Giele, D. Kosower, P. Skands arXiv:0707.3652

- based on 2→3 splittings (antenna cascade, as pioneered by Ariadne ^[1])
- flexible with regards to ordering variable

[1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

W. Giele, D. Kosower, P. Skands arXiv:0707.3652

- based on 2→3 splittings (antenna cascade, as pioneered by Ariadne ^[1])
- flexible with regards to ordering variable
- closely related to antenna subtraction^[2]

[1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

[2] A. Gehrmann-De Ridder, T. Gehrmann, E.W. N. Glover arXiv:hep-ph/0505111

W. Giele, D. Kosower, P. Skands arXiv:0707.3652

- based on 2→3 splittings (antenna cascade, as pioneered by Ariadne ^[1])
- flexible with regards to ordering variable
- closely related to antenna subtraction^[2]
- implemented for e⁺-e⁻ collisions at present

[1] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

[2] A. Gehrmann-De Ridder, T. Gehrmann, E.W. N. Glover arXiv:hep-ph/0505111

Goals of Vincia

a parton shower which

- improves the description of QCD radiation
- facilitates matching with fixed order results
- helps estimating its "theory error"
- can be used from within Pythia 8

at what value of the ordering variable Q will each antenna emit?

determined by evolution integral $\mathcal{I}_A(p_{ant}^2, Q_{start}^2, Q_{emit}^2)$

determine scales

determine scales

 $Q_2 > Q_1 > Q_3 \Rightarrow \operatorname{split} \{p_I, p_K\} \rightarrow \{p_i, p_j, p_k\}$

given Q₂, determine 3-particle invariants s_{ij}, s_{jk}

from s_{ij} , s_{jk} , determine p_i , p_j , p_k with momentum mapping

from s_{ij} , s_{jk} , determine p_i , p_j , p_k with momentum mapping

replace

restart

Evolution Integral
$$\mathcal{I}_A$$

 $\mathcal{I}_A \left(p_{\text{ant}}^2, Q_{\text{start}}^2, Q_{\text{emit}}^2 \right) = \frac{1}{\lambda} \int_{Q_{\text{emit}}^2}^{Q_{\text{start}}^2} \mathrm{d}s_{ij} \mathrm{d}s_{jk} \frac{\alpha_s \left(s_{ij}, s_{jk} \right)}{4\pi} C_{ijk} A_{IK \to ijk} \left(s_{ij}, s_{jk}, \dots \right)$

$$\begin{split} &Q: \text{evolution variable} \\ &s_{ij} = 2\,p_i\,p_j \\ &C_{ijk}: \text{colour factor} \\ &A_{IK \rightarrow ijk}(p_{\text{ant}}^2, s_{ij}, s_{jk}, m_i^2, m_j^2, m_k^2): \text{antenna function} \\ &\lambda = \lambda(p_{\text{ant}}^2, m_I^2, m_K^2) = (2\,p_I\,p_K)^2 - (2m_Im_K)^2 \end{split}$$

Evolution Variables

several options implemented

Antenna Functions

- reproduce (quasi-)collinear splitting functions / soft eikonals in unresolved limits
- parts which do not contribute in unresolved limits are irrelevant for fixed order, but influence the shower
 - \implies handle on shower uncertainty

Masses - needed?

- secondary production of beauty and charm are highly relevant to phenomenology
- during the shower evolution, quark masses will become important inevitably
- want to be consistent with the production of heavy mesons

Masses - needed?

 $e^+e^- \rightarrow \text{B-hadron(s)} + \text{X}, \quad \sqrt{s} = 91.28 \,\text{GeV}$

Masses in Vincia

A. Gehrmann-De Ridder, MR, P. Skands in preparation

masses have to be implemented in

- phase space
- antenna functions^[1]
- momentum mapping

[1] A. Gehrmann-De Ridder, MR arXiv:0904.3297

- conserves four-momentum
- keeps all particles on-shell

conserves four-momentum
 keeps all particles on-shell

one parameter remaining

- conserves four-momentum
 keeps all particles on-shell

one parameter remaining

- generalises massless antenna mapping^[1]
- treats emitters of identical mass symmetrically

[1] D.A. Kosower arXiv:hep-ph/0212097

 $\{p_I, p_K\} \to \{p_i, p_j, p_k\}, \quad p_I^2 = M_I^2, p_i^2 = m_i^2, \dots$ $p_I = x p_i + r p_j + z p_k$

antenna mapping given by

$$r = \frac{p_{\text{ant}}^2 + M_I^2 - M_K^2}{2 p_{\text{ant}}^2} \xrightarrow{2 m_j m_k} + \frac{\sqrt{s_{IK}^2 - (s_{IK}^{\min})^2}}{2 p_{\text{ant}}^2} \frac{(s_{jk} - \widetilde{s_{jk}^{\min}}) - (s_{ij} - s_{ij}^{\min})}{s_{jk} - s_{jk}^{\min} + s_{ij} - s_{ij}^{\min}}$$

Masses - needed?

 $e^+e^- \rightarrow \text{B-hadron(s)} + \text{X}, \quad \sqrt{s} = 91.28 \,\text{GeV}$

Masses - needed?

 $e^+e^- \rightarrow \text{B-hadron(s)} + \text{X}, \quad \sqrt{s} = 91.28 \,\text{GeV}$

Conclusions

- Vincia has been extended to include quark masses in electron-positron collisions
- next: finish tests and tune hadronisation on LEP data
- next-to-next: extend to initial state partons