M2-branes at hypersurface singularities and their deformations

Dario Martelli

King's College London

Based on 0909.2036 [hep-th] with J. Sparks

Galileo Galilei Institute for Theoretical Physics Mini-conference, 29 September 2010

Plan of the talk

- Motivations
- A family of d = 3 Chern-Simons quiver theories
- M-theory, Type IIA, and Type IIB duals
- Deformed supergravity solutions
- Deformed field theories

< 67 ▶

Motivations

General:

- M-theory and M2-branes
- Dynamics of d = (2 + 1)-dimensional SQFTs
- AdS_4/CFT_3 correspondence (possibly, AdS/CMT)

3

(日) (同) (三) (三)

Motivations

General:

- M-theory and M2-branes
- Dynamics of d = (2 + 1)-dimensional SQFTs
- AdS_4/CFT_3 correspondence (possibly, AdS/CMT)

Particular:

• A candidate three dimensional cousin of the Klebanov-Strassler story

E 5 4 E

< 4 **1** → 4

Mini-review of Klebanov-Strassler

 \bullet Klebanov-Witten: N D3 branes at the conifold singularity

$$Con = \{z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0\}$$

- $\mathcal{N} = 1$, SU(N) × SU(N) quiver gauge theory (strongly coupled)
- AdS/CFT dual to type IIB on $AdS_5 \times T^{1,1}$ (Con = C(T^{1,1})) \Rightarrow SCFT
- Can consider same field theory, but with $SU(N_1) \times SU(N_2)$. Klebanov-Tseytlin: $\ell = |N_1 - N_2|$ corresponds to adding ℓ fractional D5 branes to the N D3 branes

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Mini-review of Klebanov-Strassler

Field theory: conformal invariance is broken, beta function $\beta \propto \ell$

Gravity: three-form flux $\propto \ell$ at infinity \Rightarrow background is not asymptotic to AdS₅ \times T^{1,1}. There are logarithmic corrections

 \bullet Flux r-dependent \to number of colours run \to cascade of Seiberg dualities! Very non trivial insight of Klebanov-Strassler

• Further insight: at the end of the cascade, $SU(2N) \times SU(N)$ theory develops a non perturbative superpotential \rightarrow geometry modified

$$z_1^2 + z_2^2 + z_3^2 + z_4^2 = \epsilon^2$$

deformed conifold

E Sac

(日) (周) (三) (三)

A family of Chern-Simons theories: field content

Consider family of d = 2 + 1, $\mathcal{N} = 2$ Chern-Simons-matter theories:

- Gauge group $U(N_1) \times U(N_2)$, gauge fields \mathscr{A}_l , adjoint scalars σ_l , Chern-Simons levels $k_l \in \mathbb{Z}$, l = 1, 2
- Chiral matter fields A_i in $N_1\otimes\bar{N}_2,$ B_i in $\bar{N}_1\otimes N_2,$ i=1,2

• Φ_{I} in the adjoint of $\mathsf{U}(\mathsf{N}_{\mathsf{I}})$, $\mathsf{I}=1,2$

A family of Chern-Simons theories: interactions

• Lagrangian

$$\mathcal{L} = \mathcal{L}_{CS} + \mathcal{L}_{matter} + \mathcal{L}_{potential} + (\mathcal{L}_{YM})$$

where $(D_I \text{ are auxiliary fields})$

$$\mathcal{L}_{CS} = \sum_{l=1}^{2} \frac{k_{l}}{4\pi} \mathrm{Tr} \left(\mathscr{A}_{l} \wedge \mathrm{d}\mathscr{A}_{l} + \frac{2}{3} \mathscr{A}_{l}^{3} + 2 D_{l} \sigma_{l} \right)$$

• Superpotential

$$\mathcal{W} = \mathrm{Tr}\left[\left((-1)^{n} \varPhi_{1}^{n+1} + \varPhi_{2}^{n+1}\right) + \varPhi_{2}(\mathsf{A}_{1}\mathsf{B}_{1} + \mathsf{A}_{2}\mathsf{B}_{2}) + \varPhi_{1}(\mathsf{B}_{1}\mathsf{A}_{1} + \mathsf{B}_{2}\mathsf{A}_{2})\right]$$

 \bullet n is a positive integer. As we will see, n = 1 and n = 2 are special

Remarks

- Specialize to Chern-Simons levels (k₁, k₂) = (k, -k) (otherwise the duals are in massive IIA and will have no M-theory lift)
- Lagrangian has $\mbox{SU(2)}$ symmetry under which $\mbox{A}_i,\mbox{ } \mbox{B}_i$ transform as doublets
- Also a U(1)_b symmetry acting on the fields (A₁, A₂, B₁, B₂, Φ_1 , Φ_2) with charges (1, 1, -1, -1, 0, 0)

 \Rightarrow Global symmetry: $\mathsf{SU}(2)\times\mathsf{U}(1)_b\times\mathsf{U}(1)_R,$ enhanced for n=1 (ABJM) and n=2

 \bullet For n even there is a \mathbb{Z}_2^{flip} symmetry: $\varPhi_1 \leftrightarrow \varPhi_2, \, \mathsf{A}_i \leftrightarrow \mathsf{B}_i$

Our family of CS theories is labelled by $N_1,N_2,n\in\mathbb{N}$ and $k\in\mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The n = 1 case is ABJ(M)

• When n = 1 the adjoints Φ_1 , Φ_2 are massive. Integrating them out in the IR leads to the the ABJM quartic superpotential

$$\mathcal{W}_{\mathsf{ABJM}} = \operatorname{Tr} \left(\mathsf{A}_1 \mathsf{B}_2 \mathsf{A}_2 \mathsf{B}_1 - \mathsf{A}_1 \mathsf{B}_1 \mathsf{A}_2 \mathsf{B}_2 \right)$$

 \bullet This is the ABJM theory, and has $\mathcal{N}=6$ superconformal symmetry

• For $N_1=N_2$, conjectured by Aharony-Bergman-Jafferis-Maldacena to be the low-energy theory on M2-branes transverse to $\mathbb{C}^4/\mathbb{Z}_k$

 \bullet ABJ: $\ell = |N_1 - N_2| \neq 0$ corresponds to adding ℓ units of torsion (flat) C field

(日) (周) (三) (三)

Moduli space of supersymmetric vacua

• Begin with abelian moduli space: $N_1 = N_2 = 1$, k = 1:

$$\mathsf{X}_{\mathsf{n}} \equiv \{(\mathsf{n}+1)\varPhi_2^{\mathsf{n}} + \mathsf{A}_1\mathsf{B}_1 + \mathsf{A}_2\mathsf{B}_2 = 0\} \subset \mathbb{C}^5$$

- \bullet For n=1, $X_1=\mathbb{C}^4,$ while for n>1 this is a four-fold isolated singularity
- For k>1 the moduli space is $X_n/\mathbb{Z}_k.$ Like for ABJM, \mathbb{Z}_k has weights (1,1,-1,-1) on (A_1,A_2,B_1,B_2)
- In general the classical moduli space is

$$\operatorname{Sym}^{\min(N_1,N_2)}(X_n/\mathbb{Z}_k)$$

Different ranks

• Defining $N_1 = N + \ell$, $N_2 = N$, at generic point in the classical vacuum: N copies of the abelian theory, together with supersymmetric $U(\ell)_k$ Chern-Simons with adjoint superpotential $\mathcal{W} = \Psi^{n+1}$

• The quantum theory has no supersymmetric vacuum (Hanany-Witten, or Witten index) unless

 $0 \leq \ell \leq \mathsf{nk}$

• We consider the $U(N+\ell)_k\times U(N)_{-k}$ theories with $0\leq\ell\leq nk,$ which have moduli space ${\rm Sym}^N(X_n/\mathbb{Z}_k)$

イロト (過) (ヨ) (ヨ) (ヨ) ヨー ののの

M-theory interpretation

• The form of the moduli space plus ABJM results (n = 1), suggest interpreting the $U(N)_k \times U(N)_{-k}$ theories as arising from N M2-branes at the four-fold singularities X_n/\mathbb{Z}_k , where

$$X_n=\{z_0^n+\sum_{a=1}^4 z_a^2=0\}\subset \mathbb{C}^5$$

• X_n/\mathbb{Z}_k are Calabi-Yau singularities

- Topologically, X_n is a cone over a compact 7-manifold Y_n
- Note n = 2 is an eight dimensional version of the conifold

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Adding torsion C field

 \bullet In M-theory there is a four-form G, locally $G={\rm d} C.$ Dirac quantization implies this is classified by $H^4(M,\mathbb{Z})$

• One can compute $H^4(Y_n/\mathbb{Z}_k,\mathbb{Z})\cong\mathbb{Z}_{nk}\cong H_3(Y_n/\mathbb{Z}_k,\mathbb{Z}).$ (Recall ABJM for n=1: $H_3(S^7/\mathbb{Z}_k,\mathbb{Z})\cong\mathbb{Z}_k)$

 \bullet Can turn on a flat G given by $\ell\in\mathbb{Z}_{nk}.$ Equivalently, a closed 3-form potential C satisfying

$$\int_{\Sigma_3} \frac{\mathsf{C}}{(2\pi\mathsf{I}_\mathsf{p})^3} = \frac{\ell}{\mathsf{nk}} \mod 1$$

where \varSigma_3 is the generator of $H_3(Y_n/\mathbb{Z}_k,\mathbb{Z})$

٠

• We identify the worldvolume theory on N M2-branes on X_n/\mathbb{Z}_k with ℓ units of G-flux with the $U(N+\ell)_k\times U(N)_{-k}$ theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Type IIA picture

 \bullet The IIA reduction leads to N D2 branes at the seven-dimensional singularity $Q_n=X_n/U(1)_b$

 \bullet To get to this, we can start considering Type IIA on the 3-fold singularities $(n=1 \mbox{ is precisely the conifold})$

$$\mathsf{W}_{\mathsf{n}} = \left\{\mathsf{w}_0^{2\mathsf{n}} + \sum_{\mathsf{i}=1}^3 \mathsf{w}_{\mathsf{i}}^2 = \mathbf{0}\right\} \subset \mathbb{C}^4$$

- \bullet Then consider placing N D2-branes at the origin of $\mathbb{R}_3\times W_n$
- Field theory on the D2-branes derived by Cachazo, Fiol, Intriligator, Katz, and Vafa. It is precisely the $U(N) \times U(N)$ gauge theory we started with, but without any Chern-Simons interaction
- This is just the straight dimensional reduction of the parent d=4, $\mathcal{N}=1$ field theory

Turning on the Chern-Simons levels

- \bullet The W_n singularities admit a small Calabi-Yau resolution, in which one replaces the singular point by a \mathbb{CP}^1
- Wrapping ℓ D4-brane over this \mathbb{CP}^1 , the gauge group becomes $U(N + \ell) \times U(N)$ [familiar from Klebanov-Strassler]
- Turning on k units of RR 2-form flux F_2 through the $\mathbb{CP}^1,$ the Wess-Zumino coupling on D4-branes contains the term

$$\begin{aligned} \int \mathsf{C}_1 \wedge \mathrm{Tr} \mathscr{F} \wedge \mathscr{F} &= \int_{\mathbb{CP}^1} \mathsf{F}_2 \int_{\mathbb{R}^{1,2}} \mathrm{Tr} (\mathscr{A} \wedge \mathrm{d} \mathscr{A} + \frac{2}{3} \mathscr{A}^3) \\ &= \mathsf{k} \int_{\mathbb{R}^{1,2}} \mathrm{Tr} (\mathscr{A} \wedge \mathrm{d} \mathscr{A} + \frac{2}{3} \mathscr{A}^3) \end{aligned}$$

Turning on the Chern-Simons levels

• The first gauge group is that on D4-branes a wrapped on \mathbb{CP}^1 , while the second is an anti-D4-brane wrapped on \mathbb{CP}^1 bound to a D2-brane at a point on \mathbb{CP}^1

So turning on \mathbf{k} units of \mathbf{F}_2 flux induces the Chern-Simons levels $(\mathbf{k}, -\mathbf{k})$ for the two gauge groups (Aganagic)

To preserve SUSY, one must also fibre the size of the \mathbb{CP}^1 over the real line \mathbb{R}_3 :

Connection to M-theory picture

 \bullet So we have that $Q_n=[W_n\to\mathbb{R}].$ Adding back the the M-theory circle $U(1)_b,$ this is precisely the four-fold X_n

• Notice that in IIA ℓ is the number of D4-branes wrapped on \mathbb{CP}^1 . These lift to ℓ fractional M5-branes wrapped on an $S^3/\mathbb{Z}_k \subset X_n/\mathbb{Z}_k$. The (fractional) M5-brane is the magnetic source for (flat) G flux

• This is a Type IIA derivation of the field theories

Type IIB picture

• Starting from the IIA description, perform a T-duality on $U(1)_6$ where W_n is defined by the hypersurface $w_0^{2n}+w_1^2+uv=0$ and $U(1)_6$ has weights (0,0,1,-1) on (w_0,w_1,u,v)

 \bullet The N D2-branes in $\mathbb{R}^{1,2}$ become N D3-branes wrapping $\mathbb{R}^{1,2}$ together with the T-dual circle S_6^1

• There is a codimension 4 fixed point set $w_0^{2n} = -w_1^2$, which become two 5-branes wrapping $w_0^n = \pm iw_1$ in a copy of \mathbb{C}^2 spanned by w_0, w_1 . These are separated on the S_6^1 circle by a distance depending on the period of **B** through the \mathbb{CP}^1

• Naively, these are both NS5-branes, but due to the **k** units of RR 2-form flux, one of them is (1, k) bound state with **k** D5-branes (Sen)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hanany-Witten-like brane picture

• This is a Hanany-Witten brane set-up, with D3-branes suspended between 5-branes

The two gauge groups and adjoints Φ_{I} are identified with the two segments of D3-brane. Where the D3s break on the 5branes you get a bifundemental hypermultiplet, which accounts for the A_i , B_i fields. The superpotential describes the nontrivial embedding of the 5branes in the transverse \mathbb{C}^2_{4589} Field theory duality from brane creation effect

 \bullet This picture allows one to argue that the $U(N+\ell)_k\times U(N)_{-k}$ theory is dual to the $U(N)_k\times U(N+nk-\ell)_{-k}$ theory

• As the NS5 is moved past the (1, k)5, nk D3 branes are created via the Hanany-Witten effect

AdS₄ supergravity duals?

• ABJM conjectured their theory was AdS/CFT dual, in the large N limit, to AdS₄ \times S^7/\mathbb{Z}_k with the round Einstein metric on S^7 and

$$\frac{1}{(2\pi\mathsf{I}_{\mathsf{p}})^6}\int_{\mathsf{S}^7/\mathbb{Z}_{\mathsf{k}}}*\mathsf{G}=\mathsf{N}$$

The AdS₄ radius is given by

$$\frac{\mathsf{R}_{AdS}}{2\pi\mathsf{I}_p} = \left(\frac{\mathsf{N}}{6\mathrm{vol}(\mathsf{S}^7/\mathbb{Z}_k)}\right)^{1/6}$$

• One might similarly conjecture that in the IR the theories we have written $\forall n$ are conformal and are AdS/CFT dual to AdS₄ × Y_n/\mathbb{Z}_k , with a Sasaki-Einstein metric on Y_n , where $X_n = C(Y_n)$...

Problem with existence

Problem: for all n > 2, Y_n does not admit a Sasaki-Einstein metric!

Proved by Gauntlett-DM-Sparks-Yau. Idea: any holomorphic function of definite scaling weight under the cone symmetry gives rise to an eigenfunction of the scalar Laplacian on Y_n . For an Einstein metric, the smallest non-zero eigenvalue is bounded below by 7. For all n>3 the holomorphic function z_0 violates this bound, so there cannot be an Einstein metric

This argument is "dual" to the unitarity bound in the field theory. Recall \mathcal{W} contains the terms \varPhi_l^{n+1} . If the theory is conformal, \mathcal{W} must have scaling dimension 2, implying \varPhi_l has scaling dimension $\Delta = 2/(n+1)$. But in any unitarity field theory in d = 2 + 1, all gauge invariant scalar operators satisfy $\Delta \ge 1/2$, which is violated for n > 3

In both cases, n = 3 is marginal and can also be ruled out

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Problem with existence

• For n > 2 it is natural to conjecture that the terms Φ_l^{n+1} in \mathcal{W} are irrelevant in the IR, which then modifies the vacuum moduli space to

 $\operatorname{Sym}^{\sf N}(\mathbb{C}\times\operatorname{Con}/\mathbb{Z}_{\sf k})$

where ${\rm Con}=\{z_1^2+z_2^2+z_3^2+z_4^2=0\}$ is the conifold 3-fold singularity

• This certainly has a Ricci-flat Kähler cone metric (albeit non-isolated singularity), and so there is an $AdS_4 \times Y/\mathbb{Z}_k$ supergravity solution

n = 2: the eight dimensional conifold

 \bullet To have an d=11 supergravity Freund-Rubin dual, we need $n\leq 2.$ From now on, we focus on n=2

$$X_2 = \left\{ \sum_{a=0}^4 z_a^2 = 0 \right\}$$

is the natural 4-fold analogue of the conifold singularity

• The base of the cone $X_2 = C(Y_2)$ is the homogeneous space $Y_2 = SO(5)/SO(3) \equiv V_{5,2}$, which admits a (explicitly known) homogeneous Sasaki-Einstein metric

• It is possible to map Kaluza-Klein harmonics to gauge invariant operators in this theory, as well as certain wrapped M5-brane states

イロト 不得下 イヨト イヨト 二日

The deformed supergravity solution

 \bullet The quadric singularity X_2 may be deformed via

$$\mathcal{X} = \left\{ \sum_{a=0}^{4} z_{a}^{2} = \gamma^{2} \right\}$$

 $\mathcal{X}\cong T^*S^4$, with S^4 zero section

• This admits an explicit asymptotically conical Ricci-flat Kähler metric, called the Stenzel metric – analogue of the deformed conifold

 \bullet The AdS₄ \times $V_{5,2}$ supergravity solution may then be deformed to a smooth non-conformal background, first studied by Cvetic, Gibbons, Lu, Pope

The deformed supergravity solution

$$ds_{11}^2 = H^{-2/3} ds_{\mathbb{R}^{1,2}}^2 + H^{1/3} \gamma^2 ds_{\mathcal{X}}^2$$
$$G = d^3 x \wedge dH^{-1} + m\alpha$$

where an orthonormal frame for $\mathrm{d} s^2_\mathcal{X}$ is given by

$$\mathbf{e}^0 = \mathbf{c}(\mathbf{r})\mathrm{d}\mathbf{r} \;, \;\; \mathbf{e}^{ ilde{\mathbf{0}}} = \mathbf{c}(\mathbf{r})
u \;, \;\; \mathbf{e}^{\mathrm{i}} = \mathbf{a}(\mathbf{r}) \sigma_{\mathrm{i}} \;, \;\; \mathbf{e}^{ ilde{\mathbf{i}}} = \mathbf{b}(\mathbf{r}) ilde{\sigma}_{\mathrm{i}} \;,$$

with ν , σ_i , $\tilde{\sigma_i}$ (i = 1, 2, 3) left-invariant one-forms on SO(5)/SO(3) and

$$\begin{aligned} a^2 &=& \frac{1}{3}(2+\cosh 2r)^{1/4}\cosh r \ , \quad b^2 = \frac{1}{3}(2+\cosh 2r)^{1/4}\sinh r \tanh r \ , \\ c^2 &=& (2+\cosh 2r)^{-3/4}\cosh^3 r \end{aligned}$$

3

< □ > < ---->

The deformed supergravity solution

The four-form flux on ${\mathcal X}$ is

$$\alpha = \frac{3}{\cosh^4 \mathsf{r}} \left(\mathsf{e}^{\tilde{0}\mathsf{i}\mathsf{2}\mathfrak{3}} + \mathsf{e}^{0\tilde{1}\tilde{2}\tilde{\mathfrak{3}}} \right) + \frac{1}{2} \frac{1}{\cosh^4 \mathsf{r}} \epsilon_{\mathsf{ijk}} \left(\mathsf{e}^{0\mathsf{ij}\tilde{\mathsf{k}}} + \mathsf{e}^{\tilde{0}\mathsf{i}\tilde{j}\tilde{\mathsf{k}}} \right)$$

which is a closed L^2 -normalizable primitive (2, 2) form, which is hence harmonic

The warp factor is

$$H(y) = \frac{-24m^2}{\sqrt{2}} \int \frac{\mathrm{d}y}{(y^4 - 1)^{5/2}}$$

where $y^4 = 2 + \cosh 2r$

Flux quantization Defining

$$\mathsf{N}(\mathsf{r})\equiv rac{1}{(2\pi\mathsf{I}_\mathsf{p})^6}\int_{\mathsf{Y}_\mathsf{r}}*\mathsf{G}$$

we find

$$N(r) = \frac{\tilde{M}^2}{4} \tanh^4 r$$

where

$$\mathbb{Z} \ni \tilde{\mathsf{M}} \equiv \frac{1}{(2\pi\mathsf{I}_p)^3} \int_{\mathsf{S}^4} \mathsf{G} = \frac{1}{(2\pi\mathsf{I}_p)^3} \frac{\mathsf{m}}{\sqrt{3}} \frac{8\pi^2}{3}$$

• The solution is asymptotically $AdS_4 \times V_{5,2}$ at large r, with $N = N(\infty) = (\tilde{M}/2)^2$. This implies we must set $\tilde{M} = 2M$ even, which implies $\ell = 0 \mod 2$ and there is no torsion G-flux at infinity

- 4 同 6 4 日 6 4 日 6

Flux quantization

For $k>1,\,\mathcal{X}/\mathbb{Z}_k$ has two isolated \mathbb{Z}_k orbifold singularities

If we remove the singular points and quantize **G** in the usual way, we obtain $N = N(\infty) = kM^2$ and zero torsion class for **G** at infinity

• This implies the UV SCFT theory at large r is the $U(kM^2)_k \times U(kM^2)_{-k}$ gauge theory with n=2

• On general grounds, the deformed solution corresponds either to deforming this UV SCFT by a relevant operator or to giving a VEV (SSB). Herzog-Klebanov argued the former, but we can be more precise

Identifying the deformation

• On (asymptotic) AdS₄ in Fefferman-Graham coordinates

$$\mathrm{d}s^{2}(\mathrm{AdS}_{4})_{\mathrm{FG}} = \frac{1}{z^{2}} \left(\mathrm{d}z^{2} + \mathrm{d}x_{\mu}\mathrm{d}x^{\mu} \right)$$

a scalar field arphi has modes

$$\varphi \sim \hat{\varphi} \mathsf{z}^{\Delta} + \varphi_0 \mathsf{z}^{3-\Delta}$$

 $arphi_{f 0}$ is a perturbation by an operator of dimension arLambda, while \hat{arphi} is a VEV

• The conformal dimension is related to the mass as

$$\Delta(\Delta-3)=\mathsf{m}_{\varphi}^2$$

• If we have a mode $\varphi \sim z^{\lambda}$, is it the VEV of an operator of dimension $\Delta = \lambda$ or a deformation by an operator of dimension $\Delta = 3 - \lambda$?

Identifying the deformation

 \bullet Consider modes coming from the $G\mbox{-field}.$ At large r the explicit $G\mbox{-flux}$ has leading behaviour

$$\mathsf{G} = \mathrm{d}(\mathsf{r}^{-\nu}\beta)$$

where β is a co-closed 3-form on V_{5,2} with $\Delta\beta = \nu^2\beta$ and $\nu = 4/3$. This leads to a KK pseudo-scalar mode with

$$m^2 = rac{\nu(\nu-6)}{4}$$
, $\Delta_{\pm} = rac{1}{2}(3\pm|3-\nu|)$

Then $\nu = 4/3 \Rightarrow \Delta_+ = 7/3$, $\Delta_- = 2/3$

• Full KK multiplet spectrum computed by Ceresole, Dall'Agata, D'Auria, Ferrara: there is a mode with $\Delta = 7/3$, while $\Delta = 2/3$ is not realized

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Identifying the deformation

• At large r (small z) we have $G \sim z^{2/3}$, implying that an operator of dimension $\Delta = 7/3$ is added to the Lagrangian

• To see which operator, we note that our four-form pseudo-scalar mode sits in a chiral multiplet whose top component has dimension 4/3 = 7/3 - 1

• The background preserves SU(2) invariance: there are three chiral operators of dimension 4/3 which are SU(2) invariant: $(\operatorname{Tr} \Phi_1^2 + \operatorname{Tr} \Phi_2^2)$, $(\operatorname{Tr} \Phi_1^2 - \operatorname{Tr} \Phi_2^2)$, $\operatorname{Tr}(A_1B_1 + A_2B_2)$.

• The **G**-flux is odd under the $\mathbb{Z}_2^{\text{flip}}$ symmetry that exchanges $\Phi_1 \leftrightarrow \Phi_2$, $A_i \leftrightarrow B_i$, leading us to identify uniquely the deformed background with the superpotential mass deformation

$$\mathcal{W}
ightarrow \mathcal{W} + \mu (\operatorname{Tr} \varPhi_1^2 - \operatorname{Tr} \varPhi_2^2)$$

Matching the deformations

• This superpotential deformation changes the F-terms of the theory in such a way to precisely reproduce the deformation \mathcal{X} as the abelian vacuum moduli space!

 \bullet Mass identified with the size of the $\mathbf{S^4}$ in the deformed Stenzel metric as

$$\gamma^2 = \frac{\mu^2}{12}$$

Conclusions

• UV theory and its deformation well understood. All the remaining questions concern the resulting RG flow and the deep IR

- There is a "running" number of M2-branes N(r), suggesting interpreting the RG flow as a "cascade". In the IIA picture, the dilaton and **B**-field through \mathbb{CP}^1 are the gauge couplings in the deformed solution, these both run as a function of **r**. In the IIB picture, the running **B**-field suggests the 5-branes move around the S_6^1 circle, leading to a possible cascade of dualities, à la Klebanov-Strassler
- Why is it necessary to start with $N = kM^2$ M2-branes? Why must the ranks be equal? As opposed to Klebanov-Strassler, there are no fractional M5-branes here
- What is the field theory in the deep IR, near to **r** = **0**?