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High-energy resummation for rapidity distributions

Resummation of large logs:

Logs must be under control for high precision physics.
Basically two classes of large logs:

@ Sudakov logs

@ High-energy (or small-x) logs

Sudakov resummation:

Formalism known in all interesting cases:
@ Inclusive cross sections
o Rapidity distributions

@ kr distributions...
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High-energy resummation for rapidity distributions

High energy resummation:

@ Up to now: simple recipe only for the inclusive case
[Catani, Ciafaloni, Hautmann (1991)]

e Corrections can be as large as NNLO
@ Not enough! Extension to differential quantities needed:

o Better resolution of PDFs x—dependence
o "Cure” perturbative instabilities at small-x (e.g. DY)
o Needed for resummed PDFs fit

y

In the following:
Resummation formalism for rapidity distributions
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Outline:

Resummation for inclusive quantities

@ The standard argument [Catani, Ciafaloni, Hautmann (1991)]:
o ky-factorization, BFKL and the gluon Green function

o A different perspective:

@ Collinear factorization
@ lteration a /a Curci, Furmanski, Petronzio
@ DGLAP-BFKL duality

Extension to rapidity distributions

| \

@ Rapidity and kinematics at small-x

@ Rapidity evolution along a CFP ladder

v

A phenomenological playground: Higgs

@ Higgs: dominated by large-x region

@ Small-x: control on the m; — oo approximation

N
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The inclusive case

Resummation:
Inclusive cross sections
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The kT—faCtorization theorem (Catani, Ciafaloni, Hautmann (1991)

Power counting plus kinematics at Q? < S:

Universal gluon Green function

v

k-factorization formula

dz dkt2 >
= | = k
o = kT2 .F(Z, T )

@ Universal gluon Green function F: solution of BFKL equation
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kr-factorization and resummation

Factorization in Mellin space

dz dkt?

F(z,kt?)

g =
z kT2

Undo the convolution in Mellin space — define the

1 [e's)
= M/ dxx"’—l/ dkr?(kp2)M-1
0 0

BFKL evolution of F gives the condition M = 4 (%)

<

Resummed result:

o0 =1 (%) ) = (2 (5)

Power series in & — asInx

\
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Inclusive resummation:

@ Do not solve BFKL for F
@ F: CFP t—channel iteration of collinear safe kernels v

,,,,,, Collinear factorization

CFP MS iteration

e kt dependence is now trivial (7: kr-independent)
@ Non trivial information now encoded in ~y
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Inclusive resummation:

MS result for n kernels

2\ € 2\ € @ g
on (N,Q27a5<22> ,e>:7<N,a5 (ZTQ) )5> / érlﬁ-né X

1 1 &l AR SRR
(n—l)!eTl{ZT”(N’O’(I <025n> w(/v‘,o)ﬂ

@ Small-x information encoded in universal functions v(/V, ¢)

@ Control over the factorization scale p

@ Easy to incorporate running coupling effects

~ is kT independent — reconstructed from collinear limit!

~v is a (generalized) anomalous dimension (residue of a coll. pole)
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Inclusive resummation:

The full result exponentiates:

o(N, @ as) = (N, as) /oo deerNas)=1o(N, €, Q% ),
0

. _ kg2

@ The small-x anomalous dimension:
BFKL-DGLAP duality — (N, avs) = 75 (%)

A\

4

We have recovered the Catani, Ciafaloni, Hautmann result!
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Rapidity distributions

Resummation:
Rapidity distributions
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Upstairs vs. downstairs rapidity

Towards a factorized formula:

@ Process dependent
rapidity distribution C:
distribution in ¥

@ True distribution:
: / y partonic rapidity partonic rapidity y

v

Kinematical problem!
How to relate yy <— y?
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Rapidity evolution along the ladder

Rapidity evolution at small-x

After each kernel:
@ The effect of Ps(z) on y:
longitudinal boost

@ In the small-x limit:
y ' =y+ % Inz

Relating ¥ to y

At small-x the relation is very simple!

1
y=y+ 5 Inz125...2,
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The “right” space

This time everything factorizes in Fourier-Mellin space:

do . do
— (N, b) = N_l/ (o
dy( , b) /dx x dy e dy(X,y)

Not a surprise, see collinear factorization!

y

The resummed result
do o0 ib o(N+2)—1
T = [dene (w3 ) gD

/ déxs <N - '2b) g9
0

X

\

High-energy resummation for rapidity distributions Fabrizio Caola



The resummed result

do > b\ vs(N+2)=1
Ty = [ aene (w3 )e D
e ib\ s(N—2)-1
[ e (n-3) g
0

Some comments:

X

For b = 0 — inclusive result OK!
Full MS computation ab initio

Full 1+ dependence under control

Note similarities with collinear factorization!
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Higgs rapidity distribution

A phenomenological
playground:
Higgs rapidity distribution
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Higgs rapidity distribution

Higgs dominated by large-x

Why Higgs rapidity distribution at small-x?
@ Higgs: simplest possible case (1 particle in the final state)

@ Analytic results exist (Anastasiou, Dixon, Melnikov (2003)) —>
cross-check of our method!

@ Small-x: very hard gluons — sensitive to finite m, effect
Match small-x to (N)NLO to asses quality of HEFT
(At NLO: : Anastasiou, Bucherer, Kunszt (2009))

Fabrizio Caola
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Higgs Effective Theory

Point-like approximation and small-x

Small-x: high-energy gluon— can resolve the loop

Finite m,

X

1 41
o~ og X (6(1_x)+zcka’s‘|n2k*1 7> o~ og X <5(1—X)+cha‘;|nk 1;)
k k

y 4

Small-x sensitive to finite m; effects! J

Use (N)NLO + small-x to assess finite m; corrections

InCIUSiVe: Marzani et al. (2009); Harlander, Ozeren (2009); Pak et al. (2010); Harlander et al. (2010)
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The small-x NLO rapidity distribution:

m; — 00 approximation

Introduce u = exp(—2y)

d
d—Z(x, u) = 300%

[M—a(u—x)|nx+ <u<—>llj>]

@ In agreement with Anastasiou, Dixon, Melnikov (2003) v/
@ Note that in rapidity distributions small-x # In x!

Our result:

do 1 4m?
a—Uo(T)Cl(T)é(U—X)—i- <u<—> ) . 7= ml21t

Different partonic rapidity distributions!
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Matching and K —factor at NLO:
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o NNPDF2.0 central set Consistent with Anastasiou et al. (2009)
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Conclusions

A simple recipe for computing resummed rapidity distributions

@ Everything in terms of an off-shell rapidity distribution

@ Factorization in Fourier-Mellin space

Application: finite m; effects in Higgs rapidity distributions

@ NLO: effects within 5%, as in Anastasiou et al. (2009)

@ NNLO (preliminary): - negligible effects at 7 TeV
- at most 2% at 14 TeV
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Outlook

Extend to other processes: Drell-Yan!

Systematics

Geometric and kinematic acceptance:

A word about low mass Drell-Yan

(=]
3 Using Vrap with MRST PDFs. 3
[T omrmommo)
e §
§ §
< €

LO - NLO - NNLO convergence gets worse as you go to lower masses

Jonathan Anderson, VRAP with MRST PDFs
v

Extend beyond LLx accuracy
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