Precise prediction for Higgs production via gluon fusion in BSM scenarios SERVICE STATES OF THE STATES OF T

Elisabetta Furlan

ETH Zürich

Motivation

- gluon fusion is the main mechanism for Higgs production at hadron colliders
- it is sensitive to any coloured particle that couples to the Higgs, e.g. the top
- * the Higgs sector is untested

this channel is very sensitive to new physics effects

- * the description of electroweak symmetry breaking provided by the Standard Model needs to be extended
- extensions of the SM require new particles which may contribute to gluon fusion

Motivation

Motivation

Assume that we find...

- a relatively light Higgs with a cross section much different than σ_{SM} ($\sigma \sim 0.35 \sigma_{SM}$, $\sigma \sim 0.80 \sigma_{SM}$?)
 - and/or some new heavy particles
- > lot of model-building activity ...
 - ... and of perturbative QCD calculations of the gluon fusion cross section for these models

Effective-theory approach

experiments (LEP, Tevatron, ..) indicate that new particles must be heavy, while the Higgs is light

 $\mathcal{L}_{eff} = -\frac{\alpha_s}{4v} C H G^a_{\mu\nu} G^{a\mu\nu}$

* this allows for an effective-theory approach:

depends on the specific model

 $\left(C_0 + \left(\frac{\alpha_s}{\pi}\right)C_1 + \left(\frac{\alpha_s}{\pi}\right)^2 C_2 + \dots\right)\right)$

QCD only!

factorization of QCD and NP effects

Gluon fusion in the SM

it is known very precisely...

but it required tough calculations

$$\sigma_{NNLO}^{(SM)} = \sigma_{LO}^{(SM)} \left(1 + 0.7 + 0.3\right)$$

NLO NNLO

Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven; Graudenz, Spira, Zerwas

$$\left(\frac{\Delta\sigma}{\sigma}\right)^{\exp} \sim \pm 10\%$$
 , $\left(\frac{\Delta\sigma}{\sigma}\right)_{SM}^{NNLO} \sim \pm 10\%$

top Higgs

top

Gluon fusion in BSM

- * Only very recent NNLO calculations in some BSM scenarios
 - scalar octects (Boughezal, Petriello)
 - fourth generation (Anastasoiu, Boughezal, Furlan)
- * Why?
 - The low-energy theory is the same as in the Standard Model, but the matching calculation at NNLO is much more complicated:
 - number of diagrams
 - * renormalization
 - dependence on multiple mass scales

Technical challenges

- Large number of Feynman diagrams
 - \sim 500 in the SM, \sim 2000 in four-generation SM, \sim 6000 in composite Higgs, ...
- Apply costly differentiations for Taylor expansion
- * Reduce a large number ($^{\sim}10^{5}$) of integrals to master integrals
 - we wrote our own routines in
 - + QGRAF (Nogueira)
 - + Mathematica
 - + FORM (Vermaseren)
 - + AIR (Anastasiou, Lazopoulos)

same methods for SM and BSM Wilson coefficients

Technical challenges

Evaluate the master integrals

much more difficult than in the SM (many mass scales)
in many cases, impossible with traditional analytic
methods -> sector decomposition

Hepp; Denner, Roth; Binoth, Heinrich; Anastasiou, Melnikov, Petriello; Anastasiou, Beerli, Daleo; Lazopoulos, Melnikov, Petriello

We want to construct an effective theory that only contains light particles

0000000

C.

* So far

000 000

heavy particles give loop contributions to the self-energies and vertices of light particles

- contributions from heavy-particle loops are missing in the effective theory
 - account for them by rescaling the fields and the couplings in the effective theory (Chetyrkin, Kniehl, Steinhauser)

Four-generation SM

- * already at LO finite-mass effects can change the enhancement factor by 20%
- * the theory uncertainty on the NLO cross section is much higher than the experimental uncertainty
- * we have all the tools to compute the Higgs production cross section through gluon fusion at NNLO accuracy

Four-generation SM

* at NNLO we have diagrams containing two different heavy-mass scales :

master integrals can contain up to two, different, massive propagators

- * the NNLO cross section is 10-15% higher than the NLO cross section
- * the theoretical error decreases from 20-30% at NLO to 10% at NNLO
- our result has been used by the Tevatron collaborations to put accurate constraints on the mass of the Higgs boson in a fourgeneration Standard Model

Exclusion limits on mu

exclude 131 GeV $\lesssim m_{\rm H} \lesssim 204$ GeV

Composite Higgs models Georgi, Kaplan

- class of models that address the hierarchy problem
- the couplings of the Higgs boson are reduced with respect to the Standard Model

how is the Higgs production cross section modified?

- new heavy quarks are typically introduced
 - example: multiplets of heavy quarks that transform under the fundamental representation of SO(5)

Wilson coefficient

* The three-loops term in the renormalized Wilson coefficient is

$$\begin{split} \left(\frac{\alpha_s'(\mu)}{\pi}\right)^2 &\left\{ L_0 \left[\frac{1877}{192} - \frac{77}{576} n_h + \sum_{i=1}^{n_h} \left(\frac{113}{96} \log\left(\frac{m_i}{\mu}\right) + \frac{3}{8} \log^2\left(\frac{m_i}{\mu}\right) \right) \right] \\ -L_1 \left[\frac{19}{8} + \frac{113}{96} n_h + \frac{3}{4} \sum_{i=1}^{n_h} \log\left(\frac{m_i}{\mu}\right) \right] + \frac{3}{8} n_h L_2 - n_l \left(\frac{67}{96} L_0 + \frac{2}{3} L_1 \right) \\ + \sum_{\substack{1 \le i < n_h}} \left[(y_i - y_j) \left(\frac{57}{128} \left(\frac{m_i^2}{m_j^2} - \frac{m_j^2}{m_i^2} \right) + \left(\frac{57}{128} \frac{m_i^2}{m_j^2} + \frac{57}{128} \frac{m_i^2}{m_i^2} + \frac{43}{32} \right) \log\left(\frac{m_i}{m_j}\right) \\ + \frac{57}{256} \frac{m_i^6 + m_j^6}{m_i^2 m_j^2 (m_i^2 - m_j^2)} \log^2\left(\frac{m_i}{m_j}\right) \right) - \log^2\left(\frac{m_i}{m_j}\right) \left(\frac{73}{256} (y_i + y_j) + \frac{23}{128} \frac{y_i m_i^2 - y_j m_j^2}{m_i^2 - m_j^2} \right) \\ + 3 \left(m_i^2 - m_j^2 \right) \frac{19m_i^4 + 24m_i^2 m_j^2 + 19m_j^4}{512m_i^3 m_j^3} \left(y_j \log\left(\frac{m_j - m_i}{m_j + m_i}\right) - y_i \log\left(\frac{m_i - m_j}{m_i + m_j}\right) \right) \right) \\ - 3 \frac{19m_i^6 + 5m_i^4 m_j^2 - 5m_i^2 m_j^4 - 19m_j^6}{1024m_i^3 m_j^3} \left(8y_i \text{Li}_3\left(\frac{m_j}{m_i}\right) - 8y_j \text{Li}_3\left(\frac{m_i}{m_j}\right) - y_i \text{Li}_3\left(\frac{m_j^2}{m_i^2}\right) \\ + y_j \text{Li}_3\left(\frac{m_i^2}{m_j^2}\right) - 2 \log\left(\frac{m_i}{m_j}\right) \left(y_i \text{Li}_2\left(\frac{m_j^2}{m_i^2}\right) + y_j \text{Li}_2\left(\frac{m_i}{m_j^2}\right) - 4y_i \text{Li}_2\left(\frac{m_j}{m_i}\right) - 4y_j \text{Li}_2\left(\frac{m_i}{m_j}\right) \right) \right) \right] \right\} \\ y_i = \frac{Y_i}{m_i}, L_0 = \sum_i y_i, L_1 = \sum_i \left(y_i \log(m_i) \right), L_2 = \sum_i \left(y_i \log^2(m_i) \right). \end{split}$$

* include

exact LO cross-section

NLO and NNLO Wilson coefficient in the infinite-mass approximation

	$\frac{\sigma_{CH}^{NNLO}}{\sigma_{SM}^{NNLO}}$	
one multiplet	33 - 34%	✓ Falkowski
two multiplets	1-360%	

* why do we obtain so large deviations from the SM?

→ the leading contribution to the Higgs production cross section depends on $\left(\sum_{q} \frac{Y_q}{m_q}\right)^2$

→ top quark with a relatively large Yukawa coupling Y_t + other relatively light new quarks with a coupling of the same sign as $Y_t \Rightarrow$ enhancement

light fermions with small Yukawa couplings, or with Yukawa couplings of about the same size, but with opposite signs \Rightarrow suppression

- higher-order terms affect the LO result differently than in the SM for small values of the cross section ($\sigma^{NNLO} \simeq \sigma^{LO}, \sigma^{NNLO} \simeq 4\sigma^{LO}$)
- * the couplings of the Higgs to the gauge bosons are less suppressed than the couplings to the fermions
 - electroweak corrections can be more relevant than in the SM

Conclusions

- * the Higgs boson is likely to come with some new physics
- * many viable BSM theories exist, and many introduce new coloured particles
- new particles can significantly affect the gluon-fusion cross section
- * we adopt an effective-theory approach to disentangle new physics from QCD
- * we have automatised the matching procedure for BSM models through NNLO
- * examples: four-generation SM, composite Higgs models

can have large deviations from the Standard Model!