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Motivation
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Why jets at NNLO?

Hadronic jets occur frequently in final states of high energy particle collisions.

Because of large production cross sections, jet observables can be measured with
high statistical accuracy; can be ideal for precision studies.

Examples include measurements of:

◮ αs from jet rates and event shapes in e+e− → jets;

◮ gluon PDFs and αs from 2 + 1 jet production in DIS;

◮ PDFs in single jet inclusive, V+ jet in pp (or pp̄) collisions.

Often, relevant observables measured with accuracy of a few % or better.

Theoretical predictions with same level of accuracy necessary. This usually requires
NNLO corrections.
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What is a subtraction scheme?

We know that IR singularities cancel according to the KLN theorem between real
and virtual quantum corrections at the same order in perturbation theory, for
sufficiently inclusive (IR safe) observables.

Example (simple residuum subtraction)

σ =

∫ 1

0

dσR(x) + σV , where

dσR(x) = x−1−ǫS(x) ,

S(0) = S0 < ∞ ,

σV = S0/ǫ+ F .

Define the counterterm dσR,A(x) = x−1−ǫS0. Then

σ =

∫ 1

0

[
dσR(x)− dσR,A(x)

]

ǫ=0
+

[
σV +

∫ 1

0

dσR,A(x)

]

ǫ=0

=

∫ 1

0

[
S(x)− S0

x1+ǫ

]

ǫ=0

+

[
S0

ǫ
+ F −

S0

ǫ

]

ǫ=0

=

∫ 1

0

S(x)− S0

x
+ F

The last integral is finite, computable with standard numerical methods.
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In a rigorous mathematical sense, the cancellation of both kinematical singularities
and ǫ-poles must be local. I.e. the counterterm must have the following general
properties

◮ must match the singularity structure of the real emission cross section
pointwise, in d dimensions

◮ its integrated form must be combined with the virtual cross section explicitly,
before phase space integration; ǫ-poles must cancel point by point

Gábor Somogyi | NNLO Jet Cross Sections by Subtraction | HP2.3rd | page 5



In a rigorous mathematical sense, the cancellation of both kinematical singularities
and ǫ-poles must be local. I.e. the counterterm must have the following general
properties

◮ must match the singularity structure of the real emission cross section
pointwise, in d dimensions

◮ its integrated form must be combined with the virtual cross section explicitly,
before phase space integration; ǫ-poles must cancel point by point

The construction should be universal (i.e. process and observable independent)

◮ to avoid tedious adaptation to every specific problem

◮ the integration of counterterms can be performed once and for all

◮ the IR limits of QCD (squared) matrix elements are universal, so a general
construction should be possible
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In a rigorous mathematical sense, the cancellation of both kinematical singularities
and ǫ-poles must be local. I.e. the counterterm must have the following general
properties

◮ must match the singularity structure of the real emission cross section
pointwise, in d dimensions

◮ its integrated form must be combined with the virtual cross section explicitly,
before phase space integration; ǫ-poles must cancel point by point

The construction should be universal (i.e. process and observable independent)

◮ to avoid tedious adaptation to every specific problem

◮ the integration of counterterms can be performed once and for all

◮ the IR limits of QCD (squared) matrix elements are universal, so a general
construction should be possible

Different specific choices of the counterterm correspond to different IR subtraction
schemes (CS dipole, FKS, antenna,. . . ).
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Why a new subtraction scheme at NNLO?

◮ Dipole subtraction (Catani, Seymour)

✔ fully local counterterms

✔ explicit expressions including
colour for a general process

✘ faces fundamental difficulties
when going to NNLO

◮ Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

◮ q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

◮ Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

◮ This scheme (Del Duca, GS, Trócsányi)
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Why a new subtraction scheme at NNLO?

◮ Dipole subtraction (Catani, Seymour)

◮ Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

✔ successfully applied to e+e− → 3
jets

✔ complete analytical integration
of antennae tractable

✘ counterterms not fully local

✘ cannot constrain subtractions
near singular regions

◮ q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

◮ Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

◮ This scheme (Del Duca, GS, Trócsányi)
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Why a new subtraction scheme at NNLO?

◮ Dipole subtraction (Catani, Seymour)

◮ Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

◮ q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

✔ exploits universal behaviour of
q⊥ distribution at small q⊥

✔ numerically efficient
implementation possible

✘ applicable only to the production
of colourless final states in
hadron collisions

◮ Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

◮ This scheme (Del Duca, GS, Trócsányi)
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Why a new subtraction scheme at NNLO?

◮ Dipole subtraction (Catani, Seymour)

◮ Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

◮ q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

◮ Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

✔ dispenses with the subtraction
method, but conceptually very
simple

✔ first method to yield physical
cross sections

✘ cancellation of ǫ-poles numerical

✘ can it handle complicated final
states?

◮ This scheme (Del Duca, GS, Trócsányi)
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Why a new subtraction scheme at NNLO?

◮ Dipole subtraction (Catani, Seymour)

◮ Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

◮ q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

◮ Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

◮ This scheme (Del Duca, GS, Trócsányi)

✔ fully local counterterms
(efficiency, mathematical rigour)

✔ explicit expressions including
colour (colour space notation of
dipole subtraction used)

✔ very algorithmic construction (in
principle valid at NnLO)

✔ option to constrain subtraction
near singular regions (efficiency,
important check)

✘ analytical integration of
counterterms requires computing
many new high dimensional
integrals, but can be done once
and for all
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Subtraction at NNLO
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What is needed to define a subtraction scheme?

To define a subtraction scheme, three problems must be addressed

1. Matching of limits: the known IR factorization formulae must be written in
such a way, that the overlapping soft/collinear singularities can be disentangled
in order to avoid multiple subtraction.

A1|M
(0)
m+1|

2 =
∑

i

[∑

i 6=r

1

2
Cir + Sr −

∑

i 6=r

CirSr

]
|M

(0)
m+1|

2

2. Extension over PS: the IR factorization formulae valid in the strict
soft/collinear limits have to be defined over the full PS. This requires the
introduction of appropriate mappings of momenta that respect factorization
and the (delicate) cancellation of IR singularities

{p}m+1
r

−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m;Q)[dp1,m]

{p}m+2
r,s
−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m;Q)[dp2,m]

3. Integration: the counterterms have to be integrated over the phase space of
the unresolved parton(s).
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Specific issues at NNLO

◮ Matching is cumbersome if done in a brute force way. However, an efficient
solution that works at any order in PT is known.

◮ Extension is very delicate. Among other constraints, the counterterms for
singly-unresolved real emission must have universal IR limits, which is not
guaranteed by QCD factorization.

◮ Choosing the counterterms such that integration is (relatively) easy generally
conflicts with the delicate cancellations in the various limits.
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The NNLO cross section

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2

dσRR

m+2Jm+2 +

∫

m+1

dσRV

m+1Jm+1 +

∫

m

dσVV

m Jm .
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The NNLO cross section

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2

dσRR

m+2Jm+2 +

∫

m+1

dσRV

m+1Jm+1 +

∫

m

dσVV

m Jm .

Doubly-real

◮ dσRR
m+2Jm+2

◮ Tree MEs with
m + 2-parton
kinematics

◮ kin. singularities as
one or two partons
unresolved: up to
O(ǫ−4) poles from PS
integration

◮ no explicit ǫ poles
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m

dσVV
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Doubly-real

◮ dσRR
m+2Jm+2

◮ Tree MEs with
m + 2-parton
kinematics

◮ kin. singularities as
one or two partons
unresolved: up to
O(ǫ−4) poles from PS
integration

◮ no explicit ǫ poles

Real-virtual

◮ dσRV

m+1Jm+1

◮ One-loop MEs with
m + 1-parton
kinematics

◮ kin. singularities as
one parton unresolved:
up to O(ǫ−2) poles
from PS integration

◮ explicit ǫ poles up to
O(ǫ−2)

Gábor Somogyi | NNLO Jet Cross Sections by Subtraction | HP2.3rd | page 10



The NNLO cross section

Consider the NNLO correction to a generic m-jet observable
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◮ kin. singularities as
one or two partons
unresolved: up to
O(ǫ−4) poles from PS
integration

◮ no explicit ǫ poles

Real-virtual

◮ dσRV

m+1Jm+1

◮ One-loop MEs with
m + 1-parton
kinematics

◮ kin. singularities as
one parton unresolved:
up to O(ǫ−2) poles
from PS integration

◮ explicit ǫ poles up to
O(ǫ−2)

Doubly-virtual

◮ dσVV
m Jm

◮ One- and two-loop
MEs with m-parton
kinematics

◮ kin. singularities
screened by jet
function: PS
integration finite

◮ explicit ǫ poles up to
O(ǫ−4)
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The NNLO counterterms

Rewrite the NNLO correction as

σNNLO =

∫

m+2

dσNNLO

m+2 +

∫

m+1

dσNNLO

m+1 +

∫

m

dσNNLO

m

=

∫

m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[
dσRV

m+1 +

∫

1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]
Jm

}

+

∫

m

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]}
Jm
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The NNLO counterterms

Rewrite the NNLO correction as

σNNLO =

∫

m+2

dσNNLO

m+2 +

∫

m+1

dσNNLO

m+1 +

∫

m

dσNNLO

m

=

∫

m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[
dσRV

m+1 +

∫

1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]
Jm

}

+

∫

m

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]}
Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2
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The NNLO counterterms

Rewrite the NNLO correction as

σNNLO =

∫

m+2

dσNNLO

m+2 +

∫

m+1

dσNNLO

m+1 +

∫

m

dσNNLO

m

=

∫

m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[
dσRV

m+1 +

∫

1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]
Jm

}

+

∫

m

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]}
Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2
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The NNLO counterterms

Rewrite the NNLO correction as

σNNLO =

∫
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m+2 +

∫

m+1

dσNNLO

m+1 +

∫

m

dσNNLO

m

=

∫
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m+2Jm+2 − dσ
RR,A2
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dσ
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m+2 Jm+1 − dσ
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m+2 Jm
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+

∫
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∫
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dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]
Jm

}

+

∫

m

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]}
Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2
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The NNLO counterterms

Rewrite the NNLO correction as

σNNLO =

∫
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m+2 +

∫

m+1

dσNNLO

m+1 +

∫

m

dσNNLO

m

=

∫

m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[
dσRV

m+1 +

∫

1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]
Jm

}

+

∫

m

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]}
Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1
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Rewrite the NNLO correction as
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1

dσ
RR,A1
m+2
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+

∫

m
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m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2
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∫

1

[
dσ

RV,A1
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(∫

1

dσ
RR,A1
m+2
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A1
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RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1

5. (
∫
1
dσ

RR,A1
m+2 )

A1 regularizes the singly-unresolved limit of
∫
1
dσ

RR,A1
m+2
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General features

◮ The counterterms are based on IR limit formulae.

◮ The counterterms are given completely explicitly for any process without
coloured particles in the initial state. (The extension to hadronic processes is
known explicitly to NLO.)

◮ The counterterms are fully local in colour ⊗ spin space: no need to consider
the colour decomposition of real emission matrix elements; azimuthal
correlations correctly taken into account in gluon splitting; can check explicitly
that the ratio of the sum of counterterms to the real emission cross section
tends to unity in any IR limit.

◮ It is straightforward to constrain subtractions to near singular regions: in any
given PS point only a (small) subset of all subtraction terms needs to be
explicitly evaluated during PS integration. Large gain in efficiency and strong
check.
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Integrating the counterterms
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Integrated counterterms

Counterterm Types of integrals
M
M

Done

∫
1
dσ

RR,A1
m+2 tree level singly-unresolved

M
M
M

✔

∫
1
dσ

RV,A1
m+1 one-loop singly-unresolved

M
M
M

✔

∫
1
(
∫
1
dσ

RR,A1
m+2 )

A1 tree level iterated singly-unresolved (1)
M
M
M

✔

∫
2
dσ

RR,A12
m+2 tree level iterated singly-unresolved (2)

M
M
M

✔

∫
2
dσ

RR,A2
m+2 tree level iterated doubly-unresolved

M
M
M

✘
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Integrated counterterms

Counterterm Types of integrals
M
M

Done

∫
1
dσ

RR,A1
m+2 tree level singly-unresolved

M
M
M

✔

∫
1
dσ

RV,A1
m+1 one-loop singly-unresolved

M
M
M

✔

∫
1
(
∫
1
dσ

RR,A1
m+2 )

A1 tree level iterated singly-unresolved (1)
M
M
M

✔

∫
2
dσ

RR,A12
m+2 tree level iterated singly-unresolved (2)

M
M
M

✔

∫
2
dσ

RR,A2
m+2 tree level iterated doubly-unresolved

M
M
M

✘
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Phase space integrals - an example

Example (abelian soft-double soft counterterm)

Among many others, in dσ
RR,A12
m+2 we have the abelian soft-double counterterm

(
StS

(0)
rt

)ab

= (8παsµ
2ǫ)2

∑

i,j,k,l

1

8
Sî k̂(r̂)Sjl(t)|M

(0)

m,(i,k)(j,l)
({p̃})|2

× (1− ytQ)
d′0−m(1−ǫ)(1− yr̂Q)

d′0−m(1−ǫ)Θ(y0 − ytQ)Θ(y0 − yr̂Q)

The set of m momenta, {p̃}, is obtained by an iterated mapping, and leads to an
exact factorization of phase space

{p}m+2
St−→ {p̂}m+1

Sr̂−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp̂1,m][dp1,m+1]

We must then compute

∫
[dp̂1,m][dp1,m+1]StS

(0)
rt ≡

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 ∑

i,k,j,l

[StS
(0)
rt ]ikjl |M

(0)

m,(i,k)(j,l)({p̃})|
2

where [StS
(0)
rt ]ikjl ≡ [StS

(0)
rt ]ikjl(pi , pk , pj , pl , ǫ, y0, d

′
0) is a kinematics dependent function.
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Example (abelian soft-double soft integral)

For simplicity, consider the terms in the sum where j = i and l = k: [StS
(0)
rt ]ikik .

Kinematical dependence is through cosχik = ∡(pi , pk), we set cosχik = 1− 2Yik,Q .

Using angles and energies in some specific Lorentz frame to parametrize the
factorized phase space measures, [dp̂1,m] and [dp1,m+1], we find that [StS

(0)
rt ]ikik is

proportional to

I
(11)
S (Yik,Q ; ǫ, y0, d

′
0) = −

4Γ4(1− ǫ)

πΓ2(1− ǫ)

By0 (−2ǫ, d ′
0 + 1)

ǫ
Yik,Q

∫ y0

0

dy y
−1−2ǫ(1− y)d

′
0−1+ǫ

×

∫ 1

−1

d(cosϑ) (sin ϑ)−2ǫ

∫ 1

−1

d(cosϕ) (sinϕ)−1−2ǫ
[
f (ϑ,ϕ; 0)

]−1[
f (ϑ, ϕ;Yik,Q)

]−1

×
[
Y (y , ϑ, ϕ;Yik,Q)

]−ǫ

2F1

(
− ǫ,−ǫ, 1− ǫ, 1− Y (y , ϑ, ϕ;Yik,Q)

)

where

f (ϑ,ϕ;Yik,Q) = 1− 2
√

Yik,Q(1− Yik,Q) sinϑ cosϕ− (1− 2Yik,Q)χ cosϑ

Y (y , ϑ, ϕ;χ) =
4(1− y)Yik,Q

[2(1− y) + y f (ϑ,ϕ; 0)][2(1− y) + y f (ϑ, ϕ;Yik,Q)]
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Example (abelian soft-double soft integral)

For this particular integral, we find

I
(11)
S (Yik,Q ; ǫ, y0, d

′
0) =

1

ǫ4
− 2

[
ln(Yik,Q) + Σ(y0,D

′
0) + Σ(y0,D

′
0 − 1)

]
1

ǫ3
+O(ǫ−2)

where D ′
0 = d ′

0|ǫ=0 and the dependence on the cut parameters enters through

Σ(z ,N) = ln z −
∑N

k=1
1−(1−z)k

k

Higher order expansion coefficients can be computed numerically (y0 = 1, D ′
0 = 3)

0
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

102

2 · 10
2

3 · 102

4 · 102

5 · 10
2

I
(1

1
)

S

(Y
ik

,Q
;ǫ
,y

0
=

1
,d

0 0
=

3
)

Yik,Q

Order: ǫ
−2

0
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

103

2 · 10
3

3 · 103

4 · 103

5 · 10
3

6 · 103

7 · 103

8 · 10
3

I
(1

1
)

S

(Y
ik

,Q
;ǫ
,y

0
=

1
,d

0 0
=

3
)

Yik,Q

Order: ǫ
−1

0
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

104

2 · 10
4

3 · 104

4 · 104

5 · 10
4

6 · 104

7 · 104

8 · 10
4

I
(1

1
)

S

(Y
ik

,Q
;ǫ
,y

0
=

1
,d

0 0
=

3
)

Yik,Q

Order: ǫ
0
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Phase space integrals - methods

Several different methods to compute the integrals have been explored

◮ use of IBPs to reduce to master integrals + solution of MIs by differential
equations

◮ use of MB representations to extract pole structure + summation of nested
series

◮ use of sector decomposition
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Phase space integrals - methods

Method Analytical
M
M

Numerical

IBP

✔ Singly-unresolved
integrals

✘ Bottleneck is the
proliferation of
denominators

✔ By evaluating full
analytical results

✘ No numbers without
full analytical results

MB

✔ Iterated singly-
unresolved integrals

✘ Bottleneck is the
evaluation of sums

✔ Direct numerical
evaluation of MB
integrals possible

✔ Fast and accurate

SD

✔ Easy to automatize

✘ Except for lowest
order poles, possible
only in principle

✘ Numerical behaviour
is generally worse
than MB method
(speed, accuracy)
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Analytical and numerical evaluation of the integrated counterterms

AS A MATTER OF PRINCIPLE

◮ The rigorous proof of cancellation of IR poles requires that all integrated
counterterms are computed analytically (at least up to the pole parts).

◮ Analytical forms are fast and accurate compared to numerical ones.

HOWEVER

◮ Analytical forms show (in all cases where they are available) that the
integrated counterterms are smooth functions of the kinematic variables.

HENCE

◮ For practical purposes, numerical forms of the integrated counterterms are
sufficient. Final results can be conveniently given by interpolating tables
computed once and for all or approximating functions. Thus, an efficient
implementation is possible even in cases where the full analytical calculation is
not feasible or practical (e.g. finite parts of integrated counterterms).
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Results
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Structure of the integrated counterterm

After summing over unresolved flavours (“counting of symmetry factors”), the
integrated iterated singly-unresolved counterterm is a product of an insertion
operator times the Born cross section

∫

1

dσ
RR,A12
m+2 = dσB

m ⊗ I
(0)
12 ({p}m; ǫ)

The insertion operator has the following structure in colour ⊗ flavour space

I
(0)
12 ({p}m; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{∑

i

[
C

(0)
12,fi

T2
i +

∑

k

C
(0)
12,fi fk

T2
k

]
T2

i

+
∑

j,l

[
S
(0),(j,l)
12 CA +

∑

i

CS
(0),(j,l)
12,fi

T2
i

]
TjTl

+
∑

i,k,j,l

S
(0),(i,k)(j,l)
12 {TiTk ,TjTl}

}

Here the C
(0)
12,fi

, C
(0)
12,fi fk

, S
(0),(j,l)
12 , CS

(0),(j,l)
12,fi

and S
(0),(i,k)(j,l)
12 functions depend on ǫ

(having poles up to O(ǫ−4)) and kinematics (also on the factorized PS cut
parameters).
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The insertion operator – examples

Example (e+e− → 2j)

The Born matrix element is |M
(0)
2 (1q, 2q̄)|

2. Colour and kinematics is trivial

T2
1 = T2

2 = −T1T2 = CF , y12 =
2p1 · p2
Q2

= 1

We find the insertion operator

I
(0)
12 (p1, p2; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{
2CF(3CF − CA)

ǫ4
+

CF

6

[
20CA + 81CF − 4TRnf

+ 12(3CA − 2CF)Σ(y0,D
′
0) + 12(2CA − CF)Σ(y0,D

′
0 − 1)

]
1

ǫ3
+O(ǫ−2)

}

Notice the dependence on the factorized PS cut parameters y0 and D ′
0 through

Σ(z ,N) = ln z −
∑N

k=1
1−(1−z)k

k

which should cancel between the various integrated counterterms in the full
doubly-virtual contribution.
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Example (e+e− → 2j)

Higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 0∑

i=−4

∑

colour

Col

ǫi
I
(Col,i)
12,2j +O(ǫ1)

Kinematical dependence would enter through y12 = 2p1 · p2/Q
2, but y12 = 1, hence

no PS dependence

P
re
li
m
in
ar
y

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 76

3
32.09 −87.90 −554.5

CACF −2 − 27
2

−52.40 −150.7 −339.5

CFTRnf 0 −1 −6.332 −17.65 1.013

The PS cut parameters are α0 = y0 = 1, d0 = d ′
0 = 3.
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Example (e+e− → 3j)

The Born matrix element is |M
(0)
3 (1q, 2q̄ , 3g )|

2. Colour is still trivial

T2
1 = T2

2 = CF , T2
3 = CA , T1T2 =

CA − 2CF

2
, T1T3 = T2T3 = −

CA

2

We find the insertion operator

I
(0)
12 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{
C 2
A + 2CACF + 6C 2

F

ǫ4
+

[
11C 2

A

2
+

50CACF

3

+ 12C 2
F −

CATRnf

3
−

C 2
ATRnf

CF

− 4CFTRnf +

(
5C 2

A

2
− CACF − 8C 2

F

)
ln y12

−
CA(5CA + 8CF)

2
(ln y13 + ln y23) + (C 2

A + 6CA2CF − 4C 2
F)Σ(y0,D

′
0)

+ 4CF(CA − CF)Σ(y0,D
′
0 − 1)

]
1

ǫ3
+O(ǫ−2)

}

Again depends on PS cut parameters through Σ(y0,D
′
0 − 1) and Σ(y0,D

′
0).
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Example (e+e− → 3j)

Higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 0∑

i=−4

∑

colour

Col

ǫi
I
(Col,i)
12,3j (p1, p2, p3) +O(ǫ1)

Kinematical dependence enters through yij = 2pi · pj/Q
2, i , j = 1, 2, 3. E.g. choose

P
re
li
m
in
ar
y

y12 = 0.333333, y13 = 0.333333, y23 = 0.333333

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 34.12 82.98 34.59 −543.8

CACF 2 9.721 1.209 −142.2 −696.6

C 2
A 1 6.497 12.80 15.87 −47.92

CFTRnf 0 − 13
3

−32.40 −127.9 −355.2

CATRnf 0 − 3
2

−12.01 −46.90 −104.1

The PS cut parameters are α0 = y0 = 1, d0 = d ′
0 = 3.
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Example (e+e− → 3j)

Higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 0∑

i=−4

∑

colour

Col

ǫi
I
(Col,i)
12,3j (p1, p2, p3) +O(ǫ1)

Kinematical dependence enters through yij = 2pi · pj/Q
2, i , j = 1, 2, 3. E.g. choose

P
re
li
m
in
ar
y

y12 = 0.238667, y13 = 0.758153, y23 = 0.003180

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 36.79 106.0 120.6 −431.0

CACF 2 25.38 143.6 537.3 1505

C 2
A 1 15.24 119.5 660.5 2902

CFTRnf 0 − 13
3

−31.30 −121.7 −346.0

CATRnf 0 − 3
2

−17.72 −109.1 −470.9

The PS cut parameters are α0 = y0 = 1, d0 = d ′
0 = 3.
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Example (e+e− → 3j)

Higher order expansion coefficients can be computed numerically

I
(0)
12 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 0∑

i=−4

∑

colour

Col

ǫi
I
(Col,i)
12,3j (p1, p2, p3) +O(ǫ1)

Kinematical dependence enters through yij = 2pi · pj/Q
2, i , j = 1, 2, 3. E.g. choose

P
re
li
m
in
ar
y

y12 = 0.937044, y13 = 0.024207, y23 = 0.038749

Col O(ǫ−4) O(ǫ−3) O(ǫ−2) O(ǫ−1) O(ǫ0)

C 2
F 6 25.85 34.59 −84.25 −566.8

CACF 2 27.79 136.8 330.6 46.20

C 2
A 1 21.02 195.4 1174 5355

CFTRnf 0 − 13
3

−57.59 −405.2 −2120

CATRnf 0 − 3
2

−24.07 −194.7 −1083

The PS cut parameters are α0 = y0 = 1, d0 = d ′
0 = 3.
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Conclusions
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Conclusions

✔ We have set up a general subtraction scheme for computing NNLO jet cross
sections, for processes with no coloured particles in the initial state.

✔ We have investigated various methods to compute the integrated
counterterms.

✔ We used the MB method to perform the integration of the iterated
singly-unresolved counterterm, discussed in this talk. The SD method was used
to provide independent checks.

✔ The integration of all singly-unresolved counterterms is finished. The iterated
singly-unresolved counterterm is essentially finished.

✘ The integration of the doubly-unresolved counterterm is feasible with our
methods, and is work in progress.
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