Gluino Pair Production at the LHC

Matthias Kauth

in collaboration with Johann H. Kühn, Peter Marquard and Matthias Steinhauser

Institut für Theoretische Teilchenphysik Karlsruher Institut für Technologie

• Supersymmetry as a candidate for new physics

- Supersymmetry as a candidate for new physics
- possible detection at the LHC

- Supersymmetry as a candidate for new physics
- possible detection at the LHC

• $pp \rightarrow \tilde{g}\tilde{g}$ at LO

[Harrison and Smith '83; Dawson, Eichten and Quigg '85; Haber and Kane '85]

- Supersymmetry as a candidate for new physics
- possible detection at the LHC

• $pp \rightarrow \tilde{g}\tilde{g}$ at LO

[Harrison and Smith '83; Dawson, Eichten and Quigg '85; Haber and Kane '85]

• investigation of $\tilde{g}\tilde{g}$ - bound states [Keung and Khare '84; Kühn and Ono '84; Goldman and Haber '85]

- $pp \rightarrow \tilde{g}\tilde{g}$ at NLO SQCD
 - Beenakker, Höpker, Spira and Zerwas '97;

Beenakker, Krämer, Plehn, Spira and Zerwas '98

- $pp \rightarrow \tilde{g}\tilde{g}$ at NLO SQCD
 - [Beenakker, Höpker, Spira and Zerwas '97;

Beenakker, Krämer, Plehn, Spira and Zerwas '98]

• soft - gluon resummation (\rightarrow Sommerfeld factor) [Kulesza and Motyka '09; Langenfeld and Moch '09;

Beenakker, Brensing, Krämer, Kulesza, Laenen, Motyka and Niessen '10

- $pp \rightarrow \tilde{g}\tilde{g}$ at NLO SQCD
 - Beenakker, Höpker, Spira and Zerwas '97;

Beenakker, Krämer, Plehn, Spira and Zerwas '98

- soft gluon resummation (→ Sommerfeld factor)
 [Kulesza and Motyka '09; Langenfeld and Moch '09;
 Beenakker, Brensing, Krämer, Kulesza, Laenen, Motyka and Niessen '10]
- replacement of the Sommerfeld factor by the non relativistic Green's function (NRQCD)

[Hagiwara and Yokoya '09]

- $pp \rightarrow \tilde{g}\tilde{g}$ at NLO SQCD
 - [Beenakker, Höpker, Spira and Zerwas '97;

Beenakker, Krämer, Plehn, Spira and Zerwas '98

- soft gluon resummation (→ Sommerfeld factor)
 [Kulesza and Motyka '09; Langenfeld and Moch '09;
 Beenakker, Brensing, Krämer, Kulesza, Laenen, Motyka and Niessen '10]
- replacement of the Sommerfeld factor by the non relativistic Green's function (NRQCD)
 [Hagiwara and Yokoya '09]
- complete NLO analysis of the differential cross section at threshold

[Kauth, Kühn, Marquard and Steinhauser '10] (in preparation)

- properties of gluinos
- interact only strong
- spin- $\frac{1}{2}$ particles
- no mixing

- adjoint $SU_C(3)$ representation
- Majorana fermions
- $-m_{\tilde{g}}>308\,{
 m GeV}\,[\,{
 m PDG}\,$ '10]

- properties of gluinos
- interact only strong
- spin- $\frac{1}{2}$ particles
- no mixing

- adjoint $SU_C(3)$ representation
- Majorana fermions
- $-m_{\widetilde{g}}>308\,\mathrm{GeV}\,[\,\mathrm{PDG}\,$ '10]
- decay width $\Gamma_{\tilde{g}}$ depends on the squark mass $m_{\tilde{q}}$

- properties of gluinos
- interact only strong
- spin- $\frac{1}{2}$ particles
- no mixing

- adjoint $SU_C(3)$ representation
- Majorana fermions
- $-m_{\widetilde{g}}>308\,\mathrm{GeV}\,[\,\mathrm{PDG}\,$ ′10]
- decay width $\Gamma_{\tilde{g}}$ depends on the squark mass $m_{\tilde{q}}$

$$\Gamma(\tilde{g} \to \tilde{q}\overline{q} + \overline{\tilde{q}}q) \sim \alpha_s m_{\tilde{g}}$$

Barger, Hagiwara, Keung and Woodside '85

- properties of gluinos
- interact only strong
- spin- $\frac{1}{2}$ particles
- no mixing

- adjoint $SU_C(3)$ representation
- Majorana fermions
- $-m_{\widetilde{g}}>308\,\mathrm{GeV}\,[\,\mathrm{PDG}\,$ '10]
- decay width $\Gamma_{\tilde{g}}$ depends on the squark mass $m_{\tilde{q}}$

$$\Gamma(\tilde{g} \to \tilde{q}\overline{q} + \overline{\tilde{q}}q) \sim \alpha_s m_{\tilde{g}}$$

Barger, Hagiwara, Keung and Woodside '85

Matthias Kauth, TTP Karlsruhe

• $2\Gamma_{\tilde{g}}$, level spacing $\Delta M = |E_1 - E_2|$ and annihilation width Γ_{gg} (SDECAY [Mühlleitner, Djouadi and Mambrini '05])

• $2\Gamma_{\tilde{q}}$, level spacing $\Delta M = |E_1 - E_2|$ and annihilation

width Γ_{qq} (SDECAY [Mühlleitner, Djouadi and Mambrini '05])

• $2\Gamma_{ ilde{g}}$, level spacing $\Delta M = |E_1 - E_2|$ and annihilation

width Γ_{qq} (SDECAY [Mühlleitner, Djouadi and Mambrini '05])

 $\longrightarrow \tilde{g}\tilde{g}$ bound states [Kauth, Kühn, Marquard and Steinhauser '09]

• $2\Gamma_{ ilde{g}}$, level spacing $\Delta M = |E_1 - E_2|$ and annihilation

width Γ_{qq} (SDECAY [Mühlleitner, Djouadi and Mambrini '05])

◦ class A ($2\Gamma_{\tilde{g}} < \Gamma_{gg}$) $\longrightarrow \tilde{g}\tilde{g}$ bound states [Kauth, Kühn, Marquard and Steinhauser '09] ◦ class B ($\Gamma_{gg} < 2\Gamma_{\tilde{g}} < \Delta M$) and class C ($\Delta M < 2\Gamma_{\tilde{g}}$) \longrightarrow bound-state effects

Matthias Kauth, TTP Karlsruhe

 HP^2 .3rd 17th September 2010 – p.5/15

colour representation

 $8 \otimes 8 = 1_s \oplus 8_s \oplus 8_a \oplus 10_a \oplus \overline{10}_a \oplus 27_s$

• $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality

- $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality
- $gg \rightarrow {}^3S_1^{[X]}$ is Landau-Yang suppressed

- $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality
- $gg \rightarrow {}^3S_1^{[X]}$ is Landau-Yang suppressed
- $q\overline{q} \rightarrow {}^3S_1^{[10]}$ vanishes at LO

- $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality
- $gg \rightarrow {}^3S_1^{[X]}$ is Landau-Yang suppressed
- $q\overline{q}
 ightarrow {}^3S_1^{[10]}$ vanishes at LO

$$\Rightarrow \quad \begin{array}{ccc} gg & \to & {}^{1}S_{0}^{[1_{s}]}, \, {}^{1}S_{0}^{[8_{s}]}, \, {}^{1}S_{0}^{[27_{s}]} \\ \\ q\overline{q} & \to & {}^{3}S_{1}^{[8_{a}]} \end{array}$$

dominant processes

- $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality
- $gg \rightarrow {}^3S_1^{[X]}$ is Landau-Yang suppressed
- $q\overline{q} \rightarrow {}^3S_1^{[10]}$ vanishes at LO

$$\Rightarrow \quad \begin{array}{ccc} gg & \to & {}^{1}S_{0}^{[1_{s}]}, \, {}^{1}S_{0}^{[8_{s}]}, \, {}^{1}S_{0}^{[27_{s}]} \\ \\ q\overline{q} & \to & {}^{3}S_{1}^{[8_{a}]} \end{array}$$

dominant processes

• modification of the QCD potential $V_C^{[Y]}$

$$V_C^{[Y]} = -\frac{4\pi\alpha_s(\mu_r)C^{[Y]}}{\vec{q}^{\,2}} \left[1 + \frac{\alpha_s(\mu_r)}{4\pi} \left(\beta_0 \ln \frac{\mu_r^2}{\vec{q}^{\,2}} + a_1 \right) \right]$$

- $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality
- $gg \rightarrow {}^3S_1^{[X]}$ is Landau-Yang suppressed
- $q\overline{q} \rightarrow {}^3S_1^{[10]}$ vanishes at LO

$$\Rightarrow \quad \begin{array}{ccc} gg & \to & {}^{1}S_{0}^{[1_{s}]}, \, {}^{1}S_{0}^{[8_{s}]}, \, {}^{1}S_{0}^{[27_{s}]} \\ \\ q\overline{q} & \to & {}^{3}S_{1}^{[8_{a}]} \end{array}$$

 $V_C^{[Y]} = -\frac{4\pi\alpha_s(\mu_r)C^{[Y]}}{\vec{q}^{\,2}} \left[1 + \frac{\alpha_s(\mu_r)}{4\pi} \left(\beta_0 \ln \frac{\mu_r^2}{\vec{q}^{\,2}} + a_1 \right) \right]$

modification of the QCD potential $V_C^{[Y]}$

dominant processes $Y \parallel C^{[Y]}$

 $\begin{array}{c|c} Y & C^{[Y]} \\ \hline 1 & C_A \\ \hline 8 & \frac{C_A}{2} \\ \hline 10 & 0 \\ \hline 27 & -\frac{C_A}{3} \end{array}$

- $q\overline{q} \rightarrow {}^1S_0^{[X]}$ is suppressed by chirality
- $gg \rightarrow {}^3S_1^{[X]}$ is Landau-Yang suppressed
- $q\overline{q}
 ightarrow {}^3S_1^{[10]}$ vanishes at LO

$$\Rightarrow \quad \begin{array}{ccc} gg & \to & {}^{1}S_{0}^{[1_{s}]}, \, {}^{1}S_{0}^{[8_{s}]}, \, {}^{1}S_{0}^{[27_{s}]} \\ \\ q\overline{q} & \to & {}^{3}S_{1}^{[8_{a}]} \end{array}$$

 C_A

 $\frac{\bar{C}_A}{2}$

0

 $\frac{C_A}{3}$

dominant processes $Y \parallel C^{[Y]}$

1

8

10

27

• modification of the QCD potential $V_C^{[Y]}$

$$V_C^{[Y]} = -\frac{4\pi\alpha_s(\mu_r)C^{[Y]}}{\vec{q}^{\,2}} \left[1 + \frac{\alpha_s(\mu_r)}{4\pi} \left(\beta_0 \ln \frac{\mu_r^2}{\vec{q}^{\,2}} + a_1 \right) \right]$$

Schrödinger equation

$$\left\{2m_{\tilde{g}} + \left[\frac{(-i\nabla)^2}{m_{\tilde{g}}} + V_C^{[Y]}\left(\vec{r}\right)\right] - (M + i\Gamma_{\tilde{g}})\right\}G^{[Y]}(\vec{r}; M + i\Gamma_{\tilde{g}}) = \delta^3(\vec{r})$$

Matthias Kauth, TTP Karlsruhe

Green's function

 $\frac{1}{m_{\tilde{g}}^2}G^{[Y]}(0;M+i\Gamma_{\tilde{g}}) = G_{\text{free}} + \frac{C^{[Y]}\alpha_s(\mu_r)}{4\pi} \left[G_{\text{LO}} + \frac{\alpha_s(\mu_r)}{4\pi}G_{\text{NLO}} + \dots\right]$

Green's function

$$\frac{1}{m_{\tilde{g}}^2} G^{[Y]}(0; M + i\Gamma_{\tilde{g}}) = G_{\text{free}} + \frac{C^{[Y]}\alpha_s(\mu_r)}{4\pi} \left[G_{\text{LO}} + \frac{\alpha_s(\mu_r)}{4\pi} G_{\text{NLO}} + \dots \right]$$

and the scale
$$\mu_r = \mu_s \equiv \left| C^{[Y]} \right| m_{\tilde{g}} \alpha_s(\mu_s)$$

Green's function

$$\frac{1}{m_{\tilde{g}}^2} G^{[Y]}(0; M + i\Gamma_{\tilde{g}}) = G_{\text{free}} + \frac{C^{[Y]}\alpha_s(\mu_r)}{4\pi} \left[G_{\text{LO}} + \frac{\alpha_s(\mu_r)}{4\pi} G_{\text{NLO}} + \dots \right]$$

and the scale
$$\mu_r = \mu_s \equiv \left| C^{[Y]} \right| m_{\tilde{g}} \alpha_s(\mu_s)$$

SPS4

 $m_{\tilde{g}} = 734.11 \,\mathrm{GeV}$ $2\Gamma_{\tilde{g}} = 3.48 \,\mathrm{GeV}$

Green's function $\frac{1}{m_{\tilde{g}}^2}G^{[Y]}(0;M+i\Gamma_{\tilde{g}}) = G_{\text{free}} + \frac{C^{[Y]}\alpha_s(\mu_r)}{4\pi} \left[G_{\text{LO}} + \frac{\alpha_s(\mu_r)}{4\pi} G_{\text{NLO}} + \ldots \right]$ $\mu_r = \mu_s \equiv \left| C^{[Y]} \right| m_{\tilde{q}} \, \alpha_s(\mu_s)$ and the scale 0.5 SPS4 $m_{\tilde{q}} = 734.11 \, \text{GeV}$ 0.4 8, NLO $2\Gamma_{\tilde{q}}=3.48\,\mathrm{GeV}$ 27. NLO m { G(0,M+i $\Gamma_{\tilde{g}}$) } / $m_{\tilde{g}}^2$ 0.3 0.2 0.1 0 1430 1440 1450 1460 1420 1470 1480 M [GeV]

HP².3rd 17th September 2010 - p.8/15

$$\begin{split} & LO \text{ result - I} \\ & = \sum_{i,j} \int_{\frac{M^2}{S}}^{1} d\tau \left[\frac{d\mathcal{L}_{ij}}{d\tau} \right] (\tau, \mu_f^2) \ M \frac{d\hat{\sigma}_{ij \to T^{[X]}}}{dM} (\hat{s}, M^2, \mu_r^2) \frac{1}{m_{\tilde{g}}^2} \mathsf{Im} \left\{ G^{[X]}(0; M + i\Gamma_{\tilde{g}}) \right\} \end{split}$$

$$\begin{split} & LO \text{ result - I} \\ &= \sum_{i,j} \int_{\frac{M^2}{S}}^{1} d\tau \left[\frac{d\mathcal{L}_{ij}}{d\tau} \right] (\tau, \mu_f^2) \ M \frac{d\hat{\sigma}_{ij \to T^{[X]}}}{dM} (\hat{s}, M^2, \mu_r^2) \frac{1}{m_{\tilde{g}}^2} \text{Im} \left\{ G^{[X]}(0; M + i\Gamma_{\tilde{g}}) \right\} \\ &= \int_{0}^{1} dx \int_{0}^{1} dy f_{i|P_1}(x) f_{j|P_2}(y) \delta(\tau - xy) \end{split}$$

LO result - II

• NLO part of the Green's function from $q\overline{q}$ case

- NLO part of the Green's function from $q\overline{q}$ case
 - perturbative ansatz requires resummation of poles

- NLO part of the Green's function from $q\overline{q}$ case
 - perturbative ansatz requires resummation of poles
 - numerical evaluation of Gen. Hypergeom. Func.

- NLO part of the Green's function from $q\overline{q}$ case
 - perturbative ansatz requires resummation of poles
 - numerical evaluation of Gen. Hypergeom. Func.
- NLO corrections to the hard part

- NLO part of the Green's function from $q\overline{q}$ case
 - perturbative ansatz requires resummation of poles
 - numerical evaluation of Gen. Hypergeom. Func.
- NLO corrections to the hard part
 - virtual $2 \rightarrow 2$ corrections

NLO calculation - II

- conversion to dimensional reduction
 - [Martin and Vaughn '93]

NLO calculation - II

- conversion to dimensional reduction
 - [Martin and Vaughn '93]

- real $2 \rightarrow 3$ corrections

$$m_{\tilde{g}} = 734.11 \,\mathrm{GeV}$$

 $\Gamma_{\tilde{g}} = 3.48 \,\mathrm{GeV}$
 $m_{\tilde{q}} = 546.52 \,\mathrm{GeV}$

NLO result - I

NLO result - I

 HP^2 .3rd 17th September 2010 – p.13/15

• (N)LO Green's function

$$\circ ||C^{[Y]}|| m_{\tilde{g}} \alpha_s(\mu_s) = \mu_s \quad \leftrightarrow \quad \mu_h = 2m_{\tilde{g}}$$

Matthias Kauth, TTP Karlsruhe

HP².3rd 17th September 2010 - p.14/15

- the physics of gluinos at threshold depends on the mass ratio $m_{\tilde{g}}/m_{\tilde{q}}$

- the physics of gluinos at threshold depends on the mass ratio $m_{\tilde{g}}/m_{\tilde{q}}$
- for a stable gluino the observation of $(\tilde{g}\tilde{g})$ boundstates might be feasible

- the physics of gluinos at threshold depends on the mass ratio $m_{\tilde{g}}/m_{\tilde{q}}$
- for a stable gluino the observation of $(\tilde{g}\tilde{g})$ boundstates might be feasible
- deformation of the production cross section at threshold for $\Gamma_{gg} < \Gamma_{\tilde{g}}$ via binding effects

- the physics of gluinos at threshold depends on the mass ratio $m_{\tilde{g}}/m_{\tilde{q}}$
- for a stable gluino the observation of $(\tilde{g}\tilde{g})$ boundstates might be feasible
- deformation of the production cross section at threshold for $\Gamma_{gg} < \Gamma_{\tilde{g}}$ via binding effects
- complete NLO analysis with large corrections

- the physics of gluinos at threshold depends on the mass ratio $m_{\tilde{g}}/m_{\tilde{q}}$
- for a stable gluino the observation of $(\tilde{g}\tilde{g})$ boundstates might be feasible
- deformation of the production cross section at threshold for $\Gamma_{gg} < \Gamma_{\tilde{g}}$ via binding effects
- complete NLO analysis with large corrections

Thank you for your attention!