Geometric flows and gravitational instantons

Marios Petropoulos

CPHT – Ecole Polytechnique – CNRS

Galileo Galilei Institute for Theoretical Physics

 AdS_4/CFT_3 and the Holographic States of Matter – October 2010

Highlights

Motivations and summary

Gravitational instantons: homogeneity and self-duality

The view from the leaf: geometric flows

Extensions

Outlook

Framework

The Ricci flow describes the parametric evolution of a geometry as

$$\frac{\partial g_{ij}}{\partial t} = -R_{ij}$$

- Introduced by R. Hamilton in 1982 as a tool for proving Poincaré's (1904) and Thurston's (late 70s) 3D conjectures
- ▶ In non-critical string theory Ricci flow is an RG flow [Friedan, 1985] – can mimic time evolution as UV \rightarrow IR

 $t = \log 1/\mu$

Basic features: a reminder

- ► Volume is not preserved along the flow $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{2} \int \mathrm{d}^D x \sqrt{\det g} g^{ij} \frac{\partial g_{ij}}{\partial t} = -\frac{1}{2} \int \mathrm{d}^D x \sqrt{\det g} R$ Consequence:
 - positive curvature \rightarrow space contracts
 - ► negative curvature → space expands
- Killing vectors are preserved in time: the isometry group remains unaltered – or grows in limiting situations

Example

- At initial time: $R_{ii}^{(0)} = ag_{ii}^{(0)}$ with a constant
- Subsequent evolution: linear rescaling

$$egin{aligned} \mathsf{g}_{ij}(t) &= (1 - \mathsf{a}t) \mathsf{g}_{ij}^{(0)} \ \mathsf{R}_{ij}(t) &= \mathsf{R}_{ij}^{(0)} \end{aligned}$$

Properties

- $a > 0 \Rightarrow$ uniform contraction \rightarrow singularity at t = 1/a
- $a < 0 \Rightarrow$ indefinite expansion

Gravitational instantons

- Useful for non-perturbative transitions in quantum gravity
- Appear in string compactifications e.g. in heterotic: C₂/Γ → ALE spaces → Gibbons–Hawking multi-instantons as Eguchi–Hanson (blow-up of the C₂/ℤ₂ A₁ singularity)
- Describe hyper moduli spaces e.g. in IIA:
 - Taub-NUT ($SU(2) \times U(1)$, $\Lambda = 0$): tree-level
 - ▶ Pedersen/Fubini–Study ($SU(2) \times U(1)$, $\Lambda \neq 0$): supergravity
 - ► Calderbank–Pedersen (Heisenberg $\times U(1)$, $\Lambda \neq 0$): string pert
 - ► Calderbank–Pedersen $(U(1) \times U(1), \Lambda \neq 0)$: string non-pert

or in heterotic: Atiyah–Hitchin (SU(2), $\Lambda = 0$)

Geometric flows arise in gravitational instantons with time foliation

- In 4D self-dual gravitational instantons with homogeneous Bianchi spatial sections: time evolution is a Ricci flow of the 3D homogeneous space
- In non-relativistic gravity with invariance explicitly broken to foliation-preserving diffeomorphisms and with detailed-balance dynamics: time evolution is a geometric flow of the 3D space (valid actually in D + 1 → D)

Geometric flows might carry information on holographic evolution in some gravitational set ups – yet to be unravelled

Highlights

Motivations and summary

Gravitational instantons: homogeneity and self-duality

The view from the leaf: geometric flows

Extensions

Outlook

Cartan's formalism

Metric and torsionless connection one-form ω_b^a and curvature two-form \mathcal{R}_b^a in an orthonormal frame:

$$\mathrm{d}s^2 = \delta_{ab}\theta^a\theta^b$$

- Riemann tensor: $\mathcal{R}^a_{\ b} = d\omega^a_{\ b} + \omega^a_{\ c} \wedge \omega^c_{\ b} = \frac{1}{2} \mathcal{R}^a_{\ bcd} \theta^c \wedge \theta^d$
- ► Torsion tensor: $T^a = d\theta^a + \omega^a{}_b \wedge \theta^b = \frac{1}{2}T^a{}_{bc}\theta^b \wedge \theta^c$
- Cartan structure equations: $\omega_{ab} = -\omega_{ba}$, $\mathcal{T}^a = 0$
- ► Bianchi identity: $d\mathcal{R}^{a}_{\ b} + \omega^{a}_{\ c} \wedge \mathcal{R}^{c}_{\ b} \mathcal{R}^{a}_{\ c} \wedge \omega^{c}_{\ b} = 0$
- ► Cyclic identity: $dT^a + \omega^a_{\ b} \wedge T^b = \mathcal{R}^a_{\ b} \wedge \theta^b = 0$

Holonomy

 ds² = δ_{ab}θ^aθ^b invariant under local SO(D) transformations θ^{a'} = Λ^{-1a}_bθ^b
 Connection and curvature transform

 ω^{a'}_b = Λ^{-1a}_cω^c_dΛ^d_b + Λ^{-1a}_cdΛ^c_b

$$\blacktriangleright \mathcal{R}^{a'}_{\ b} = \Lambda^{-1}{}^a_c \mathcal{R}^c_{\ d} \Lambda^d_{\ b}$$

Connection and curvature are both antisymmetric-matrix-valued two-forms $\in D(D-1)/2$ representation of SO(D)

Self-dual/anti-self-dual decomposition in 4D

Duality supported by the fully antisymmetric symbol ϵ_{abcd}

Dual connection:

$$\tilde{\omega}^{a}{}_{b} = \frac{1}{2} \epsilon^{a}{}_{bc}{}^{d} \omega^{c}{}_{d}$$

Dual curvature:

$$\tilde{\mathcal{R}}^{a}{}_{b} = \frac{1}{2} \epsilon^{a}{}_{bc}{}^{d} \mathcal{R}^{c}{}_{d}$$

Curvature and connection \in **6** *(antisymmetric) of SO*(4) – *reducible as* (3, 1) \oplus (1, 3) *under SU*(2)_{sd} \otimes *SU*(2)_{asd} \cong *SO*(4)

Adapting the frame $\{\theta^0, \theta^i\}$ to the action of $SU(2)_{sd} \otimes SU(2)_{asd}$

Connection one-form

(3, 1)
$$\Sigma_i = 1/2 \left(\omega_{0i} + 1/2 \epsilon_{ijk} \omega^{jk} \right)$$

(1, 3) $A_i = 1/2 \left(\omega_{0i} - 1/2 \epsilon_{ijk} \omega^{jk} \right)$

Curvature two-form

$$(3, 1) \quad S_i = \frac{1}{2} \left(\mathcal{R}_{0i} + \frac{1}{2} \epsilon_{ijk} \mathcal{R}^{jk} \right)$$
$$(1, 3) \quad \mathcal{A}_i = \frac{1}{2} \left(\mathcal{R}_{0i} - \frac{1}{2} \epsilon_{ijk} \mathcal{R}^{jk} \right)$$
$$\blacktriangleright \mathcal{R}^a_{\ b} = d\omega^a_{\ b} + \omega^a_{\ c} \wedge \omega^c_{\ b} \text{ decomposes}$$
$$\vdash S_i = d\Sigma_i - \epsilon_{ijk} \Sigma^j \wedge \Sigma^k$$
$$\vdash \mathcal{A}_i = dA_i + \epsilon_{ijk} \mathcal{A}^j \wedge \mathcal{A}^k$$

 $\{\Sigma_i, S_i\}$ vectors of $SU(2)_{sd}$ and singlets of $SU(2)_{asd}$ and vice-versa for $\{A_i, A_i\}$

Dynamics in 4D

Einstein-Hilbert action in Palatini formalisms

$$S_{\mathsf{EH}} = \frac{1}{16\pi G} \int_{\mathcal{M}_4} \tilde{\mathcal{R}}_{cd} \wedge \theta^c \wedge \theta^d$$

- Vacuum equations: $\tilde{\mathcal{R}}^{c}_{d} \wedge \theta^{d} = 0$
- Cyclic identity for torsionless connection: $\mathcal{R}^{c}_{d} \wedge \theta^{d} = 0$

Curvature (anti)self-duality guarantees vacuum solution

The \mathcal{M}_4 *geometry*

Foliation and spatial homogeneity [textbook: Ryan and Shepley, 1975]

- Topologically $\mathcal{M}_4 = \mathbb{R} \times \mathcal{M}_3$
- Bianchi 3D group G acts simply transitively on the leaves M₃
 M₃ is locally G
 - left-invariant Maurer–Cartan forms σ^i :

$$\mathrm{d}\sigma^i = \frac{1}{2}c^i_{\ jk}\sigma^j\wedge\sigma^k$$

▶ 3 linearly independent Killing vectors tangent to \mathcal{M}_3 :

$$\left[\xi_i,\xi_j\right]=c^i_{jk}\xi_k$$

► Classes A (T₃, Heisenberg, E_{1,1}, E₂, SL(2, ℝ), SU(2)) & B

Self-dual vacuum solutions

Geometry

Foliation plus spatial homogeneity \rightarrow

► Good ansatz for the metric (*g_{ij}*s functions of *t*):

$$\mathrm{d}s^2 = \mathrm{d}t^2 + g_{ij}\sigma^i\sigma^j = \delta_{ab}\theta^a\theta^b$$

Minimalistic (diagonal) ansatz:

$$\mathrm{d}s^2 = \mathrm{d}t^2 + \sum_i \left(\gamma_i \sigma^i\right)^2$$

(the most general in most Bianchi classes)

Second-order equations:

$$\mathcal{A}_i = \mathsf{d} \mathcal{A}_i + \epsilon_{ijk} \mathcal{A}^j \wedge \mathcal{A}^k = 0$$

Solutions: anti-self-dual flat connections

$$A_i = \frac{\lambda_{ij}}{2}\sigma^j$$

$$\lambda_{i\ell} c^{\ell}_{jk} + \epsilon_{imn} \lambda^{m}_{[j} \lambda^{n}_{k]} = 0$$

G
ightarrow SU(2) homomorphisms [Bourliot, Estes, Petropoulos, Spindel, 2009]

- ► $\lambda_{ij} = 0$ rank-0 (trivial) homomorphism: Class A, Class B
- $\lambda_{ij} \neq 0$
 - ▶ rank-1: I, II, $\forall I_{h=-1}$, $\forall I_{h=0} \& III$, IV, V, $\forall I_{h\neq-1}$, $\forall II_{h\neq0}$
 - rank-3: VIII, IX

Bianchi IX: $G \equiv SU(2)$ *and* $\mathcal{M}_3 \equiv S^3$ *Convenient parameterization:* $\Omega^i = \gamma_j \gamma_k$

 $\mathsf{d}s^{2} = \Omega^{1}\Omega^{2}\Omega^{3}\,\mathsf{d}T^{2} + \frac{\Omega^{2}\Omega^{3}}{\Omega^{1}}\left(\sigma^{1}\right)^{2} + \frac{\Omega^{3}\Omega^{1}}{\Omega^{2}}\left(\sigma^{2}\right)^{2} + \frac{\Omega^{1}\Omega^{2}}{\Omega^{3}}\left(\sigma^{3}\right)^{2}$

General self-duality equations: $A_i = \frac{\lambda_{ij}}{2}\sigma^j$

$$\lambda_{ij} = 0$$
 Lagrange system (Euler-top) _[Jacobi]
 $\dot{\Omega}^1 = -\Omega^2 \Omega^3, \quad \dot{\Omega}^2 = -\Omega^3 \Omega^1, \quad \dot{\Omega}^3 = -\Omega^1 \Omega^2$

 $\lambda_{ij} = \delta_{ij}$ Darboux-Halphen system [Darboux 1878; Halphen 1881]

$$\begin{cases} \dot{\Omega}^{1} = \Omega^{2}\Omega^{3} - \Omega^{1}\left(\Omega^{2} + \Omega^{3}\right)\\ \dot{\Omega}^{2} = \Omega^{3}\Omega^{1} - \Omega^{2}\left(\Omega^{3} + \Omega^{1}\right)\\ \dot{\Omega}^{3} = \Omega^{1}\Omega^{2} - \Omega^{3}\left(\Omega^{1} + \Omega^{2}\right) \end{cases}$$

Solutions with $\gamma_1 = \gamma_2 \rightarrow SU(2) \times U(1)$ symmetry

1. Lagrange: Eguchi-Hanson [Eguchi, Hanson, April 1978]

$$\mathsf{d}s^{2} = \frac{\mathsf{d}\rho^{2}}{1 - \frac{a^{4}}{\rho^{4}}} + \rho^{2} \frac{\left(\sigma^{1}\right)^{2} + \left(\sigma^{2}\right)^{2} + \left(1 - \frac{a^{4}}{\rho^{4}}\right)\left(\sigma^{3}\right)^{2}}{4}$$

with a removable bolt at ho = a

2. Darboux-Halphen: Taub-NUT [Newman, Tamburino, Unti, 1963]

$$ds^{2} = \frac{r+m}{r-m}\frac{dr^{2}}{4} + (r^{2} - m^{2})\frac{(\sigma^{1})^{2} + (\sigma^{2})^{2}}{4} + \frac{r-m}{r+m}(m\sigma^{3})^{2}$$

with a removable nut at r = m

Note: not the most general

- ▶ $\gamma_1 = \gamma_2 = \gamma_3 \rightarrow SU(2) \times SU(2)$: solution is flat space
- $\gamma_1 \neq \gamma_2 \neq \gamma_3 \rightarrow \text{strict-}SU(2)$: solutions exist but have often naked singularities
 - ► Lagrange system: ∃ naked singularities [Belisnky, Gibbons, Page, Pope, June 1978]
 - Darboux-Halphen system: solvable in terms of quasi-modular forms [Halphen, 1881], ∃ naked singularities except for one solution with a bolt [Atiyah, Hitchin, 1985] describing the configuration space of two slowly moving BPS SU(2) Yang-Mills-Higgs monopoles [Manton, 1981]

Reminder: bolts and nuts

Fixed points of isometries generated by ξ

- characterised by the rank of $abla_{[
 u}\xi_{\mu]}$
- potential removable or non-removable singularities, depending on the precise behaviour of $g_{\mu\nu}$

- $\chi_{\text{bolt}} = 2$, $\chi_{\text{nut}} = 1$

Around t = 0

- ▶ rank 4: nut removable if $\gamma_i \simeq t/2 \forall i$
- ▶ rank 2: bolt removable if $\gamma_1 \simeq \gamma_2 \simeq$ finite and $\gamma_3 \simeq \frac{nt}{2}$

Gravitational instantons of GR are classified according to bolts, nuts and asymptotic behaviours (Euclidean vs. Taubian) within the positive-action conjecture [Gibbons, Hawking, 1979]

Highlights

Motivations and summary

Gravitational instantons: homogeneity and self-duality

The view from the leaf: geometric flows

Extensions

Outlook

Curvature for 3D homogeneous spaces

 $\tilde{\mathcal{M}}_3$: homogeneous 3D Bianchi IX space with metric

$$\mathrm{d}\tilde{s}^2 = \gamma_{ij}\sigma^i\sigma^j = \delta_{ij}\tilde{\theta}^i\tilde{\theta}^j$$

 $(\Gamma^{ij} \text{ inverse of } \gamma_{ij})$

Bianchi A classes: $c^{k}_{ij} = -\epsilon_{ij\ell} n^{\ell k}$

• Cartan–Killing: $C_{ij} = -\frac{1}{2} \epsilon_{\ell im} \epsilon_{kjn} n^{mk} n^{n\ell}$

Ricci:

$$\operatorname{Ric}[\gamma] = \mathcal{C} - \frac{1}{2} \frac{\operatorname{tr}(n\gamma)^2}{\det \gamma} \gamma + \frac{\gamma n \gamma n \gamma}{\det \gamma}$$

Back to 4D: self-duality equations

 $\mathcal{M}_4 \text{ with } ds^2 = dt^2 + g_{ij}(t)\sigma^i\sigma^j$ Self-duality over \mathcal{M}_4 with $g_{ij} = \gamma_{ik}\mathcal{K}^{k\ell}\gamma_{\ell j}$

$$A_{i} \equiv \frac{1}{2} \left(\omega_{0i} - \frac{1}{2} \epsilon_{ijk} \omega^{jk} \right) = \frac{\lambda_{ij}}{2} \sigma^{j} \Leftrightarrow \frac{\mathrm{d}\gamma_{ij}}{\mathrm{d}t} = -R_{ij}[\gamma] - \frac{1}{2} \mathrm{tr} \left(\alpha_{i} \alpha_{j} \right)$$

 $\alpha = \alpha_i \tilde{\theta}^i SU(2)$ Yang–Mills connection over $\tilde{\mathcal{M}}_3$

$$\alpha_i = (\mathcal{C}_{ij} - \lambda_{ij}) t^j$$

with $\operatorname{tr}(t^i t^j) = -2\delta^{ij}$

• *t*-independent: $d\alpha/dt = 0$

► flat: $F \equiv d\alpha + [\alpha, \alpha] = 0$ ($\Leftrightarrow \lambda_{i\ell} c^{\ell}_{jk} + \epsilon_{imn} \lambda^{m}_{[j} \lambda^{n}_{k]} = 0$)

Output: self-duality in $M_4 = \mathbb{R} \times M_3 \leftrightarrow \text{Ricci flow plus}$ *pure-gauge* SU(2) *Yang–Mills background over* \tilde{M}_3

Valid for Bianchi A class

► For Bianchi IX $(C_{ij} = \delta_{ij})$ with diagonal metric $\gamma_{ij} = \gamma_i \delta_{ij}$ $\lambda_{ij} = \delta_{ij}$ pure Ricci flow on $S^3 \leftrightarrow$ Darboux–Halphen (branch of Taub–NUT and Atiyah–Hitchin) $\lambda_{ij} = 0$ Ricci plus YM flow on $S^3 \leftrightarrow$ Lagrange (branch of Eguchi–Hanson and Belisnky *et al*)

Highlights

Motivations and summary

Gravitational instantons: homogeneity and self-duality

The view from the leaf: geometric flows

Extensions

Outlook

Can α *flow? Can it have* $F \neq 0$ *?*

Comments on the emerging geometric flow of the 3D leaves

- α is a background SU(2) gauge field inherited from the anti-self-dual part of the 4D Levi–Civita connection
- ► The geometric flow *is not* gauge invariant not supposed to be
- The gauge field
 - does not flow $(\dot{\alpha} = 0)$
 - its strength is set to F = 0

Adding Λ : milder self-duality condition (Weyl) but major difference

- $\mathcal{A}_i \neq 0 \rightarrow$ dynamical SU(2) gauge field on the 3D leaf
 - Flowing connection α
 - Non-vanishing field strength F

(breakdown of genuine self-duality)

Genuine Ricci plus SU(2) Yang–Mills flow

- ► Example in Bianchi IX: the Fubini–Study or Pedersen solutions (metric on CP₂ and relatives)
- Example in Bianchi II: Calderbank–Pedersen solution

Can one go beyond 4D?

Self-duality in D = 7, 8

The octonionic structure constants $\psi_{\alpha\beta\gamma} \alpha, \beta, \gamma \in \{1, ..., 7\}$ and the dual G_2 -invariant antisymmetric symbol $\psi^{\alpha\beta\gamma\delta}$ allow to define

- Duality in 7D: $SO(7) \supset G_2$
- Duality in 8D: $SO(8) \supset Spin_7$

However

- ► $SO(7) \not\supseteq H \otimes G_2$
- ► $SO(8) \not\supseteq H \otimes \text{Spin}_7$

In foliations $\mathcal{M}_{D+1} = \mathbb{R} \times \mathcal{M}_D$ with \mathcal{M}_D a fibration over a Bianchi group: $\mathcal{A} = 0 \Rightarrow \mathcal{A} = 0$ – geometric flow under investigation

Non-relativistic gravity [Hořava, 2008-09]

Foliation $\mathcal{M}_{D+1} = \mathbb{R} \times \mathcal{M}_D$: explicit breaking of diffeomorphisms

$$S = \int \mathrm{d}t \, \mathrm{d}^{D}x \, \sqrt{g} \left(\frac{2}{\kappa^{2}} \left(K_{ij} K^{ij} - \lambda K^{2} \right) + V \right)$$

 $\mathrm{d}s^2 = \mathrm{d}t^2 + g_{ij}\mathrm{d}x^i\mathrm{d}x^j,$ $K_{ij} = 1/2\partial_t g_{ij},$ [x] = -1, [t] = -z

- GR: $\lambda = 1$, z = 1 and $V = 2/\kappa^2(2\Lambda R_D)$
- HL: $\lambda \in \mathbb{R}$ and $V = \kappa^2/2E^{ij}\mathcal{G}_{ijk\ell}E^{k\ell}$
 - $\mathcal{G}_{ijk\ell} = \frac{1}{2} \left(g_{ik}g_{j\ell} + g_{i\ell}g_{jk} \right) \frac{\lambda}{D\lambda 1}g_{ij}g_{k\ell} \text{ (zero at } \lambda = 1/D \text{)}$
 - power-counting (super)renormalizability: z(>) = D
 - detailed balance: $E^{ij} = -\frac{1}{2\sqrt{g}} \frac{\delta W_D[g]}{\delta g_{ij}}$

D = z = 3: $W_3 = W_{CS} + W_{EH}$ (topologically massive gravity)

Ground states in the positive-definite case ($\lambda < 1/D$)

▶ Detailed balance $\rightarrow S$ (up to boundary term: $1/2 |W_D|_{t_{in}}^{t_{fin}} \ge 0$)

$$\frac{2}{\kappa^2} \int \mathrm{d}t \, \mathrm{d}^D x \, \sqrt{g} \left(K_{ij} \pm \frac{\kappa^2}{2} \mathcal{G}_{ijmn} E^{mn} \right) \, G^{ijk\ell} \left(K_{k\ell} \pm \frac{\kappa^2}{2} \mathcal{G}_{k\ell rs} E^{rs} \right)$$

• Ground-state extremums \rightarrow geometric flow

$$\partial_t g_{ij} = \mp \kappa^2 \mathcal{G}_{ijk\ell} E^{k\ell}$$

• Static solutions – fixed-points of the flow \rightarrow extremums of W_D

$$E^{ij} \equiv -rac{1}{2\sqrt{g}}rac{\delta W_D[g]}{\delta g_{ij}} = 0$$

Gravitational instantons

Flow lines \leftrightarrow *Hořava–Lifshitz classical solutions*

- Static solutions $\rightarrow V = 0$ (*D*-dim extremums) and S = 0
- ► Generic flow lines → infinite-action solutions with singularities at finite proper time
- Flow lines interpolating two fixed points (D-dim extremums)
 - finite action

$$S_{ ext{ground state}} = rac{1}{2} \left| \Delta W_D
ight|$$

the end-points would be singular but are at *infinite* proper time

4D Euclidean space-time (D = 3)

Detailed balance with Chern-Simons and Einstein-Hilbert

$$\partial_t g_{ij} = \frac{\kappa^2}{w_{\rm CS}} C_{ij} - \frac{\kappa^2}{\kappa_W^2} \left(R_{ij} - \frac{2\lambda - 1}{2(3\lambda - 1)} Rg_{ij} + \frac{\Lambda_W}{1 - 3\lambda} g_{ij} \right)$$

Cotton-Ricci flows - highly intricate mathematical problem

Can be better studied assuming e.g. Bianchi IX symmetry for the 3D leaves (SU(2)-homogeneous) [Bakas, Bourliot, Lüst, Petropoulos, 2010]

$$g_{ij} \mathrm{d} x^i \mathrm{d} x^j = \sum_i \gamma_i(t) \left(\sigma^i\right)^2$$

Rich (analytic/numerical) behaviour: fixed points (isotropic, axisymmetric, anisotropic), convergence, stability ...

 $\lambda \rightarrow -\infty$: normalized Ricci plus Cotton flow

$$\partial_t g_{ij} = rac{\kappa^2}{w_{CS}} C_{ij} - rac{\kappa^2}{\kappa_W^2} \left(R_{ij} - rac{1}{3} R g_{ij}
ight)$$

- The volume is conserved: $V = 16\pi^2 \sqrt{\gamma_1 \gamma_2 \gamma_3} = 2\pi^2 L^2$
- Typical phase portrait $(x = 4\gamma_1/L^2, y = 4\gamma_2/L^2)$

Figure: Flow lines for $\mu \equiv w_{\rm CS} L/\kappa_W^2 < -6\sqrt[3]{2}$

Note: 3D *detailed balance with Einstein–Hilbert* \rightarrow *pure Ricci*

Poincaré's conjecture: unique (isotropic) fixed point

₩

No gravitational instantons: solutions have infinite (generic) or zero (static) action

Hořava–Lifshitz Bianchi IX gravitational instantons: time-dependent solutions interpolating between genuine 4D static solutions

Look like ordinary instantons of particle theory Smooth evolution of the S^3 – globally $\mathbb{R} \times S^3$

- no nuts, no bolts
- zero Euler number χ and signature τ
- no SO(3), no taubian infinity

... rather than GR gravitational instantons - universal behaviour

Reason: detailed-balance condition \rightarrow *geometric flows*

Relaxing the detailed balance \rightarrow richer spectrum of instantons, black holes \ldots closer to GR in the IR

Highlights

Motivations and summary

Gravitational instantons: homogeneity and self-duality

The view from the leaf: geometric flows

Extensions

Outlook

Geometric flows and gravitational instantons

4D Einstein dynamics versus 3D geometric flows in spaces with time foliation, homogeneous spatial sections and self-duality

- ▶ Role of 4D: $SO(4) \cong SU(2) \times SU(2) \Rightarrow$ reduction is sd \oplus asd
- ▶ Role of the 3D homogeneity: $G \rightarrow SU(2) \Rightarrow$ gauge choice
- Role of the self-duality: effectively reduces the system to 3D
 - geometric flow driven by Ricci plus SU(2) gauge field
 - no degree of freedom for the gauge field $(\tilde{F} = 0)$
- Possible generalizations in D + 1 = 8, 7 or to include $\Lambda \neq 0$
- Possible holographic applications: flows along the radial direction towards to boundary

Gravitational instantons in non-relativistic gravity: general framework to embed various geometric flows

- Similar set-up: foliation $\mathcal{M}_{D+1} = \mathbb{R} \times \mathcal{M}_D$
- Major difference: explicit breaking of the diffeomorphism invariance – in Einstein this breaking is spontaneous
- Similar constraint: detailed balance and ground states instead of self-duality
- Similar effect: dynamics locked by the *D*-dim ancestor instantons are flow lines interpolating between *D*-dim extremums (degenerate static *D* + 1-dim solutions)
- ▶ Important differences: anistotropy scaling z = D, $\lambda < 1/D -$ "smoother" instantons

Example: $4D \rightarrow 3D$ dynamics governed by Ricci–Cotton flows – analytic and numerical available results – more to be done wrt z, D