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@ Break translation invariance by impurity ~ D5-brane in
D3-brane background
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Introduction

|dea of Kachru, Karch and Yaida [arXiv/0909.2639]

@ Break translation invariance by impurity ~ D5-brane in
D3-brane background

@ At finite temperature, the D5-brane ends at the horizon

o For 2 nearby impurities, take D5 and D5-branes

@ They can either stretch to the horizon or connect the
Impurities

@ First order phase transition between the connected and
disconnected configurations
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Some related work

Rey, Theisen and Yee hep-th/9803135

Brandhuber, Itzhaki, Sonnenschein and Yankielowicz hep-th/9803137
string connecting a quark-antiquark pair at finite
temperature

Hartnoll and Kumar hep-th/0603190 D5-brane at finite temperature
(Polyakov loop of antisymmetric representation)

Yamaguchi hep-th/0603208, Hartnoll and Kumar hep-th/0605027
circular Wilson loops of antisymmetric
representations, D5 brane dual and matrix model
calculation, zero temperature

Gomis and Passerini hep-th/0604007 proof of duality between Wilson
loops and D-brane configurations, impurity action
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What is a holographic dimer?



Setup
Background AdSs-Schwarzschild x S°

dr? r?
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ds® = —f(r)dt +7f(r) + dex, + L2(dO” + sin“ 0dQy)
r2 r+4 4 ”
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Fs=dC, Ci= %dt A d3x + L4 C(0)d

c(o) = g& — gsinﬁcosﬁ—sin%?cosO
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Background AdSs-Schwarzschild x S°
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Action

D5-brane action (DBl + WZ)

N .4 2 r? 2
Ips = m/dpdT [— sin 9\/r’ + f (X' = F2, 4+ C(O)Fr,

N 4
32 = TsVal Frp=—0,As




Action

D5-brane action (DBl + WZ)

N 5  r? 5
Ips = 37r2a/dpdT [— sin 0\/r’ pf( r)x'® — F2,+ C(0)F;

N
3mla

- = T5V,L* Frp=—0,A;

Boundary terms at large re o

Iy = —sgnr’ / dr (rmr + Arma)
dlps dlps
Ty = TA —
SV AT AL

take care of boundary conditions and cancel bulk divergences
Drukker and Fiol [hep-th/0501109]




Equations of motion

E.o.m. for 0 gives

2
F.p = cosf4/r'? + %f(r)x’2

Quantization of fundamental string charge

n:ﬂ(ﬁ—sinﬁcos@ n=0,1,...,N

™

This also solves the e.o.m. for A,

The same formula appears for circular (susy) Wilson loops of
antisymmetric representations
Hartnoll and Kumar [hep-th/0603190], Yamaguchi [hep-th/0603208]



Equations of motion

The system now reduces to a Nambu-Goto string with a
f-dependent effective string tension

.5
Tefr = 320 ,[C( ) cos 6 — sin> 6]

N 3n

= 320 2N7rcos<9—sm 0



Equations of motion

The system now reduces to a Nambu-Goto string with a
f-dependent effective string tension

Teff = 35 ,[C( ) cos @ — sin> 0]
= SLa [;/r\;ﬂcosﬁ—sm 9]
7T
E.o.m. for x
CF(r)X

=C

L
\/r’2 + Z—ii‘(r)x’2

L% = r?f(r) where r' = 0

This implies



Straight brane solution

The simplest solution is given by
¢ = x' =0, the brane goes straight to the
horizon.

Renormalized on-shell action (after Wick rotation)

N
= Brisin®0 = ——+V/Asin®0 o
3m

3m2a’

inverse temperature

wl2 vz
p="= }
e
I is just 1/2 the value of the circular Wilson loop.
What is the connection?

04 06

v=n/N



Straight brane solution, 2 impurities

2 parallel branes (||)

take a pair of D5 and D5 branes /% \%

On-shell action

ON ~ . 4
I||=2I|=—3—ﬂ_ Asin® 0

thermodynamics is trivial

| = —-pBF =



Dimerized configuration

Brane connects impurities (U)




Dimerized configuration

Brane connects impurities (U)

2 4 _r+4 \QZ‘, ,,,,, 7
c L4(1_ ) 7_r4 7)

Distance between impurities

AX:2/dr

s

%
dr

gives
Ax 1 /3 1\ 1 135
X B2, 244 /1—7F
3 " on <4’2> ) (244’7>

B(x,y) =T(x)I(y)/T(x+y), F(a, b; c; x) hypergeometric function



Connected brane - dimerized configuration

On-shell action

Fc— 00

4 _
Ih= =Sy Y4 lim / duy [~ — €



Connected brane - dimerized configuration

On-shell action

re/r«
4
_ —-1/4 |; ur—r e
lh = -5~ / rclinoo / duy | i
1

To get a doable integral, integrate by parts, so that the boundary
term is cancelled in the limit. Do not simply absorb the divergent
term into the integrand. Result is

o o1.(31\ Ly (1 11
/U_S”4B<4’2>7 F< 2’ 4’4'7>




Thermodynamics

introduce dimensionless variables
Ax Ax
T =— F=—"—F
B S|



Thermodynamics
introduce dimensionless variables

T ===
g

2 dimer solutions exist for

T < Trmax = 0.27665
Ymax = 0.52147




Thermodynamics

introduce dimensionless variables

Ax Ax
T=— F=—F
g8 S
2 dimer solutions exist for
T < Tax = 0.27665 T

Ymax = 0.52147

compare to F| = —7T

. T
0.05 005 01 015 02 025 03 15t Order phase transition

\ 7. = 0.24004
Y« = 0.18555




Thermodynamics

Entropy

Energy
5= —%’y_%\/l — ~T?

latent heat at phase transition
AE = 0.18962




Thermodynamics

Entropy "

Energy
Sz—g’f%\/l—sz e

latent heat at phase transition
AE = 0.18962

Landau theory of phase transition

take v as order parameter, v = 1 is disconnected solution

F(v, T)=-8(MMT +£&(v)



Applications



Lattices and glasses

Kachru, Karch and Yaida [arXiv/0909.2639]

On a square lattice, there is a plethora of possible
configurations

o e O  JN L e o—®
'S o e o P o
o e © . * —© o— e
. o . o ® ©° ° o

Of course, one could just play around with various configurations. To seriously study
the interaction between the dimers that could lead to long-range order, one needs to

go beyond the probe approximation.



Fermi—non-Fermi liquid transitions

Kachru, Karch and Yaida [arXiv/1009.3268], see also Sachdev [arXiv/1006.3794]

Couple impurity operators to conduction electrons

SE Sstrong -+ Z / dt Cj[(SJ_//(I'at =F M) =4k tJJ/]CJ/
J,J!

+ gZ / dt(cj(?f +c.c.)
J

for D5-branes
o0f = X_T//\N:4(J)XJ

A is gaugino field, x are probe fermions (see later)



Fermi—non-Fermi liquid transitions

Green function for ¢, schematically
1
w— vk —ke| — g%2Go

gg(kaw) ~

Phases are generically distinguished by low-frequency
behaviour of Gp

undimerized phase spectrum is not gapped
Go ~ w1 (winw for A =1)
c's form a non-Fermi liquid

dimerized phase spectrum is gapped

Go — const.
c's form a Fermi liquid with shifted kg



Hints at a field theory description



Dual field theory for D5-branes

Gomis and Passerini [hep-th/0604007]

A single D5-brane with charge n is dual to a defect operator in the
representation

Impurity action

S=5y=4+ Z / dt [ix9exs + X1 (Ao + @)xu + s(xhxs — nJ)]
J



Dual field theory for D5-branes

Gomis and Passerini [hep-th/0604007]
A single D5-brane with charge n is dual to a defect operator in the
representation

Impurity action
S=5y=4+ Z / dt [ix9exs + X1 (Ao + @)xu + s(xhxs — nJ)]
J

Can one reproduce impurity entropy?

does not match the degeneracy of [,

Ind, = —N[vInv+ (1 —v)In(1—v)] v =n/N fixed



Overscreened multichannel SU(N) Kondo model

Parcollet, Georges, Kotliar, Sengupta [PRB 58, 3794 (1998)]

Action

S=-— /6 drdr’ Z cfa(r)ggl(r — 1 cia(T)
0 io
B
d 1o f +ip (flf, —
[ oS [ ()

5
+ % /0 dr>" clicip (£t — voag)
iaf
¢: heat bath of conduction electrons with Green function Gy
f: impurity fermions
channel index i =1,2,..., K
SU(N) index a, 3 =1,2,.... N v=n/N



Overscreened multichannel SU(N) Kondo model

Strong coupling

K-1
e —

ground state

}N—n e ﬁ}n@

K
N

}N_,,



Overscreened multichannel SU(N) Kondo model
Strong coupling ground state

K-1 K
—— —~

}N—n € @}n@ }N—n

Field theory calculation of impurity entropy

@ saddle point approximation in large-N limit
@ find chemical potential y as a function of temperature
@ use thermodynamic relation

as  op

o 0T

@ integrate with respect to v



Overscreened multichannel SU(N) Kondo model

Spectral asymmetry

forw —0, Imw >0

. o iTA—i0
Gf (w) ~ h(%@w 0 € (—mAf, TAf)

breaks symmetry G(8 — 7) = G(7)

1 K
20f = —— = —
f 14~ TN

0 =21 /Af (% —1/)

0 is related to v



Overscreened multichannel SU(N) Kondo model

Impurity entropy
N
S= D [f (2rAf) — F (2nAfv) — F (20 Af(1 — v))]

with N
f(x):/ du Insinu
0

This matches precisely the degeneracy of the strong coupling
ground state.

S
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D T B YRR UL picture from PRB 58, 3794 (1998)
% Go=v



Heisenberg spin glass

Georges, Parcollet, Sachdev [PRB 63, 134406 (2001)]

Hamiltonian
H=>J;S’S}
i<j

with Gaussian distributed J;;

Mean field description
single site model

2

B
S=Se- 5y | drdr Qs —1)S(n)SH(+)
0

with
Q*(r — ') = (S*(n)St(+)



Heisenberg spin glass
Anti-symmetric S

representation of S by Abrikosov fermions f, with
> flifa=vN
(0%

Calculation of entropy
Relation to spectral asymmetry angle is

0 1. 1
;+Zsm9—§—v 0 € (—n/4,7/4)

Get entropy from

95 | sin(m/4 — 0)
v " sin(n/4 1 0)

S(e0)

picture from PRB 63, 134406 (2001)

qo=v
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