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For which τ is resummation important?

z ∼ 1: logarithmic enhancement → resummation of logk(1−z)
1−z

σ(τ) =
∫ 1

τ

dz

z
L

(τ

z

)
σ̂(z) , τ =

Q2

s
, z =

Q2

ŝ

z ∼ 1 always contained in the integration region

when does that region give the dominant contribution?

Standard argument?: resummation is relevant at a given τ when the
region of partonic z ∼ 1 is enhanced by PDFs.

N–space analysis
and saddle point argument

? S.Catani, D.de Florian, M.Grazzini (hep-ph/0102227)
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Drell-Yan qq̄ at NLO in N–space
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Saddle point argument

σ(τ) =
1

2πi

∫ c+i∞

c−i∞
dN τ−N L(N) σ̂(N)

The Mellin inversion integral is dominated by the values of N in the
proximity of the saddle point N = N0:

log
1
τ

= − d

dN
logL(N)− d

dN
log σ̂(N)

RHS: monotonically decreasing function, with singularity at small N ≥ 0

saddle N0 real, positive and unique

τ ∼ 1 ⇒ log 1
τ → 0 ⇒ N0 large

τ � 1 ⇒ log 1
τ large ⇒ N0 small

How small?
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Saddle point N0 vs τ
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Relevance of resummation

To summarize:

resummation is relevant when log contribution is dominant (at hadron
level)

log contribution is dominant (at parton level) for N & 2

the Mellin inversion integral is dominated by the saddle point N = N0

log contribution is dominant (at hadron level) when N0 & 2

resummation is relevant for

τ &

{
0.003 for pp colliders (LHC)

0.02 for pp̄ colliders (Tevatron)

Much smaller than expected!
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Resummation

Resummation is performed in N–space (L = 2β0αs log 1
N )

σ̂res(N) = g0(αs) exp
[

1
αs

g1(L) + g2(L) + αsg3(L) + α2
sg4(L) + . . .

]
known up to g4 (N3LL): S.Moch, J.A.M.Vermaseren, A.Vogt (hep-ph/0506288)

Branch cut due to the Landau singularity for N > NL = exp 1
2β0αs

The Mellin inverse does not exist
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Minimal prescription

S.Catani, M.L.Mangano, P.Nason, L.Trentadue (hep-ph/9604351)

σMP(τ) =
1

2πi

∫ c+i∞

c−i∞
dN τ−N L(N) σ̂res(N)

with c < NL = exp 1
2β0αs

, as in the figure.

Good properties:

well defined for all τ < 1
exact for invertible functions

asymptotic to the original divergent series

But...

N space

NL
c

a non-physical region of the parton cross-section contributes

difficult numerical implementation
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Minimal prescription: non-physical contribution

σMP(τ) =
∫ +∞

τ

dz

z
L

(τ

z

)
σ̂MP(z)

The integral extends to +∞, not to 1!

σ̂MP(z > 1) suppressed by powers of Λ
Q , but huge oscillations near z = 1

The MP is more conveniently used
in the N–space formulation

Need for L(N), for values of N
where the Mellin transform of L(x)
does not converge
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Borel prescription (1)

M−1
[

σ̂res(N)

]
=

∞∑
k=1

hk(ᾱ) ᾱk

M−1

[

logk 1
N

]

, ᾱ = 2β0αs

Treat the divergent series M−1(σ̂res(N)) with Borel method:?

∞∑
k=1

bk

[
1
k!

∫ +∞

0
dw e−w wk

]
Borel=

∫ +∞

0
dw e−w

∞∑
k=1

bk

k!
wk

the inner sum converges

the integral diverges (the series is not Borel-summable)

proposed solution: cut-off C in the integral

? S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452);

MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)
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, ᾱ = 2β0αs

Treat the divergent series M−1(σ̂res(N)) with Borel method:?

∞∑
k=1

bk

[
1
k!

∫ +∞

0
dw e−w wk

]
Borel=

∫ +∞

0
dw e−w

∞∑
k=1

bk

k!
wk

the inner sum converges

the integral diverges (the series is not Borel-summable)

proposed solution: cut-off C in the integral

? S.Forte, G.Ridolfi, J.Rojo, M.Ubiali (hep-ph/0601048); R.Abbate, SF, GR (hep-ph/0707.2452);

MB, SF, GR (hep-ph/0807.3830); MB, SF, GR (coming soon)

Marco Bonvini Threshold resummation for Drell-Yan production: theory and phenomenology 11



Borel prescription (1)

M−1
[
σ̂res(N)

]
=

∞∑
k=1
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Borel prescription (2)

σ̂BP(z, C) =
1

2πi

∮
C

dξ

Γ(ξ + 1)

[
logξ−1 1

z

]
+

∫ C

0

dw

ᾱ
e−

w
ᾱ Σ

(
w

ξ

)
where Σ(ᾱ log 1

N ) ≡ σ̂res(N)

Remarks

resummed expression at parton level → easier numerical implementation

asymptotic to the original divergent series

parameter C to estimate ambiguity

cut-off related to the inclusion of higher-twist terms e−
C
ᾱ '

(
Λ2

Q2

)C/2

z dependence under control:

logk log 1
z

log 1
z

logk(1− z)
1− z

logk 1−z√
z

1− z
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Comparison with fixed order: Drell-Yan qq̄ at NLO

αs

π
4CF

( »
log(1− z)

1− z

–
+

− log
√

z

1− z
− 1 + z

2
log

1− z√
z

+

„
π2

12
− 1

«
δ(1− z)

)

»
log log 1

z

log 1
z

–
+

 0
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State of the art

the BP can produce the same logs of MP

indistinguishable at hadron level for τ � 1 (always in
phenomenological applications)
BP has an easier and faster numerical implementation

the BP can produce “more physical” logs

include some classes of subleading terms
better small–z behaviour

there are subleading terms which are important

logk(1− z) and similar

and which are not included in the resummed expressions

the difference in the included subleading terms is useful to
estimate the importance of these terms
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Impact in phenomenology: rapidity distributions (1)

1
τ

dσ

dQ2dY
=

∫ 1

√
τeY

dx1

x1

∫ 1

√
τe−Y

dx2

x2
f1(x1) f2(x2) C

(
τ

x1x2
, Y − 1

2
log

x1

x2

)

Fourier transform of C(z, y) wrt y

C̃(z,M) = dy C(z, y)

Since |log z| ' 1− z we have

C̃(z, M) = C(z) [1 +O(1− z)]

or, back to y space,

C(z, y) = C(z) δ(y) [1 +O(1− z)]
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Impact in phenomenology: rapidity distributions (2)

After changing variables we get the compact expression

1
τ

dσres

dQ2dY
=

∫ 1

τe2|Y |

dz

z
Cres(z) f1

(√
τ

z
eY

)
f2

(√
τ

z
e−Y

)

depends on Cres(z) =M−1 [σ̂res(N)], the well-known
rapidity-integrated resummed coefficient

has the form of a convolution product → both Borel and minimal
prescriptions are applicable!

Results at NNLO + NNLL

C++ code:

NNLO: C.Anastasiou, L.Dixon, K.Melnikov, F.Petriello (hep-ph/0312266)

extension with NNLL resummation (Borel and minimal)

interface to LHAPDF library
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W asymmetry at Tevatron with NNPDF2.0
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Rapidity distribution: DY (8 GeV) at NuSea
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Figure 9: Fixed-order (Y < 0) versus resummed (Y > 0) predictions for the rapidity distribu-
tion at

√
s = 38.76GeV and two values of M , at different orders in perturbation theory. The

bands reflect the combined scale dependence. LO bands are light, NLO bands are medium,
NNLO bands are dark.

is not an important effect. This is in stark contrast to the conclusion reached in [15]. For
the higher mass M = 16GeV, the two NNLO bands are consistent with each other at central
rapidity, but the resummed result is significantly higher than the fixed-order prediction for
Y ! 0.3. For the integrated cross section at this value of M , threshold resummation enhances
the fixed-order value by about 7%. This can be seen from Table 2, which shows our final
predictions for the integrated cross section dσ/dM2. Besides the results obtained with and
without resummation, we also give the contributions of the resummed threshold terms alone,
corresponding to the first term in (61).

5.4 Resummation in moment space

Traditionally, resummation is performed in moment rather than momentum space [9, 10]. For
the Drell-Yan cross section integrated over rapidity one takes moments in τ at fixed M :

σN =

∫ 1

0

dτ τN−1 dσ

dM2
. (62)

For the moment-space analysis of the rapidity distribution one performs a Fourier transform
in the rapidity in addition to taking moments in τ [13, 15]. In the following, we will restrict
ourselves to the integrated cross section for simplicity. Using the representation (12), the cross
section in moment space factorizes as

σN =
4πα2

3NcM4

∑

q

e2
q

[
f q/N1

N+1 f q̄/N2

N+1 + (q ↔ q̄)
]
CN+1(M

2, µf) , (63)

where the moments of the hard-scattering coefficient and the PDFs are defined in analogy
with (62). In order to accomplish the resummation for the moments of the hard-scattering

26

M.Bonvini, S.Forte, G.Ridolfi
preliminary

NNPDF2.0

T.Becher, M.Neubert, G.Xu
(hep-ph/0710.0680)

MRST04NNLO
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Rapidity distribution: DY (1 TeV) at LHC with NNPDF2.0
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Rapidity distribution: Z at LHC with NNPDF2.0
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Rapidity distribution: Z at LHC with NNPDF2.0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-4 -3 -2 -1  0  1  2  3  4

dσ
/d

Q
/d

Y 
[p

b/
G

eV
]

Y

DY rapidity distribution.   Collider: pp   Subprocess: Z+gamma

√s = 7.00 TeV
Q = MZ

0.5 < µR/Q < 2
0.5 < µF/Q < 2

τ = 0.00017

LO
NLO

NNLO
Minimal LL+LO

Minimal NLL+NLO
Minimal NNLL+NNLO

M.Bonvini, S.Forte, G.Ridolfi - preliminary

Marco Bonvini Threshold resummation for Drell-Yan production: theory and phenomenology 21



Rapidity distribution: W+ at LHC with NNPDF2.0
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Rapidity distribution: W+ at LHC with NNPDF2.0
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Rapidity distribution: W− at LHC with NNPDF2.0
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Rapidity distribution: W− at LHC with NNPDF2.0
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Conclusions

New results

Quantitative evaluation of τ for which resummation is
important: much smaller than expected

Improved Borel prescription

New phenomenological results: rapidity distributions

Outlook

Include subdominant 1/N contributions
(S.Moch, A.Vogt: hep-ph/0909.2124 and today talk)

Apply to other processes such as Higgs production
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Backup slides
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Minimal prescription: practical implementation

Expand the function
zα

(1− z)β
L(z)

on a polynomial basis (with suitable α, β > 0)

Compute the Mellin transform of L(z) analytically

Compute the complex Mellin inversion integral numerically
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Borel prescription: practical implementation

Compute the convolution integral∫ 1

τ

dz

z
L

(τ

z

) [
(1− z)ξ−1

]
+

It is convenient to expand on a polynomial basis the function

1
1− z

[
1
z
L

(τ

z

)
− L(τ)

]
and compute the integral analytically

Compute the complex ξ integral numerically
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How BP works

Apply the BP to a power of log 1
N

M−1

(
logk 1

N

) ∣∣∣∣∣
BP

=
γ(k + 1, C/ᾱ)

Γ(k + 1)
M−1

(
logk 1

N

)

The BP essentially truncates the divergent sum
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