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1. Introduction
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Many interesting physical phenomena are associated 
with systems in which the fundamental degrees of 
freedom are strongly coupled, for example:

• Confinement in QCD
• High Tc superconductivity

• Fractional Quantum Hall Effect

Weak coupling techniques (pert. theory, fermi liquid 
theory) fail to explain these phenomena.



4

• Non-perturbative techniques like lattice gauge theory 
work for some things (finite temp.) but not for others 
(finite density).

• Low energy effective theories: physical but not 
microscopic (QCD Chiral Lagrangian, Landau-
Ginzburg model of superconductivity).

• Phenomenological models: microscopic but not 
physical (NJL model, Laughlin’s wavefunction).

Other approaches:
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A new tool from string theory: holographic duality.

Gauge field theory in d 
spacetime dimensions

Quantum gravity in d+1 
spacetime dimensions=

strong coupling classical, Einstein

There is a precise dictionary, many examples known.

This is a microscopic description: the field theory 
Lagrangian (if known) gives the micro. dof’s.

So far no real physical systems, only “phenomenological 
models”.
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Holographic models have been quite successful in 
exhibiting qualitative (and some quantitative) properties 
of QCD at strong coupling, like transport properties of the 
QGP and properties of the hadronic phase.

Can these successes be extended to other strongly 
coupled (fermionic) systems?

Can we exhibit strong-coupling phenomena from the 
realm of condensed matter physics, like high temp. 
superconductivity and the FQHE?
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In some cases the phenomena are unique to strong 
coupling (confinement). In other cases (High Tc, FQHE, 
some aspects of QGP) similar phenomena occur also at 
weak coupling, but the strong coupling version is 
different in an interesting way.

In these cases we would like the holographic description 
to make these differences manifest.

Holographic superconductors: superconductivity in a 
strongly interacting system (of fermions?).
These probably have nothing to do with the real High Tc 
superconductors, but they do exhibit some properties 
distinct from BCS (weak-coupling) supercondcutors.
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In this talk I will describe a holographic model of a 
quantum Hall fluid of strongly interacting charged 
fermions.

This will not describe the observed fractional quantum 
Hall states, but it will be different from the weakly 
coupled integer quantum Hall effect.

The model will also suggest a general strategy for finding  
other holographic models, which may come closer.



2. The Quantum Hall Effect
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Electrons in 2+1 dimensions with a perpendicular B field:

At these values              , indicating a gapped state.

Plateaus in the Hall conductivity at:
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Integer QHE:

Free electrons, Landau problem (+ impurities)

Fractional QHE:

Interaction dominated

Laughlin state:

Effective field theory:

Fractionally charged excitations: (observed experimentally!)



3. A holographic model
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Basic ingredients for the boundary theory:
• charged fermions in 2+1 dimensions
• background magnetic field B
• finite charge density J0 

Top-down approach: string theory micro. dof’s

bulk gravity boundary QFT

Goals:
• fractionally charged excitations

modest
• find states with              and quantized

less modest• plateau transitions (varying B)

well...• 1/3, 2/5, 3/7,...



D3-D7’ model: 
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D3

D7
fermion

No SUSY

Probe approximation:

In this limit the dynamics of the fermions are described 
by the embedding of the D7’s in the near horizon 
background of the D3’s.

4d N=4 SU(Nc) SYM + 3d Nf fundamental fermions

Rey, Kraus et. al.
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The D7-brane embedding is specified by                .

But the embeddings are unstable:

(BF bound for AdS4)

“slipping” mode



We can stabilize by turning on a (sufficient) 
worldvolume flux. Myers, Wapler

Stability:
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For example:

with

with

We’ll take                             with

(We’ll soon see why.)



Embeddings:
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fixed by f1, and m = ”mass” parameter

gapless state gapped state

S2(2) shrinks
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Why              ? Why            ?
The gapped state corresponds to S2(2) shrinking at r=r0.   

A non-zero flux f2 therefore requires magnetic sources at r=r0, 
provided by D5-branes ending on the D7-brane.

S4 is ruled out for a similar reason.

These pull the D7 into the horizon, eliminating the gap:

D7

D5



Currents and background fields
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We want to study this system at finite charge density and 
background magnetic field, and to compute current densities in a 
background electric field.

boundary bulk (background + D7)
global symmetry gauge symmetry
conserved current gauge field

Strictly speaking, the boundary theory doesn’t have a dynamical 
gauge field, but we may consider background fields by allowing 
spacetime-dependent boundary values:

currents charge



CS term:
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amount of F5 flux captured by the D7-brane

“axion”

•          fixed and quantized by f1

•          temp. dependent, unquantized
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The currents are given by the constants of the motion:

In particular: and (Hall current).

The DBI term contributes to both the longitudinal and Hall current.

In principle, we should find solutions for a0(r), ai(r) at fixed J0, and 
plug in to get Ji.

But there are shortcuts.



Gapped embedding
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We require                        , otherwise there 
are sources (strings) which lead to a gapless 
embedding.     

Evaluating the currents at r=r0:

This is a quantum Hall state, with a quantized filling fraction:

and



Gapless embedding
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Sources are allowed at rT :  

Karch,O’BannonRequiring the action to be real gives               , 
which in the linear response approximation gives: 

This is a conducting state.

Pseudo-horizon:

for some



(Numerical) analysis of solutions

22

various temps.

AC B

Gapped embeddings:

1 2 3 4

Gapless embeddings: (small     )

“Spiky” solutions, evolve smoothly 
into gapped solutions as             .   
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Phase diagram
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Free energy:

1st order QHF/conductor phase transition at T=Tc .
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4. Conclusions
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• quasiparticles, fractional charge? partially wrapped 5-brane 
  (partial baryon), whole baryon = “electron”.

• transitions between different QH states? QHF/conductor 
  transition is “1/2 way there”, but we need to make the flux
  f1 dynamical.

Holographic model of a QHF of strongly interacting 
charged fermions in 2+1 dimensions:

• Smoothly evolve into conducting states as J0 varies relative to B.

• First order conductor/QHF transition at finite temperature.

• States with               and quantized        (but not rational).
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General lesson: bulk ingredients for a holographic QHF

*Note that in our model, 2 and 3 are achieved with a single 
scalar field.

1. U(1) gauge field    

2.  Axion-like field             , with coupling                  

mass gap for charged states,

3. Dilaton-like field              with coupling  
such that                         (dilaton wall). 

String theory provides many more possibilities.

Happy hunting!


