

Higggs in gluon fusion and other NNLO stories

by A. Lazopoulos ETH ZURICH 15 september 2010

Gluon fusion is the largest Higgs production mode at the LHC

Total cross section @ NLO Dawson | Spira, Djouadi, Graudenz, Zerwas

Total Cross section @ NNLO Harlander, Kilgore | Anastasiou, Melnikov | Ravindran, Smith, van Neerven

Threshold resummation Catani, de Florian, Grazzini, Nason | Moch,Vogt | Laanen, Magnea | Kulesza, Sterman | Idilbi, Xi, Ma, Juan | Ravindran | Ahrens, Becher, Neubert

> Pt resummation Bozzi, Catani, de Florian, Grazzini

Two-loop Light fermions EW Aglietti, Bonziani, Degrassi, Vicini

Two-loop EW Actis, Passarino, Sturm, Ucciratti

Three-loop mixed qcd and ewk (Anastasiou, Boughezal, Petriello)

> One-loop ewk, Pt > 0 Keung, Petriello

FeHiPro: next version

- FeHiPro is undergoing some major renovations. New version out soon.
- ZZ decay to leptons included
- Finite Higgs width effects included
- Flexible python interface for arbitrary cuts and histograms, mass scans, PDF and scale uncertainties etc.
- BSM physics with FeHiPro (see talk by E.Furlan)

Total and differential cross section

- use NNLO computation
- choose scales such that the physics is captured ($\mu_0 = m_h/2$)

Structure of logs SCET studies Perturbative convergence

- Include PDFs at NNLO
- Exact quark mass effects at NLO
- Include known e/w corrections
- Supply PDF error (including a_s)

Total Inclusive cross section σ (fb) for Tevatron \sqrt{s} =1.96 TeV $\delta\mu$

Scale and PDF uncertainty correlations

- Is the PDF error correlated with the choice of scale?
- Calculate PDF uncertainty with scales $[\mu = m_h/4, m_h]$
- Over a large mass range, for the Tevatron, the relative scale uncertainty $\frac{d\sigma(pdf,\mu)}{\sigma(pdf,\mu)}$ is constant to 0.3%

And now for something completely different: towards better NNLO calculations

In collaboration with C.Anastasiou and F. Herzog

NNLO is different than NLO

The entangled singularities

$$\begin{split} I &= \int_{0}^{1} dx_{1} dx_{2} \frac{1}{(x_{1} + cx_{2})^{2 - \epsilon}} \qquad c > 0 \\ & & \\ x_{1} > x_{2} \qquad x_{2} > x_{1} \\ x_{2} \to x_{2} x_{1} \qquad \text{(linear transformations)} \qquad x_{1} \to x_{1} x_{2} \\ &= \int_{0}^{1} \frac{dx_{1} dx_{2}}{x_{1}^{1 - \epsilon}} \frac{1}{(1 + cx_{2})^{2 - \epsilon}} \qquad I_{2} = \int_{0}^{1} \frac{dx_{1} dx_{2}}{x_{2}^{1 - \epsilon}} \frac{1}{(x_{1} + c)^{2 - \epsilon}} \end{split}$$

 I_1

Disentangling them

$$x_2 = \frac{x_1 x_2'}{x_1 + (1 - x_2')}$$

non-linear transformation preserves the integration region

$$I_{1} = \int_{0}^{1} \frac{dx_{1}dx_{2}}{x_{1}^{1-\epsilon}} \frac{(1+x_{1})(1-x_{2}+x_{1})^{\epsilon}}{(1-x_{2}+x_{1}+cx_{2})^{2-\epsilon}}$$
FINITE

Ready for plus-distribution expansion $x^{-1+\epsilon} = \frac{\delta(x)}{\epsilon} + \sum_{n=0}^{\infty} \frac{\epsilon^n}{n!} \left[\frac{\ln^n(x)}{x} \right]_+$

The one loop box

$$f(x_1, \dots, x_4) \equiv \frac{\Gamma(2+\epsilon)}{[-sx_1x_3 - tx_2x_4 - i0]^{2+\epsilon}}.$$

$$I = 2\Gamma(2+\epsilon) \int_0^1 dy_1 dy_2 dy_3 \left(1+y_1+y_2+y_3\right)^{2\epsilon} \\ \times \left\{ \left[-sy_1 - ty_2 y_3\right]^{-2-\epsilon} + \left[-ty_1 - sy_2 y_3\right]^{-2-\epsilon} \right\}$$

The one loop box

$$y_1 \to \frac{y_1 y_2 y_3}{1 - y_1 + y_2 y_3}$$

$$I = 2\Gamma(2+\epsilon) \int_0^1 dy_1 dy_2 dy_3 (y_2 y_3)^{-1-\epsilon} (1-y_1+y_2 y_3)^{-\epsilon} [y_1 y_2 y_3 + (1+y_2+y_3)(1-y_1+y_2 y_3)]^{2\epsilon} \\ \times \left\{ [-sy_1 - t(1-y_1) - ty_2 y_3]^{-2-\epsilon} + [-ty_1 - s(1-y_1) - sy_2 y_3]^{-2-\epsilon} \right\}$$
(4.15)

Singularities extracted!

A. Lazopoulos ETH Zurich HP2.3

The most complicated cases at 2-loops

- Massless non-planar integrals with all legs on-shell ν_1 ν_2 ν_3 ν_4 ν_6 ν_2 ν_2 ν_3 ν_4 ν_5 ν_7 ν_4
- Adding masses/scales simplifies the singularity structure.
- Threshold singularities that appear can be treated numerically with contour deformation.

The two loop Xtriangle

$$Xtri = 4^{2+2\epsilon} \int_0^1 dx_1 dx_2 dz dy dx \frac{zy^{1+\epsilon}(1-y)^{-1-\epsilon}(1-z)^{-1-\epsilon}}{[x(1-x) + yz(x-x_1)(x-x_2)]^{2+2\epsilon}}$$

Complicated singularity structure $x, y, z \rightarrow 0, 1$ etc. Unavoidable split in 4 integrals to remove singularities at 1

The Xtriangle resolved

$$Xtri_{11} = 2^{6+9\epsilon} \int_0^1 dx_1 dx_2 dz dy dx \frac{zy^{1+\epsilon}(2-y)^{-1-\epsilon}(2-z)^{-1-\epsilon}}{[4x(2-x) + yz(2x_1-x)(2x_2-x)]^{2+2\epsilon}}$$

Trivial numerical evaluation Number of integrals reduced by a factor of 16 with respect to sector decomposition

Identical procedure for the other integrals

$$\begin{aligned} Xtri_{12} &= 2^{6+9\epsilon} \int_0^1 dx_1 dx_2 dz dy dx \frac{(2-z)y^{1+\epsilon}(2-y)^{-1-\epsilon}z^{-1-\epsilon}}{\left[4x(2-x)+y(2-z)(2x_1-x)(2x_2-x)\right]^{2+2\epsilon}} \quad (6.1)\\ Xtri_{21} &= 2^{6+9\epsilon} \int_0^1 dx_1 dx_2 dz dy dx \frac{z(2-y)^{1+\epsilon}y^{-1-\epsilon}(2-z)^{-1-\epsilon}}{\left[4x(2-x)+(2-y)z(2x_1-x)(2x_2-x)\right]^{2+2\epsilon}} \quad (6.1)\\ Xtri_{22} &= 2^{6+9\epsilon} \int_0^1 dx_1 dx_2 dz dy dx \frac{(2-z)(2-y)^{1+\epsilon}y^{-1-\epsilon}z^{-1-\epsilon}}{\left[4x(2-x)+(2-y)(2-z)(2x_1-x)(2x_2-x)\right]^{2+2\epsilon}} \quad (6.1)$$

The Xbox and alikes

Same type of singularities

$$X_{box} = \Gamma(3+2\epsilon)(-s)^{-3-2\epsilon} \int \frac{dy \, dz \, dx_2 \, dx_4 \, [dx_{567}] \quad y^{1+\epsilon} z(1-y)^{-1-\epsilon} (1-z)^{-1-\epsilon}}{[x_5x_6+zy(x_6-x_2)(x_6+x_7-x_4)+zy(x_4-x_2)x_7 \, t/s]^{3+2\epsilon}}$$

The number of integrals is reduced by a factor of 20 in comparison to sector decomposition.

Extending to double real

- We pursue an identical approach for the double real.
- The standard approach used in Fehip is sector decomposition and results in many sectors.
- The number of integrals is greatly reduced with our non-linear mappings.

Overview

Higgs in gluon fusion

- Developing the next version of FeHiPro for NNLO predictions of Higgs production at the fully differential level.
- Perturbative evidence that the correct central scale should be chosen at values lower than m_h
- Studies of average pT also suggests low central scale
- Studies of PDF and scale uncertainties show little correlation

Towards new NNLO

- New approach to disentangling singularities for NNLO double virtual and double real amplitudes.
- It avoids the proliferation of integrals.
- Very promising first results in the most difficult 2-loop cases.
- Similar treatment for the double real.
- Great optimism for better differential NNLO calculations.

Tevatron

68% CL

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$m_H(GeV)$	$\sigma(fb)$	$\delta^+_{PDF+a_s}(\%)$	$\delta^{-}_{PDF+a_s}(\%)$	$\delta\mu^+(\%)$	$\delta\mu^-(\%)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		100	1851.39	5.40	4.75	9.55	12.22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		105	1605.82	5.47	4.84	9.37	12.16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		150	536.96	6.28	5.70	8.37	11.90
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		155	482.56	6.38	5.80	8.30	11.88
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		160	431.60	6.49	5.90	8.21	11.87
		165	379.16	6.60	6.01	8.18	11.88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		170	338.92	6.71	6.11	8.17	11.90
180 275.91 6.93 6.31 8.11 11.92		175	305.40	6.81	6.21	8.13	11.91
		180	275.91	6.93	6.31	8.11	11.92