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Framework

The Ricci flow describes the parametric evolution of a geometry as

agij
ot

= —Rj

» Introduced by R. Hamilton in 1982 as a tool for proving
Poincaré’s (1904) and Thurston's (late 70s) 3D conjectures

» In non-critical string theory Ricci flow is an RG flow [rricdan, 1085]
— can mimic time evolution as UV — IR

t = log1/u



Basic features: a reminder

> Vqume is not preserved along the flow

dex\/det g’fag” = —% [ dPx\/detgR
Consequence.
> positive curvature — space contracts
» negative curvature — space expands
» Killing vectors are preserved in time: the isometry group
remains unaltered — or grows in limiting situations



Example

> At initial time: R,.S-O) = agij(-o) with a constant

» Subsequent evolution: linear rescaling

gi(t) = (1 at)g)”

Ri(t) = R

» Properties

» a > 0 = uniform contraction — singularity at t = 1/a
» a < 0 = indefinite expansion



Gravitational instantons

» Useful for non-perturbative transitions in quantum gravity

» Appear in string compactifications e.g. in heterotic: C, /T —
ALE spaces — Gibbons—Hawking multi-instantons as
Eguchi-Hanson (blow-up of the C,/Z, A; singularity)

» Describe hyper moduli spaces e.g. in llA:

» Taub-NUT (SU(2) x U(1), A = 0): tree-level

» Pedersen/Fubini-Study (SU(2) x U(1), A # 0): supergravity

» Calderbank—Pedersen (Heisenberg x U(1), A # 0): string pert

» Calderbank—Pedersen (U(1) x U(1), A # 0): string non-pert
or in heterotic: Atiyah-Hitchin (SU(2), A = 0)



Geometric flows arise in gravitational instantons with time foliation

> In 4D self-dual gravitational instantons with homogeneous
Bianchi spatial sections: time evolution is a Ricci flow of the
3D homogeneous space

» In non-relativistic gravity with invariance explicitly broken to
foliation-preserving diffeomorphisms and with detailed-balance
dynamics: time evolution is a geometric flow of the 3D space
(valid actually in D+ 1 — D)

Geometric flows might carry information on holographic evolution in
some gravitational set ups — yet to be unravelled
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Gravitational instantons: homogeneity and self-duality



Cartan’s formalism

Metric and torsionless connection one-form w?; and curvature
two-form R2, in an orthonormal frame:

ds® = 6,,0%0°

v

Riemann tensor: R?, = dw?, + w?. Aw®, = 1R?,_,6° A 69
Torsion tensor: 79 = df? + w?; A 6t = %T"”bCGb A g€
Cartan structure equations: Wy, = —Wp,, 72 =0

Bianchi identity: dR?, + w? AR, — R . Aw, =0
Cyclic identity: d7? + w3 A Tb = R, N b =0

v

v

v

v



Holonomy

> ds? = §,,026" invariant under local SO(D) transformations
al _ A—la pb
0 = A2, 0
» Connection and curvature transform
> w? = A*llacwfd/\dj + A1 dAC,
al __ —1la C
» R = A~1a Re AT,

Connection and curvature are both antisymmetric-matrix-valued
two-forms € D(D-1)/2 representation of SO(D)



Self-dual/anti-self-dual decomposition in 4D

Duality supported by the fully antisymmetric symbol € ,pcq

» Dual connection:
1, 4

~a __ a C

Wwp = §€ be W d
» Dual curvature: )

Sa a dpc

R, = 56 be RYqg

Curvature and connection € 6 (antisymmetric) of SO(4) — reducible
as (3,1) @ (1, 3) under SU(2)sg ® SU(2)asq = SO(4)



Adapting the frame {6°,6"} to the action of SU(2)sq @ SU(2)asd

» Connection one-form
(3, 1) Y, =1/2 (a)o,' + 1/26,'jkwjk)
(1,3) A = 1/2 (woi — 1/2e ')
» Curvature two-form
(3, 1) S, =1/2 (Ro; + 1/2€iijjk)
(1, 3) .A,' = 1/2 (Ro,‘ — 1/2€;ijjk)
» R?, = dw?) + w?. A w€, decomposes
> S =dY; — e AXK
> A =dA; + A A A

{%;, 8;} vectors of SU(2)sq and singlets of SU(2),sq and vice-versa
for {A,‘, A,‘}



Dynamics in 4D
Einstein—Hilbert action in Palatini formalisms

1

= Reg N O A B9
167G M4RC"

SeH

» Vacuum equations: ﬁcd ABY =0
» Cyclic identity for torsionless connection: R, A 89 =0

Curvature (anti)self-duality guarantees vacuum solution

R? = 4+R% = Ricci flatness



The M4 geometry

Foliation and spatial homogeneity reiook: Ry and Shepiey, 19751

» Topologically M4 =R x M3
» Bianchi 3D group G acts simply transitively on the leaves M3

M3 is locally G
» left-invariant Maurer—Cartan forms o'
1.
[ R k
do' = 2chU o

» 3 linearly independent Killing vectors tangent to M3:

Gi.8j] = Cijka

» Classes A (T3, Heisenberg, E; 1, E>, SL(2,R), SU(2)) & B



Self-dual vacuum solutions

Geometry
Foliation plus spatial homogeneity —

» Good ansatz for the metric (gjs functions of t):
ds? = dt? + g;io' 0! = 6,,0%6°
» Minimalistic (diagonal) ansatz:

ds? = d2 + ¥ (vi0')?

(the most general in most Bianchi classes)



Second-order equations:
A =dA; +epA NAK =0
Solutions: anti-self-dual flat connections

Aii
A=l
20’

l mayn __
)\iécjk + €imnA [j/\ K = 0

G d 5U(2) homomorphisms [Bourliot, Estes, Petropoulos, Spindel, 2009]
> Ajj = 0 rank-0 (trivial) homomorphism: Class A, Class B

> rank-1: | 11, VI, o, Vil_g &I IV, V NMps_1, V1o
» rank-3: VIII, IX



Bianchi IX: G = SU(2) and M3 = S3

Convenient parameterization: Q) = YivYk

ds?2 = 010203472 + 0203 (o ) + Qé(z)l (02)2 + 0(1)(3)2 ((73)2

General self-duality equations: A; = ” ol
Ajj = 0 Lagrange system (Euler-top) (acobi
Ql — _0203 02 — _0301 03 — _0102
Ajj = 0j; Darboux—Halphen system [parbou 1676 Hatphen 1881]

Al = 0203 - O (02 + OF)
02 = 030! — 02 (03 + O
0% = 0102 — 03 (O + O?)



Solutions with y1 = 2 — SU(2) x U(1) symmetry

1. Lagrange: Eguchi—Hanson [eguchi, Hanson, April 1978]
2 (01)2+(02)2+ 1-23) (3)?
ds? — dP4 +P2 4( 94)( )

- a
1=

with a removable bolt at p = a

2. DarbOUX—Ha|phen: Taub_N UT [Newman, Tamburino, Unti, 1963]

2 2
ds? = rzmatt 4 (12 ) (L) o ()2

with a removable nut at r = m



Note: not the most general

> 1 =72 =73 — SU(2) x SU(2): solution is flat space
> Y1 # Y2 # 3 — strict-SU(2): solutions exist but have often
naked singularities
» Lagrange system: d naked singularities

» Darboux—Halphen system: solvable in terms of quasi-modular
forms , J naked singularities except for one solution
with a bolt describing the configuration space
of two slowly moving BPS SU(2) Yang-Mills—Higgs monopoles



Reminder: bolts and nuts

Fixed points of isometries generated by ¢
- characterised by the rank of V(,¢
- potential removable or non-removable singularities,
depending on the precise behaviour of gy
- Xbolt = 2, Xnut = 1
Around t =0
» rank 4: nut — removable if ; ~ t/2 Vi
» rank 2: bolt — removable if 1 =~ 75 =~ finite and 3 ~ nt/2

Gravitational instantons of GR are classified according to bolts, nuts
and asymptotic behaviours (Euclidean vs. Taubian) within the
positive-action conjecture iGivons, Haking, 19791
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The view from the leaf: geometric flows



Curvature for 3D homogeneous spaces

M3 : homogeneous 3D Bianchi IX space with metric
d3? = ;0’0 = 6,0'0/

(T¥ inverse of y;j)

k Ck

Bianchi A classes: ¢ i = —€ijen

» Cartan—Killing: Cj; = —%Q,-mekjnn’”kn”f

> Ricci:

ol (n7)27 ynyny
2 dety dety

Ric[y] =



Back to 4D: self-duality equations

M with ds? = dt® + g;;(t)o'o?
Self-duality over My with gjj = ’y,-k/Cké’m

1 1 ik /\," : CI’)’," 1
A,' = E <a)0,- — 56,'];((4)] ) = 710"’ <~ th = —R,J[’ﬂ — §tr (DC,'(XJ')

a = ;0" SU(2) Yang—Mills connection over M3
wj = (Cj— Ay) ¥

with tr(t't/) = —267
> t-independent: d¢/dr = 0
» flat: F=da+[a,a] =0 (& )L,-gcgjk +€imnA A" = 0)



Output: self-duality in My = R x M3 < Ricci flow plus
pure-gauge SU(2) Yang—Mills background over M3

» Valid for Bianchi A class
» For Bianchi IX (Cj; = J;;) with diagonal metric y;; = ;d;;
Ajj = dj; pure Ricci flow on 53« Darboux—Halphen
(branch of Taub—NUT and Atiyah—Hitchin)
Ajj = 0 Ricci plus YM flow on S3 < Lagrange (branch
of Eguchi-Hanson and Belisnky et al)
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Can a flow? Can it have F # 07

Comments on the emerging geometric flow of the 3D leaves

» w« is a background SU(2) gauge field inherited from the
anti-self-dual part of the 4D Levi—Civita connection

» The geometric flow is not gauge invariant — not supposed to be

» The gauge field

> does not flow (& = 0)
> its strength issetto F =0



Adding A: milder self-duality condition (Weyl) but major difference
A; # 0 — dynamical SU(2) gauge field on the 3D leaf

» Flowing connection &

» Non-vanishing field strength F
(breakdown of genuine self-duality)

Genuine Ricci plus SU(2) Yang—Mills flow

» Example in Bianchi IX: the Fubini-Study or Pedersen solutions
(metric on CP; and relatives)

» Example in Bianchi II: Calderbank—Pedersen solution



Can one go beyond 4D?

Self-duality in D = 7,8
The octonionic structure constants ¢, &, 8,7 € {1,...,7} and
the dual Gp-invariant antisymmetric symbol l[)"‘ﬁ“f‘s allow to define
» Duality in 7D: SO(7) D G
» Duality in 8D: SO(8) D Spiny
However
» SO(7) 2 H® G,
» S0(8) 2 H® Spiny,

In foliations Mpy1 = R x Mp with M p a fibration over a Bianchi
group: A = 0 = A = 0 — geometric flow under investigation



Non-relativistic gravity i s o

Foliation Mp.1 = R x Mp: explicit breaking of diffeomorphisms

5= /dthx\f( (KK — AK2)+V>

ds? = dt? + gjdx'dx/, Kjj = 1/20egj, [x] = —1, [t] = —z

» GR: A = 1, z=1 and V = 2/1(2(2/\— RD)

» HL: A € R and V = ¥*/2EU G EX
> Gike = 5 (8ik&je + 8it&jk) — pi—18ij8ke (zero at A =1/D)
> power-counting (super)renormalizability: z(>) = D

. .l — 1 dWplg]
» detailed balance: E PN AT

D =z = 3: W3 = Wcs + Wey (topologically massive gravity)



Ground states in the positive-definite case (A < 1/D)

» Detailed balance — S (up to boundary term: 1/2 |WD’;ﬁnn > 0)
2 [ D K2 mn ijk? K2 rs
P/dtd X\/E K,leijgumnE G Kk[i?gkgrsE

» Ground-state extremums — geometric flow

egij = FK2GjEX

» Static solutions — fixed-points of the flow — extremums of Wp

_ 1 oWplg]
2\/E (5g,-j

EV =




Gravitational instantons

Flow lines <+ Hotava—Lifshitz classical solutions

» Static solutions — V = 0 (D-dim extremums) and S = 0
» Generic flow lines — infinite-action solutions with singularities
at finite proper time

» Flow lines interpolating two fixed points (D-dim extremums)
» finite action

1
5ground state — 2 |AWD‘

» the end-points would be singular but are at infinite proper time



4D Euclidean space—time (D = 3)

Detailed balance with Chern—Simons and Einstein—Hilbert
2 2
K K 20 —1 Aw
digjj = ——Cj— 5 | Rj — 52— R&i + =5 8if
I e TR, < 2BA—1) T 3Agf>

Cotton—Ricci flows — highly intricate mathematical problem

Can be better studied assuming e.g. Bianchi IX symmetry for the 3D
leaves (SU(2)-homogeneous) (s, souriot, List, Petropoutos, 2010]

g;jdxidxj = Z’)/,-(t) (U,-)z

Rich (analytic/numerical) behaviour: fixed points (isotropic,
axisymmetric, anisotropic), convergence, stability . ..



A — —oo: normalized Ricci plus Cotton flow

2 2
K K 1
digj = wee Cj — 2 <Rij - 3Rgij>
w

» The volume is conserved: V = 16712, /917273 = 2772L2
» Typical phase portrait (x = 411/12, y = 412/12)

Figure: Flow lines for u = wesl/x3, < —6 ¥/2



Note: 3D detailed balance with Einstein—Hilbert — pure Ricci

Poincaré’s conjecture: unique (isotropic) fixed point

4

No gravitational instantons: solutions have infinite (generic) or zero
(static) action



Hotava-Lifshitz Bianchi IX gravitational instantons: time-dependent
solutions interpolating between genuine 4D static solutions

Look like ordinary instantons of particle theory ...
Smooth evolution of the S3 — globally R x S3

> no nuts, no bolts
» zero Euler number x and signature T
» no SO(3), no taubian infinity

... rather than GR gravitational instantons — universal behaviour

Reason: detailed-balance condition — geometric flows

Relaxing the detailed balance — richer spectrum of instantons,
black holes .. .closer to GR in the IR
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Geometric flows and gravitational instantons

4D Einstein dynamics versus 3D geometric flows in spaces with time
foliation, homogeneous spatial sections and self-duality

> Role of 4D: SO(4) = SU(2) x SU(2) = reduction is sd & asd

Role of the 3D homogeneity: G — SU(2) = gauge choice
Role of the self-duality: effectively reduces the system to 3D

> geometric flow driven by Ricci plus SU(2) gauge field
» no degree of freedom for the gauge field (F = 0)

v

v

v

Possible generalizations in D 4+ 1 = 8,7 or to include A # 0

v

Possible holographic applications: flows along the radial
direction towards to boundary



Gravitational instantons in non-relativistic gravity: general
framework to embed various geometric flows

» Similar set-up: foliation Mp,; =R x Mp

» Major difference: explicit breaking of the diffeomorphism
invariance — in Einstein this breaking is spontaneous

» Similar constraint: detailed balance and ground states instead
of self-duality

» Similar effect: dynamics locked by the D-dim ancestor —
instantons are flow lines interpolating between D-dim
extremums (degenerate static D + 1-dim solutions)

» Important differences: anistotropy scaling z=D, A < 1/p -
“smoother” instantons

Example: 4D — 3D dynamics governed by Ricci—Cotton flows —
analytic and numerical available results — more to be done wrt z, D
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