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Introduction

Idea of Kachru, Karch and Yaida [arXiv/0909.2639]

Break translation invariance by impurity ∼ D5-brane in
D3-brane background

At finite temperature, the D5-brane ends at the horizon

For 2 nearby impurities, take D5 and D5-branes

They can either stretch to the horizon or connect the
impurities

First order phase transition between the connected and
disconnected configurations
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Some related work

Rey, Theisen and Yee hep-th/9803135

Brandhuber, Itzhaki, Sonnenschein and Yankielowicz hep-th/9803137

string connecting a quark-antiquark pair at finite
temperature

Hartnoll and Kumar hep-th/0603190 D5-brane at finite temperature
(Polyakov loop of antisymmetric representation)

Yamaguchi hep-th/0603208, Hartnoll and Kumar hep-th/0605027

circular Wilson loops of antisymmetric
representations, D5 brane dual and matrix model
calculation, zero temperature

Gomis and Passerini hep-th/0604007 proof of duality between Wilson
loops and D-brane configurations, impurity action
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What is a holographic dimer?



Setup

Background AdS5-Schwarzschild ×S5

ds2 = −f (r)dt2 +
dr2

f (r)
+

r2

L2
dx2

i + L2(dθ2 + sin2 θdΩ2
4)

f (r) =
r2

L2

(
1− r+

4

r4

)
L4 = 4πgsNα

′2

F5 = dC4 C4 =
r4

L4
dt ∧ d3x + L4C (θ)dΩ4

C (θ) =
3

2
θ − 3

2
sin θ cos θ − sin3 θ cos θ

D5-brane wrapping S4

AdS5 S5

t x1 x2 x3 r θ S4

τ x(ρ) 0 0 r(ρ) const. +
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Action

D5-brane action (DBI + WZ)

ID5 =
N

3π2α′

∫
dρdτ

[
− sin4 θ

√
r ′2 +

r2

L2
f (r)x ′2 − F 2

τρ + C (θ)Fτρ

]

N

3π2α′
= T5V4L

4 Fτρ = −∂ρAτ

Boundary terms at large rcutoff

Ib = − sgn r ′
∫

dτ (rπr + AτπA)

πr =
δID5

δr ′
πA =

δID5

δA′τ

take care of boundary conditions and cancel bulk divergences
Drukker and Fiol [hep-th/0501109]
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Equations of motion

E.o.m. for θ gives

Fτρ = cos θ

√
r ′2 +

r2

L2
f (r)x ′2

Quantization of fundamental string charge

n =
N

π
(θ − sin θ cos θ) n = 0, 1, . . . ,N

This also solves the e.o.m. for Aτ

The same formula appears for circular (susy) Wilson loops of
antisymmetric representations
Hartnoll and Kumar [hep-th/0603190], Yamaguchi [hep-th/0603208]



Equations of motion

The system now reduces to a Nambu-Goto string with a
θ-dependent effective string tension

Teff =
N

3π2α′
[C (θ) cos θ − sin5 θ]

=
N

3π2α′

[
3n

2N
π cos θ − sin3 θ

]

E.o.m. for x

r2

L2 f (r)x ′√
r ′2 + r2

L2 f (r)x ′2
= c

This implies
c2L2 = r2f (r) where r ′ = 0
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Straight brane solution

The simplest solution is given by
c = x ′ = 0, the brane goes straight to the
horizon.

Renormalized on-shell action (after Wick rotation)

I| = − N

3π2α′
βr+ sin3 θ = − N

3π

√
λ sin3 θ

inverse temperature

β =
πL2

r+

I| is just 1/2 the value of the circular Wilson loop.
What is the connection?



Straight brane solution, 2 impurities

2 parallel branes (‖)

take a pair of D5 and D5 branes

On-shell action

I‖ = 2I| = −2N

3π

√
λ sin3 θ

thermodynamics is trivial

I = −βF ⇒
S‖ =

2N

3π

√
λ sin3 θ

E‖ = 0



Dimerized configuration

Brane connects impurities (∪)

c2 =
r∗

4

L4
(1− γ) γ =

r+
4

r∗4
∈ (0, 1)

Distance between impurities

∆x = 2

∞∫
r∗

dr

∣∣∣∣dx

dr

∣∣∣∣
gives

∆x

β
=

1

2π
B

(
3

4
,

1

2

)
γ

1
4

√
1− γ F

(
1

2
,

3

4
;

5

4
; γ

)
B (x , y) = Γ(x)Γ(y)/Γ(x + y), F (a, b; c; x) hypergeometric function
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Connected brane - dimerized configuration

On-shell action

I∪ = −S‖γ
−1/4 lim

rc→∞

 rc/r∗∫
1

du

√
u4 − γ
u4 − 1

− rc

r∗



To get a doable integral, integrate by parts, so that the boundary
term is cancelled in the limit. Do not simply absorb the divergent
term into the integrand. Result is

I∪ = S‖
1

4
B

(
3

4
,

1

2

)
γ−1/4 F

(
−1

2
,−1

4
;

1

4
; γ

)
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Thermodynamics

introduce dimensionless variables

T =
∆x

β
F =

∆x

S‖
F

2 dimer solutions exist for

T < Tmax = 0.27665

γmax = 0.52147

compare to F‖ = −T

1st order phase transition

T∗ = 0.24004

γ∗ = 0.18555
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Thermodynamics

Entropy

S∪ =
1

2
B

(
7

4
,

1

2

)
γ

3
4 F

(
1

2
,

3

4
;

9

4
; γ

)
Energy

E = −π
2
γ−

1
2

√
1− γT 2

latent heat at phase transition
∆E = 0.18962

Landau theory of phase transition

take γ as order parameter, γ = 1 is disconnected solution

F(γ, T ) = −S(γ)T + E(γ)
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Applications



Lattices and glasses

Kachru, Karch and Yaida [arXiv/0909.2639]

On a square lattice, there is a plethora of possible
configurations

Of course, one could just play around with various configurations. To seriously study

the interaction between the dimers that could lead to long-range order, one needs to

go beyond the probe approximation.



Fermi—non-Fermi liquid transitions

Kachru, Karch and Yaida [arXiv/1009.3268], see also Sachdev [arXiv/1006.3794]

Couple impurity operators to conduction electrons

S = Sstrong +
∑
J,J′

∫
dt c†J [δJJ′(i∂t + µ) + tJJ′ ]cJ′

+ g
∑

J

∫
dt (c†JO

F
J + c .c .)

for D5-branes
OF

J = χ†JλN=4(J)χJ

λ is gaugino field, χ are probe fermions (see later)



Fermi—non-Fermi liquid transitions

Green function for c , schematically

Gg (k, ω) ∼ 1

ω − v |k− kF | − g2GO

Phases are generically distinguished by low-frequency
behaviour of GO
undimerized phase spectrum is not gapped

GO ∼ ω2∆−1 (ω lnω for ∆ = 1)
c ’s form a non-Fermi liquid

dimerized phase spectrum is gapped
GO → const.
c ’s form a Fermi liquid with shifted kF



Hints at a field theory description



Dual field theory for D5-branes

Gomis and Passerini [hep-th/0604007]

A single D5-brane with charge n is dual to a defect operator in the
representation

Γn = .
.
.

 n

Impurity action

S = SN=4 +
∑

J

∫
dt [iχ†J∂tχJ + χ†J(A0 + φ)χJ + µJ(χ†JχJ − nJ)]

Can one reproduce impurity entropy?

does not match the degeneracy of Γn

ln dn = −N[ν ln ν + (1− ν) ln(1− ν)] ν = n/N fixed
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Overscreened multichannel SU(N) Kondo model

Parcollet, Georges, Kotliar, Sengupta [PRB 58, 3794 (1998)]

Action

S = −
∫ β

0
dτdτ ′

∑
iα

c†iα(τ)G−1
0 (τ − τ ′)ciα(τ ′)

+

∫ β

0
dτ
∑
α

[
f †α∂τ fα + iµ

(
f †α fα − ν

)]
+

J

N

∫ β

0
dτ
∑
iαβ

c†iαciβ

(
f †β fα − νδαβ

)
c : heat bath of conduction electrons with Green function G0

f : impurity fermions
channel index i = 1, 2, . . . ,K
SU(N) index α, β = 1, 2, . . . ,N ν = n/N



Overscreened multichannel SU(N) Kondo model

Strong coupling ground state

K−1︷ ︸︸ ︷}
N − n ∈

}
n ⊗

Kz }| {}
N − n

Field theory calculation of impurity entropy

saddle point approximation in large-N limit

find chemical potential µ as a function of temperature

use thermodynamic relation

∂S

∂ν
= − ∂µ

∂T

integrate with respect to ν
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Overscreened multichannel SU(N) Kondo model

Spectral asymmetry

for ω → 0, Imω > 0

GR
f (ω) ∼ h(γ, θ)

e−iπ∆f−iθ

ω1−2∆f
θ ∈ (−π∆f , π∆f )

breaks symmetry G(β − τ) = G(τ)

2∆f =
1

1 + γ
γ =

K

N

θ is related to ν

θ = 2π∆f

(
1

2
− ν
)



Overscreened multichannel SU(N) Kondo model

Impurity entropy

S =
N

2π∆f
[f (2π∆f )− f (2π∆f ν)− f (2π∆f (1− ν))]

with

f (x) =

∫ x

0
du ln sin u

This matches precisely the degeneracy of the strong coupling
ground state.

picture from PRB 58, 3794 (1998)
q0 = ν



Heisenberg spin glass

Georges, Parcollet, Sachdev [PRB 63, 134406 (2001)]

Hamiltonian

H =
∑
i<j

JijS
a
i Sa

j

with Gaussian distributed Jij

Mean field description

single site model

S = SB −
J2

2N

∫ β

0
dτdτ ′Qab(τ − τ ′)Sa(τ)Sb(τ ′)

with
Qab(τ − τ ′) =

〈
Sa(τ)Sb(τ ′)

〉



Heisenberg spin glass

Anti-symmetric S

representation of S by Abrikosov fermions fα with∑
α

f †α fα = νN

Calculation of entropy

Relation to spectral asymmetry angle is

θ

π
+

1

4
sin θ =

1

2
− ν θ ∈ (−π/4, π/4)

Get entropy from

∂S

∂ν
= ln

sin(π/4− θ)

sin(π/4 + θ)

picture from PRB 63, 134406 (2001)
q0 = ν
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