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General Result

1.) one critical length scale

2.) charge carriers are critical

3.) charge conservation
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Figure 1: Fermi sea (shaded) with two low-lying excitations, an electron at
p1 and a hole at p2.

that something very different might emerge. All we can do here is to check

the guess for consistency (naturalness), and compare it with experiment.

Begin by examining the free action
∫

dt d3p
{

iψ†
σ(p)∂tψσ(p) − (ε(p) − εF)ψ†

σ(p)ψσ(p)
}

. (12)

Here σ is a spin index and εF is the Fermi energy. The single-electron energy

ε(p) would be p2/2m for a free electron, but in the spirit of writing down the

most general possible action we make no assumption about its form.5 The

ground state of this theory is the Fermi sea, with all states ε(p) < εF filled

and all states ε(p) > εF empty. The Fermi surface is defined by ε(p) = εF.

Low lying excitations are obtained by adding an electron just above the Fermi

surface, or removing one (producing a hole) just below, as shown in figure 1.

Now we need to ask how the fields behave as we scale all energies by a

factor s < 1. In the relativistic case, the momentum scaled with the energy,
5A possible p-dependent coefficient in the time-derivative term has been absorbed into

the normalization of ψσ(p).

13

sum over bands and an integral over a fundamental region (Brillouin

zone) for each band. This does not affect the analysis in any essential

way, so for simplicity we will treat momentum as exactly conserved. In

addition, the action is constrained by any discrete point symmetries of

the crystal.

3. Spin SU(2). In the c → ∞ limit, physics is invariant under independent

rotations of space and spin, so spin SU(2) acts as an internal symmetry.

Starting with terms quadratic in the fields, we have first
∫

dt d2k dlµ(k)ψ†
σ(p)ψσ(p). (17)

Combining the scaling of the various factors, this goes as s−1+1−2/2 = s−1.

This resembles a mass term, and it is relevant. Notice, though, that it can

be absorbed into the definition of ε(p). We should expand around the Fermi

surface appropriate to the full ε(p). Thus, the existence of a Fermi surface

is natural, but it is unnatural to assume it to have any very precise shape

beyond the constraints of symmetry. Adding one time derivative or one factor

of l makes the operator marginal, scaling as s0; these are the terms already

included in the action (16). Adding additional time derivatives or factors of

l makes an irrelevant operator.

Turning to quartic interactions, the first is
∫

dt d2k1 dl1 d2k2 dl2 d2k3 dl3 d2k4 dl4 V (k1,k2,k3,k4) (18)

ψ†
σ(p1)ψσ(p3)ψ

†
σ′(p2)ψσ′(p4)δ

3(p1 + p2 − p3 − p4).

This scales as s−1+4−4/2 = s, times the scaling of the delta-function. Let us

first be glib, and argue that

δ3(p1 + p2 − p3 − p4) = δ3(k1 + k2 − k3 − k4 + l1 + l2 − l3 − l4)

∼ δ3(k1 + k2 − k3 − k4). (19)
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1.) e- charge carriers

2.) Fermi surface

No relevant short-range 4-Fermi terms in      

but here things are very different. As figure 1 makes clear, as the energy

scales to zero we must scale the momenta toward the Fermi surface. To do

this, write the electron momentum as

p = k + l, (13)

where k is vector on the Fermi surface and l is a vector orthogonal to the

Fermi surface. Then when E → sE, the momenta scale k → k and l → sl.

Expand the single particle energy

ε(p) − εF = lvF(k) + O(l2), (14)

where the Fermi velocity vF = ∂pε. Scaling

dt → s−1dt, dk → dk, dl → sdl, ∂t → s∂t, l → sl, (15)

each term in the action
∫

dt d2k dl
{

iψ†
σ(p)∂tψσ(p) − lvF(k)ψ†

σ(p)ψσ(p)
}

(16)

scales as s1 times the scaling of ψ†ψ. The fluctuations of ψ thus scale as

s−1/2.

Now we play the effective field theory game, writing down all terms al-

lowed by symmetry and seeing how they scale. If we find a relevant term we

lose: the theory is unnatural. The symmetries are

1. Electron number.

2. The discrete lattice symmetries. Actually, in the action (12), we have

treated translation invariance as a continuous symmetry, so that mo-

mentum is exactly conserved. Because the electrons are moving in a

periodic potential, they can exchange discrete amounts of momentum

with the lattice. Including these terms, the free action can be rediag-

onalized, with the result that the integral over momentum becomes a
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atomic limit

intensity of lower band=# of electrons the
band can hold

total weight=1+x= # of ways electrons 
can be added in lower band

no problems yet!
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breakdown of electron quasi-particle picture:  Mottness
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excitations and no antiferromagnetic long-range order
modeled after the ground state of the Hubbard model
at half-filling in 1 spatial dimension. Baskaran and An-
derson go further to say that the antiferromagnet is a
Mott insulator, and it is an antiferromagnet because it is
a Mott insulator, not vice versa; superexchange is a con-
sequence of the insulating state. Unfortunately, ten years
of work by some of the best minds in theoretical physics
have failed to produce any formal demonstration of the
existence of such a state at zero temperature - essential
here because everything conducts a little at finite tem-
perature - and dimension greater than 1. Probably the
closest anyone came was my own work6 which produced
a state with a spin gap and discrete broken symmetries
at the price of long-range interactions, and which had
a phenomenology inconsistent with that of the cuprates.
Anderson’s views to the contrary, this matters a great
deal because one’s inability to back up phenomenological
observations with a simple model that is easy to solve and
makes sense usually means that an important physical
idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

In light of the magnitude and scope of these problems
it is rather ironic that a zero-temperature state with or-
der possessing all of these properties, namely the con-
ventional Hartree-Fock spin density wave, has existed all
along and can be written down and explained easily.

Why is it so hard to construct a Mott insulating vac-
uum that makes sense in 2 or more spatial dimensions
when it can be done so readily in 1? I would like to ad-
dress this question in the context of the pure spin limit of
the problem, as the difficulty is exhibited already there,
but the meaningfulness of this limit is not obvious and is
one of the things we need eventually to address. Consider
a spin Hamiltonian of the form

H =
∑

<j,k>

Jjk
!Sj · !Sk , (1)

where < j, k > denotes a sum over lattice pairs, not
necessarily near neighbors, and Jjk is a translationally-
invariant Heisenberg exchange interaction of finite range.
When the total spin per site is integral it is possible to
find exact solutions in any number of dimensions that

are legitimate spin liquids, in the sense of having ex-
ponentially decaying correlations, an energy gap, and a
common-sense relationship between this gap and the cor-
relation length7. When the spin per site is half-integral,
on the other hand, no such solution has even been found,
and such computer work as we have indicates either or-
der or inadequate sample-size convergence, i.e. that the
simulation is not large enough to determine one way or
the other whether ordering occurs. This fundamental
disparity between integral and half-integral spins was an-
ticipated by Lieb, Schultz, and Mattis8 long before the
discovery of high-Tc superconductivity and is manifested
as the Haldane effect in 1 dimension9. They introduced
the unitary operator

U = exp

{

i
∑

j

2πxj

L
Sz

j

}

, (2)

where xj denotes the x-coordinate of the jth lattice site
and L denotes the sample size, which has the effect of
rotating each spin about the z-axis in a way that twists
by 2π as one advances across the sample. This opera-
tor is defined in any number of dimensions, but for the
arguments to work properly in dimension greater than
1 it is necessary to imagine a sample that is long and
skinny, say 50 light-years wide and 105 light-years long,
and to have an odd number of sites in the plane perpen-
dicular to the long axis. Since U rotates all the spins
in a given region together it is almost a symmetry oper-
ator and therefore increases the expected energy by an
amount that vanishes as the sample size grows. Denoting
the exact ground state by |Ψ0 >, we have specifically

<Ψ0|U †HU |Ψ0 >

<Ψ0|Ψ0 >
−

<Ψ0|H|Ψ0 >

<Ψ0|Ψ0 >
∝ 1/L2 , (3)

where L denotes the sample length. However, in a half-
integral spin system we also have

<Ψ0|U |Ψ0 >= 0 , (4)

this following from the minus sign acquired by a spinor
when it is rotated by 2π. So U |Ψ0 > is exactly orthogonal
to |Ψ0 > when the spin per unit cell is half-integral. Since
U does not conserve total spin, this implies that half-
integral spin systems have arbitrarily low-energy excita-
tions in every spin channel and are thus fundamentally
infrared-degenerate. This is inconsistent with the energy
gap characteristic of a legitimate quantum spin liquid but
an expected and necessary consequence of ordering. So
the simplest explanation of the computer experiments,
the one I believe to be right, is that half-integral spin
systems have a powerful propensity to order and do so
almost always. The case of 1 dimension is an exception
for the simple reason that continuous symmetry breaking
is impossible in 1 dimension. The quantum spin liquid in
1 dimension is not a new state of matter at all but a still-
born antiferromagnet. The higher-dimensional analogue
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I argue that Anderson’s identification of the conflict between the fermi-liquid and non-fermi-liquid
metallic states as the central issue of cuprate superconductivity is fundamentally wrong. All ex-
perimental evidence points to adiabatic continuability of the strange metal into a conventional one,
and thus to one metallic phase rather than two, and all attempts to account theoretically for the
existence of a luttinger-liquid at zero temperature in spatial dimension greater than 1 have failed.
I discuss the underlying reasons for this failure and then argue that the true higher-dimensional
generalization of the luttinger-liquid behavior is a propensity of the system to order. This implies
that the central issue is actually the conflict between different kinds of order, i.e. exactly the idea
implicit in Zhang’s paper. I then speculate about how the conflict between antiferromagnetism
and superconductivity, the two principal kinds of order in this problem, might result in both the
observed zero-temperature phase diagram of the cuprates and the luttinger-liquid phenomenology,
i.e. the breakup of the electron into spinons and holons in certain regimes of doping and energy.
The key idea is a quantum critical point regulating a first-order transition between these phases,
and toward which one is first attracted under renormalization before bifurcating between the two
phases. I speculate that this critical point lies on the insulating line, and that the difference between
the Mott-insulator and fermi-liquid approaches to the high-Tc problem comes down to whether or
not the superconducting states made by n- and p-type doping can be continued into each other.
A candidate for the second fixed point required for distinct superconducting phases is the P- and
T-violating chiral spin liquid state invented by me.

PACS numbers: 71.10.Pm, 74.25.Dw, 74.20.Mn

In a recent paper Baskaran and Anderson1 have criti-
cized Zhang’s2 SO(5) theory of cuprate superconductiv-
ity on various microscopic grounds following the general
thinking of Greiter3 and also on the much more seri-
ous grounds that the entire idea of ascribing the behav-
ior of the cuprates to quantum criticality4 is physically
wrong. The right idea, according to them, is that a sec-
ond kind of metallic state, the luttinger-liquid, is present
in the cuprates, and that the strange phenomenology of
these materials is due to the presence of this new state
of matter5. The existence and importance of the non-
fermi-liquid state has been the central feature of Ander-
son’s ideas on cuprate superconductivity from the very
beginning, and has had a powerful influence on the de-
velopment of the subject by virtue of being the only
genuinely new idea in the field. But it is now obvious
that we have reached an impasse on this matter, and
I think the controversy surrounding Zhang’s paper pro-
vides a much-needed opportunity to question whether
the conflict between the fermi-liquid and the non-fermi-
liquid might have been the wrong issue. There are a great
many reasons to be worried about this. What is the evi-
dence that the non-fermi-liquid state is actually different
from the fermi-liquid in the sense of finite-temperature
adiabatic continuability? Why is it so difficult to write
down a luttinger-liquid in spatial dimension greater than
1, much less find a Hamiltonian that stabilizes such a

state? Why does existence of the luttinger-liquid help
identify the cause of cuprate superconductivity? What is
the experiment that would resolve the key controversies
of the luttinger-liquid state in a definitive way? There
is still reason to take Anderson’s phenomenological ob-
servations seriously, in particular the interpretation of
certain experiments in terms of spinon and holon excita-
tions into which the electron decays, but there are also
reasons to suspect that the central issue he identified is
not quite right. Zhang’s ideas, which are not completely
right either in my view, have had the salubrious effect of
articulating an alternate view of the underlying physics,
namely the quantum criticality idea Baskaran and An-
derson are so quick to dismiss, in a particularly simple
and elegant way using equations that everyone can un-
derstand. As a result there is now a second important
idea on the table, one that I think makes considerably
more sense than the luttinger-liquid idea, namely that
cuprate phenomenology might be fundamentally due to
a conflict between different kinds of order.

The antiferromagnetic and superconducting phases
each derive, according to Baskaran and Anderson, from
a more fundamental thermodynamic phase, the Mott in-
sulator and the metal, respectively. Let me for a moment
defer the question of which metallic state is intended here
and concentrate on the existence of the Mott insulator, a
paramagnetic spin singlet with an energy gap for charged

1



excitations and no antiferromagnetic long-range order
modeled after the ground state of the Hubbard model
at half-filling in 1 spatial dimension. Baskaran and An-
derson go further to say that the antiferromagnet is a
Mott insulator, and it is an antiferromagnet because it is
a Mott insulator, not vice versa; superexchange is a con-
sequence of the insulating state. Unfortunately, ten years
of work by some of the best minds in theoretical physics
have failed to produce any formal demonstration of the
existence of such a state at zero temperature - essential
here because everything conducts a little at finite tem-
perature - and dimension greater than 1. Probably the
closest anyone came was my own work6 which produced
a state with a spin gap and discrete broken symmetries
at the price of long-range interactions, and which had
a phenomenology inconsistent with that of the cuprates.
Anderson’s views to the contrary, this matters a great
deal because one’s inability to back up phenomenological
observations with a simple model that is easy to solve and
makes sense usually means that an important physical
idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

In light of the magnitude and scope of these problems
it is rather ironic that a zero-temperature state with or-
der possessing all of these properties, namely the con-
ventional Hartree-Fock spin density wave, has existed all
along and can be written down and explained easily.

Why is it so hard to construct a Mott insulating vac-
uum that makes sense in 2 or more spatial dimensions
when it can be done so readily in 1? I would like to ad-
dress this question in the context of the pure spin limit of
the problem, as the difficulty is exhibited already there,
but the meaningfulness of this limit is not obvious and is
one of the things we need eventually to address. Consider
a spin Hamiltonian of the form

H =
∑

<j,k>

Jjk
!Sj · !Sk , (1)

where < j, k > denotes a sum over lattice pairs, not
necessarily near neighbors, and Jjk is a translationally-
invariant Heisenberg exchange interaction of finite range.
When the total spin per site is integral it is possible to
find exact solutions in any number of dimensions that

are legitimate spin liquids, in the sense of having ex-
ponentially decaying correlations, an energy gap, and a
common-sense relationship between this gap and the cor-
relation length7. When the spin per site is half-integral,
on the other hand, no such solution has even been found,
and such computer work as we have indicates either or-
der or inadequate sample-size convergence, i.e. that the
simulation is not large enough to determine one way or
the other whether ordering occurs. This fundamental
disparity between integral and half-integral spins was an-
ticipated by Lieb, Schultz, and Mattis8 long before the
discovery of high-Tc superconductivity and is manifested
as the Haldane effect in 1 dimension9. They introduced
the unitary operator

U = exp

{

i
∑

j

2πxj

L
Sz

j

}

, (2)

where xj denotes the x-coordinate of the jth lattice site
and L denotes the sample size, which has the effect of
rotating each spin about the z-axis in a way that twists
by 2π as one advances across the sample. This opera-
tor is defined in any number of dimensions, but for the
arguments to work properly in dimension greater than
1 it is necessary to imagine a sample that is long and
skinny, say 50 light-years wide and 105 light-years long,
and to have an odd number of sites in the plane perpen-
dicular to the long axis. Since U rotates all the spins
in a given region together it is almost a symmetry oper-
ator and therefore increases the expected energy by an
amount that vanishes as the sample size grows. Denoting
the exact ground state by |Ψ0 >, we have specifically

<Ψ0|U †HU |Ψ0 >

<Ψ0|Ψ0 >
−

<Ψ0|H|Ψ0 >

<Ψ0|Ψ0 >
∝ 1/L2 , (3)

where L denotes the sample length. However, in a half-
integral spin system we also have

<Ψ0|U |Ψ0 >= 0 , (4)

this following from the minus sign acquired by a spinor
when it is rotated by 2π. So U |Ψ0 > is exactly orthogonal
to |Ψ0 > when the spin per unit cell is half-integral. Since
U does not conserve total spin, this implies that half-
integral spin systems have arbitrarily low-energy excita-
tions in every spin channel and are thus fundamentally
infrared-degenerate. This is inconsistent with the energy
gap characteristic of a legitimate quantum spin liquid but
an expected and necessary consequence of ordering. So
the simplest explanation of the computer experiments,
the one I believe to be right, is that half-integral spin
systems have a powerful propensity to order and do so
almost always. The case of 1 dimension is an exception
for the simple reason that continuous symmetry breaking
is impossible in 1 dimension. The quantum spin liquid in
1 dimension is not a new state of matter at all but a still-
born antiferromagnet. The higher-dimensional analogue
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I argue that Anderson’s identification of the conflict between the fermi-liquid and non-fermi-liquid
metallic states as the central issue of cuprate superconductivity is fundamentally wrong. All ex-
perimental evidence points to adiabatic continuability of the strange metal into a conventional one,
and thus to one metallic phase rather than two, and all attempts to account theoretically for the
existence of a luttinger-liquid at zero temperature in spatial dimension greater than 1 have failed.
I discuss the underlying reasons for this failure and then argue that the true higher-dimensional
generalization of the luttinger-liquid behavior is a propensity of the system to order. This implies
that the central issue is actually the conflict between different kinds of order, i.e. exactly the idea
implicit in Zhang’s paper. I then speculate about how the conflict between antiferromagnetism
and superconductivity, the two principal kinds of order in this problem, might result in both the
observed zero-temperature phase diagram of the cuprates and the luttinger-liquid phenomenology,
i.e. the breakup of the electron into spinons and holons in certain regimes of doping and energy.
The key idea is a quantum critical point regulating a first-order transition between these phases,
and toward which one is first attracted under renormalization before bifurcating between the two
phases. I speculate that this critical point lies on the insulating line, and that the difference between
the Mott-insulator and fermi-liquid approaches to the high-Tc problem comes down to whether or
not the superconducting states made by n- and p-type doping can be continued into each other.
A candidate for the second fixed point required for distinct superconducting phases is the P- and
T-violating chiral spin liquid state invented by me.
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In a recent paper Baskaran and Anderson1 have criti-
cized Zhang’s2 SO(5) theory of cuprate superconductiv-
ity on various microscopic grounds following the general
thinking of Greiter3 and also on the much more seri-
ous grounds that the entire idea of ascribing the behav-
ior of the cuprates to quantum criticality4 is physically
wrong. The right idea, according to them, is that a sec-
ond kind of metallic state, the luttinger-liquid, is present
in the cuprates, and that the strange phenomenology of
these materials is due to the presence of this new state
of matter5. The existence and importance of the non-
fermi-liquid state has been the central feature of Ander-
son’s ideas on cuprate superconductivity from the very
beginning, and has had a powerful influence on the de-
velopment of the subject by virtue of being the only
genuinely new idea in the field. But it is now obvious
that we have reached an impasse on this matter, and
I think the controversy surrounding Zhang’s paper pro-
vides a much-needed opportunity to question whether
the conflict between the fermi-liquid and the non-fermi-
liquid might have been the wrong issue. There are a great
many reasons to be worried about this. What is the evi-
dence that the non-fermi-liquid state is actually different
from the fermi-liquid in the sense of finite-temperature
adiabatic continuability? Why is it so difficult to write
down a luttinger-liquid in spatial dimension greater than
1, much less find a Hamiltonian that stabilizes such a

state? Why does existence of the luttinger-liquid help
identify the cause of cuprate superconductivity? What is
the experiment that would resolve the key controversies
of the luttinger-liquid state in a definitive way? There
is still reason to take Anderson’s phenomenological ob-
servations seriously, in particular the interpretation of
certain experiments in terms of spinon and holon excita-
tions into which the electron decays, but there are also
reasons to suspect that the central issue he identified is
not quite right. Zhang’s ideas, which are not completely
right either in my view, have had the salubrious effect of
articulating an alternate view of the underlying physics,
namely the quantum criticality idea Baskaran and An-
derson are so quick to dismiss, in a particularly simple
and elegant way using equations that everyone can un-
derstand. As a result there is now a second important
idea on the table, one that I think makes considerably
more sense than the luttinger-liquid idea, namely that
cuprate phenomenology might be fundamentally due to
a conflict between different kinds of order.

The antiferromagnetic and superconducting phases
each derive, according to Baskaran and Anderson, from
a more fundamental thermodynamic phase, the Mott in-
sulator and the metal, respectively. Let me for a moment
defer the question of which metallic state is intended here
and concentrate on the existence of the Mott insulator, a
paramagnetic spin singlet with an energy gap for charged
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excitations and no antiferromagnetic long-range order
modeled after the ground state of the Hubbard model
at half-filling in 1 spatial dimension. Baskaran and An-
derson go further to say that the antiferromagnet is a
Mott insulator, and it is an antiferromagnet because it is
a Mott insulator, not vice versa; superexchange is a con-
sequence of the insulating state. Unfortunately, ten years
of work by some of the best minds in theoretical physics
have failed to produce any formal demonstration of the
existence of such a state at zero temperature - essential
here because everything conducts a little at finite tem-
perature - and dimension greater than 1. Probably the
closest anyone came was my own work6 which produced
a state with a spin gap and discrete broken symmetries
at the price of long-range interactions, and which had
a phenomenology inconsistent with that of the cuprates.
Anderson’s views to the contrary, this matters a great
deal because one’s inability to back up phenomenological
observations with a simple model that is easy to solve and
makes sense usually means that an important physical
idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

In light of the magnitude and scope of these problems
it is rather ironic that a zero-temperature state with or-
der possessing all of these properties, namely the con-
ventional Hartree-Fock spin density wave, has existed all
along and can be written down and explained easily.

Why is it so hard to construct a Mott insulating vac-
uum that makes sense in 2 or more spatial dimensions
when it can be done so readily in 1? I would like to ad-
dress this question in the context of the pure spin limit of
the problem, as the difficulty is exhibited already there,
but the meaningfulness of this limit is not obvious and is
one of the things we need eventually to address. Consider
a spin Hamiltonian of the form

H =
∑

<j,k>

Jjk
!Sj · !Sk , (1)

where < j, k > denotes a sum over lattice pairs, not
necessarily near neighbors, and Jjk is a translationally-
invariant Heisenberg exchange interaction of finite range.
When the total spin per site is integral it is possible to
find exact solutions in any number of dimensions that

are legitimate spin liquids, in the sense of having ex-
ponentially decaying correlations, an energy gap, and a
common-sense relationship between this gap and the cor-
relation length7. When the spin per site is half-integral,
on the other hand, no such solution has even been found,
and such computer work as we have indicates either or-
der or inadequate sample-size convergence, i.e. that the
simulation is not large enough to determine one way or
the other whether ordering occurs. This fundamental
disparity between integral and half-integral spins was an-
ticipated by Lieb, Schultz, and Mattis8 long before the
discovery of high-Tc superconductivity and is manifested
as the Haldane effect in 1 dimension9. They introduced
the unitary operator

U = exp

{
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∑

j

2πxj

L
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j

}

, (2)

where xj denotes the x-coordinate of the jth lattice site
and L denotes the sample size, which has the effect of
rotating each spin about the z-axis in a way that twists
by 2π as one advances across the sample. This opera-
tor is defined in any number of dimensions, but for the
arguments to work properly in dimension greater than
1 it is necessary to imagine a sample that is long and
skinny, say 50 light-years wide and 105 light-years long,
and to have an odd number of sites in the plane perpen-
dicular to the long axis. Since U rotates all the spins
in a given region together it is almost a symmetry oper-
ator and therefore increases the expected energy by an
amount that vanishes as the sample size grows. Denoting
the exact ground state by |Ψ0 >, we have specifically

<Ψ0|U †HU |Ψ0 >

<Ψ0|Ψ0 >
−

<Ψ0|H|Ψ0 >

<Ψ0|Ψ0 >
∝ 1/L2 , (3)

where L denotes the sample length. However, in a half-
integral spin system we also have

<Ψ0|U |Ψ0 >= 0 , (4)

this following from the minus sign acquired by a spinor
when it is rotated by 2π. So U |Ψ0 > is exactly orthogonal
to |Ψ0 > when the spin per unit cell is half-integral. Since
U does not conserve total spin, this implies that half-
integral spin systems have arbitrarily low-energy excita-
tions in every spin channel and are thus fundamentally
infrared-degenerate. This is inconsistent with the energy
gap characteristic of a legitimate quantum spin liquid but
an expected and necessary consequence of ordering. So
the simplest explanation of the computer experiments,
the one I believe to be right, is that half-integral spin
systems have a powerful propensity to order and do so
almost always. The case of 1 dimension is an exception
for the simple reason that continuous symmetry breaking
is impossible in 1 dimension. The quantum spin liquid in
1 dimension is not a new state of matter at all but a still-
born antiferromagnet. The higher-dimensional analogue
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not the superconducting states made by n- and p-type doping can be continued into each other.
A candidate for the second fixed point required for distinct superconducting phases is the P- and
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these materials is due to the presence of this new state
of matter5. The existence and importance of the non-
fermi-liquid state has been the central feature of Ander-
son’s ideas on cuprate superconductivity from the very
beginning, and has had a powerful influence on the de-
velopment of the subject by virtue of being the only
genuinely new idea in the field. But it is now obvious
that we have reached an impasse on this matter, and
I think the controversy surrounding Zhang’s paper pro-
vides a much-needed opportunity to question whether
the conflict between the fermi-liquid and the non-fermi-
liquid might have been the wrong issue. There are a great
many reasons to be worried about this. What is the evi-
dence that the non-fermi-liquid state is actually different
from the fermi-liquid in the sense of finite-temperature
adiabatic continuability? Why is it so difficult to write
down a luttinger-liquid in spatial dimension greater than
1, much less find a Hamiltonian that stabilizes such a

state? Why does existence of the luttinger-liquid help
identify the cause of cuprate superconductivity? What is
the experiment that would resolve the key controversies
of the luttinger-liquid state in a definitive way? There
is still reason to take Anderson’s phenomenological ob-
servations seriously, in particular the interpretation of
certain experiments in terms of spinon and holon excita-
tions into which the electron decays, but there are also
reasons to suspect that the central issue he identified is
not quite right. Zhang’s ideas, which are not completely
right either in my view, have had the salubrious effect of
articulating an alternate view of the underlying physics,
namely the quantum criticality idea Baskaran and An-
derson are so quick to dismiss, in a particularly simple
and elegant way using equations that everyone can un-
derstand. As a result there is now a second important
idea on the table, one that I think makes considerably
more sense than the luttinger-liquid idea, namely that
cuprate phenomenology might be fundamentally due to
a conflict between different kinds of order.

The antiferromagnetic and superconducting phases
each derive, according to Baskaran and Anderson, from
a more fundamental thermodynamic phase, the Mott in-
sulator and the metal, respectively. Let me for a moment
defer the question of which metallic state is intended here
and concentrate on the existence of the Mott insulator, a
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LFL ∝ (ω − �k)|ψk|2

Fermi-liquid analogy

Mott Problem?

PES IPES

N N

LMI = (ω − ELHB(k))|ηk|2 + (ω − EUHB(k))|η̃k|2



half-filling:
Mott gap

doping:
SWT, pseudogap?

composite excitation: bound state

charge 2e boson 
WPES > 1 + x
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Dual Theory

solve constraint

4

sense, we have inserted unity into the Hubbard model
path integral in a rather complicated fashion. To this
end, we compute the partition function

Z =
∫

[Dc Dc† DD DD† Dϕ Dϕ†] exp−
R τ
0 Ldt . (8)

with L given by (5). We note that ϕ is a Lagrange mul-
tiplier. As shown in the Appendix (Eq. (41)), in the Eu-
clidean signature, the fluctuations of the real and imagi-
nary parts of ϕi must be integrated along the imaginary
axis for ϕi to be regarded as a Lagrangian multiplier.
The ϕ integrations (over the real and imaginary parts)
are precisely a representation of (a series of) δ-functions
of the form,

δ

(∫
dθDi −

∫
dθ θci,↑ci,↓

)
. (9)

If we wish to recover the Hubbard model, we need only
to integrate over Di, which is straightforward because of
the δ-functions. The dynamical terms yield

∫
d2θ θ̄θ




∑

i,σ

(1 − ni,−σ)c†i,σ ċi,σ +
∑

i

c†i,↓c
†
i,↑ċi,↑ci,↓

+
∑

i

c†i,↓c
†
i,↑ci,↑ċi,↓

]

=
∫

d2θ θ̄θ
∑

i,σ

[
(1 − ni,−σ)c†i,σ ċi,σ + ni,−σc†i,σ ċi,σ

]

=
∫

d2θ θ̄θ
∑

i,σ

c†i,σ ċi,σ. (10)

Likewise the term proportional to Vσ yields
∫

d2θ θ̄θ
∑

i,j

gij

[
c†j,↓c

†
j,↑(ci,↑cj,↓ − ci,↓cj,↑)

]
+ h.c.

=
∫

d2θ θ̄θ
∑

i,j,σ

gijnj,−σc†j,σci,σ + h.c. (11)

Finally, the hopping terms that involve two D fields give
rise to

∫
d2θ θ̄θ

∑

i,j

gij

[
c†i,↓c

†
i,↑(c

†
j,↑ci,↑ + c†j,↓ci,↓)cj,↑cj,↓

]

= −
∫

d2θ θ̄θ
∑

i,j

gijnj,−σni,−σc†i,σcj,σ. (12)

Eqs. (11) and (12) add to the constrained hopping term
in the Lagrangian (the term proportional to Cij,σ) to
yield the standard kinetic energy term in the Hubbard
model. Finally, the D†D term generates the on-site re-
pulsion of the Hubbard model. Consequently, by inte-
grating over ϕi followed by an integration over Di, we
recover the Lagrangian,

∫
d2θ θ̄θLHubb =

∑

i,σ

c†i,σ ċi,σ + HHubb, (13)

of the Hubbard model. This constitutes the ultra-violet
(UV) limit of our theory. In this limit, it is clear that
the Grassman variables amount to an insertion of unity
and hence play no role. Further, in this limit the ex-
tended Hilbert space contracts, unphysical states such as
|1, 0, 1〉, |0, 1, 1〉, |1, 1, 1〉 are set to zero, and we identify
|1, 1, 0〉 with |0, 0, 1〉. Note there is no contradiction be-
tween treating D as fermionic and the constraint in Eq.
(7). The constraint never governs the commutation rela-
tion for D. The value of D is determined by Eq. (7) only
when ϕ is integrated over. This is followed immediately
by an integration over D at which point D is eliminated
from the theory.

The advantage of our starting Lagrangian over the tra-
ditional writing of the Hubbard model is that we are able
to coarse grain the system cleanly for U # t. The en-
ergy scale associated with D is the large on-site energy
U . Hence, it makes sense, instead of solving the con-
straint, to integrate out D. The resultant theory will
contain explicitly the bosonic field, ϕ. As a result of this
field, double occupancy will remain, though the energy
cost will be shifted from the UV to the infrared (IR).
Because the theory is Gaussian, the integration over Di

can be done exactly. This is the ultimate utility of the
expansion of the Hilbert space – we have isolated the
high energy physics into this Gaussian field. As a result
of the dynamical term in the action, integration over D
will yield a theory that is frequency dependent. The fre-
quency will enter in the combination ω + U which will
appear in denominators. Since U is the largest energy
scale, we expand in powers of ω/U ; the leading term
yields the proper ω = 0 low-energy theory. Since the
theory is Gaussian, it suffices to complete the square in
the D-field. To accomplish this, we define the matrix

Mij = δij −
t

(ω + U)
gij

∑

σ

c†j,σci,σ (14)

and bi =
∑

j bij =
∑

j,σ gijcj,σVσci,−σ. At zero frequency
the Hamiltonian is

HIR
h = −t

∑

i,j,σ

gijαij,σc†i,σcj,σ + Hint −
1
β

Tr lnM,

where

Hint = − t2

U

∑

j,k

b†j(M
−1)jkbk − s2

U

∑

i,j

ϕ†
i (M

−1)ijϕj

−s
∑

j

ϕ†
jcj,↑cj,↓ +

st

U

∑

i,j

ϕ†
i (M

−1)ijbj + h.c.(15)

which constitutes the true (IR) limit as long as the energy
scale s is not of order U . If s ∼ O(U) then we should
also integrate out ϕi – this integration is again Gaus-
sian and can be done exactly; one can easily check that
this leads precisely back to the UV theory, the Hubbard
model.39 Hence, the only way in which a low-energy the-
ory of the Hubbard model exists is if the energy scale for

UV limit

integrate over 
heavy fields

Exact low-energy
theory (IR limit)

ϕ (Qϕ = 2e)
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ϕ (Qϕ = 2e)

Lhf
UV =

�
d2θ

�
iD†Ḋ − i ˙̃D†D̃ − U

2
(D†D − D̃D̃†)

+
t

2
D†θb+

t

2
θ̄bD̃ + h.c.+ sθ̄ϕ†(D − θc↑c↓)

+ s̃θ̄ϕ̃†(D̃ − θc†↑c
†
↓) + h.c.

�



 dynamics
of ϕ



Exact IR Lagrangian

bare fields have no dynamics

Lhf
IR → 2

|s|2

U
|ϕω|2 + 2

|s̃|2

U
|ϕ̃−ω|2 +

t2

U
|bω|2

 bosons
and fermions

are strongly coupled

}
γ(�k)

�p (ω) =
U − tε(�k)

�p − 2ω

U

�
1 + 2ω/U

γ̃(�k)
�p (ω) =

U + tε(�k)
�p + 2ω

U

�
1− 2ω/U.

+sγ(�k)
�p (ω)ϕ†

ω,�k
c�k/2+�p,ω/2+ω�,↑c�k/2−�p,ω/2−ω�,↓

+s̃∗γ̃(�k)
�p (ω)ϕ̃−ω,�kc�k/2+�p,ω/2+ω�,↑c�k/2−�p,ω/2−ω�,↓ + h.c.

ε(�k)
�p = 4

�

µ

cos(kµa/2) cos(pµa)

turn-on of spectral
weight governed

by composite
excitations (CEXONS)



γ(�k)
�p (ω) =

U − tε(�k)
�p − 2ω

U

�
1 + 2ω/U

γ̃(�k)
�p (ω) =

U + tε(�k)
�p + 2ω

U

�
1− 2ω/U.

composite excitations 
determine spectral density

γ = 0γ̃ = 0
(π, π)(0, 0)

each momentum has SD at two distinct 
energies

∆ = U − 4dt
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Electron spectral function 3

This implies that the weight in the unoccupied part of
the LHB is 2(x + α). The fermionic degrees of freedom
that are associated with this assignment of the chemical
potential are the weakly interacting fermionic (propagat-
ing) modes because a quasiparticle picture emerges in
which the intensity of a state above and below the chem-
ical potential per spin is equal. Consequently, we arrive
at the assignments of the spectral weights in Fig. (1b).
In other words, the dynamical degrees of freedom de-
noted by α serve to supplement the effective phase space
of a hole-doped system and x′ = x + α now denotes the
effective number of hole degrees of freedom per spin at
low energy. Consequently, it is with respect to x′ that a
Luttinger theorem exists not x, the bare hole number.

This argument is even clearer for the case of electron
doping. In the case of electron-doping, the chemical po-
tential (µ) lies in the UHB where 2x electron removal
states are created below µ and the weight above µ is
given by 1 − x in the atomic limit. Turning on a fi-
nite t/U creates doublon-holon pairs. In this case, the
holes belong to the LHB and represent the high-energy
configurations of the system. The weight above µ repre-
sents the amplitude for adding an electron to the UHB,
or creating a double occupancy, which is depleted upon
creation of doublon-holon pairs since neither holons nor
doublons can contribute to the creation of double occu-
pancies upon addition of a single electron. This weight
is analogous to that of the occupied part of the LHB in
the case of hole doping.

The claim2–5 that the dynamical corrections vanish for
the occupied part of the spectrum in the LHB can be ad-
dressed by a direct calculation of the corresponding cor-
relation function. Within the Hubbard model, a quan-
titative measure of dynamical spectral weight transfer is
the correlation function between the ξ and η degrees of
freedom. The full electron spectral function, A(k, ω) =
−ImFT (θ(t−t′)〈{ciσ(t), c†jσ(t′)}〉)/π = Aηη+Aξξ+2Aηξ,
contains two diagonal terms Aηη and Aξξ and a cross
term Aηξ which represents the degree to which the high
and low energy degrees of freedom are coupled. Here, FT
represents the frequency and momentum Fourier trans-
form. The claim that only the states above the chemical
potential are affected by the dynamical spectral weight
transfer is easily falsifiable. On this claim, Aηξ is zero
for all frequencies in the occupied part of the LHB. We
have computed Aηξ previously6 and it is clearly non-zero
at all frequencies that bracket the turn-on of the spectral
weights in the LHB and UHB at half-filling and at finite
doping. This is simply a reflection of the fact that at all
frequencies, the states in the LHB all have doubly occu-
pied character. Since the dynamical contribution reduces
the spectral weight, the spectral weight of the occupied
part of the spectrum is necessarily less than 1 − x. Let
us call the reduction q and hence the weight is given by
1−x− q. The weight in the unoccupied part of the LHB
is 2x + α + q. For the weight of a hole per spin to be
equal to that of an electron, we must have that q = α.
This results in the assignments in Fig. (1b).
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FIG. 2: Integrated spectral weight in the occupied part of
the lower Hubbard band, Λµ− , from the charge 2e low-energy
theory8–11. Here x is the doping level for the conserved charge,
Q =

∑
iσ

c†iσciσ + 2
∑

i
ϕ†

i ϕi. Clearly shown is that the oc-
cupied part (red triangles) of the one-particle spectrum has a
weight less than 1 − x (solid blue line).

Consequently, we arrive at the key conclusion that in
terms of the low-energy modes, the weight of the UHB
must be necessarily equal to the weight of the occu-
pied part of the LHB. As this assignment of the spectral
weights recovers a quasiparticle picture, this necessarily
implies that the chemical potential for the fermionic low-
energy degrees of freedom is less than that used to de-
terine the electron filling. As a result, the bare electrons
and the true low-energy fermionic quasiparticles do not
stand in a one-to-one correspondence, the efficient cause
of which is dynamical spectral weight transfer. Insertion
of an electron affects the spectrum at all energies while
only local changes occur in terms of the low-energy de-
grees of freedom. Such an orthogonality catastrophe is
due entirely to the existence of the UHB6,7 and persists as
long as the degrees of freedom transferred from the UHB
provide a relevant perturbation to those in the LHB.

Since the weight of the band in which the chemical
potential resides in a doped Mott insulator exceeds the
electron count, new degrees of freedom are required in
any consistent low-energy theory. The extra degrees of
freedom are generated from mixing with the doubly oc-
cupied sector and hence should emerge upon integration
of the states far away from the chemical potential. We
have carried8–11 out this Wilsonian program exactly for
the Hubbard model and showed that a charge |2e| bosonic
field emerges. The boson which is non-propagating has
charge 2e for hole doping and -2e for electron doping,
represents the mixing with double occupancy and double
holes respectively. For hole doping, the conserved charge
Q, which equals the total electron filling n8–11, is a sum
of two components,

Q =
∑

iσ

c†iσciσ + 2
∑

i

ϕ†
iϕi, (8)
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frequencies, the states in the LHB all have doubly occu-
pied character. Since the dynamical contribution reduces
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Consequently, we arrive at the key conclusion that in
terms of the low-energy modes, the weight of the UHB
must be necessarily equal to the weight of the occu-
pied part of the LHB. As this assignment of the spectral
weights recovers a quasiparticle picture, this necessarily
implies that the chemical potential for the fermionic low-
energy degrees of freedom is less than that used to de-
terine the electron filling. As a result, the bare electrons
and the true low-energy fermionic quasiparticles do not
stand in a one-to-one correspondence, the efficient cause
of which is dynamical spectral weight transfer. Insertion
of an electron affects the spectrum at all energies while
only local changes occur in terms of the low-energy de-
grees of freedom. Such an orthogonality catastrophe is
due entirely to the existence of the UHB6,7 and persists as
long as the degrees of freedom transferred from the UHB
provide a relevant perturbation to those in the LHB.

Since the weight of the band in which the chemical
potential resides in a doped Mott insulator exceeds the
electron count, new degrees of freedom are required in
any consistent low-energy theory. The extra degrees of
freedom are generated from mixing with the doubly oc-
cupied sector and hence should emerge upon integration
of the states far away from the chemical potential. We
have carried8–11 out this Wilsonian program exactly for
the Hubbard model and showed that a charge |2e| bosonic
field emerges. The boson which is non-propagating has
charge 2e for hole doping and -2e for electron doping,
represents the mixing with double occupancy and double
holes respectively. For hole doping, the conserved charge
Q, which equals the total electron filling n8–11, is a sum
of two components,

Q =
∑

iσ

c†iσciσ + 2
∑

i

ϕ†
iϕi, (8)
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�
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Two bands!!

Graf,  et al. PRL vol. 98, 67004 (2007).

Spin-charge
separation?



Origin of two bands

ϕ†
i ciσ̄

Two charge e excitations

ciσ
New bound stateϕi is confined (no

kinetic energy) Pseudogap
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Charge 2e Boson Underlies Two - Fluid Model of the Pseudogap in Cuprate
Superconductors

Shiladitya Chakraborty and Philip Phillips
Department of Physics, University of Illinois 1110 W. Green Street, Urbana, IL 61801, U.S.A.

(Dated: May 18, 2009)

Starting from the effective low energy theory of a doped Mott insulator1,2,3, we show that the
effective carrier density in the underdoped regime agrees with a two - fluid description. Namely, it has
distinct temperature independent and thermally activated components. We identify the thermally
activated component as the bound state of a hole and a charge 2e boson, which occurs naturally in
the effective theory. The thermally activated unbinding of this state leads to the strange metal and
subsequent T−linear resistivity.

The normal state of the high-Tc copper oxide super-
conductors exhibits a variety of anomalous features in
the underdoped regime which any successful theory of
these materials must explain. Central to the exotica
of the underdoped cuprates are the pseudogap5,6 and
strange metal phases. These phases are closely linked
because once the suppression of the density of states at
the chemical potential, a key experimental signature of
the pseudogap, ceases at some critical temperature, T ∗, a
metallic state ensues. Such behavior is suggestive of a lo-
calized, or more properly, a ‘bound’ electronic state that
is liberated at T ∗. While the upturn7,8 of the resistivity
at low temperatures is consistent with this bound state
scenario or charge localization9,10,11,12 a more direct sig-
nature is the activated temperature dependence14,15,16 of
the Hall coefficient. In a Fermi liquid, the inverse of the
Hall coefficient is a measure of the carrier density which
of course is independent of temperature. However, in the
underdoped cuprates, the inverse of the Hall coefficient
is strongly temperature dependent14,15,16. Gor’kov and
Teitel’baum13 observed remarkably that the charge car-
rier concentration, nHall, extracted from the inverse of
the Hall coefficient in La2−xSrxCuO4 (LSCO) obeys an
empirical formula,

nHall(x, T ) = n0(x) + n1(x) exp(−∆(x)/T ), (1)

appropriate or a two-component or two-fluid system.
One of the components is independent of temperature,
n0(x) (x the doping level) while the other is strongly
temperature dependent, n1(x) exp(−∆(x, T )). The key
observation here is that the temperature dependence in
nHall is carried entirely within ∆(x, T ) which defines
a characteristic activation energy scale for the system.
Gor’kov and Teitel‘baum’s13 analysis suggests that the
activation energy is set by the pseudogap energy scale.
Consequently, the bound component should be liber-
ated beyond the T ∗ scale for the onset of the pseudo-
gap. Should nHall be an accurate representation of the
effective charge carrier concentration in the cuprates, the
above observation indicates that the underdoped or pseu-
dogap phase necessitates a two-fluid description, which
has been championed17 recently to explain NMR, inelas-
tic neutron scattering and thermodynamic measurements
on these systems. Nonetheless, the microscopic origin of

the two fluids has not been advanced. That is, there is
no microscopic prescription for the precise nature of the
propagating degrees of freedom that underlie the tem-
perature dependence of nHall. For example, Gor‘kov and
Teitel‘baum13 attributed the unbinding of the localized
charges above T ∗ to excitations from van Hove singu-
larities at the bottom of the band up to the chemical
potential.

By contrast, our explanation of the the two fluids re-
lies entirely on the strong correlations of a doped Mott
insulator, that is, Mottness. Here we show that the ex-
act low-energy theory of a doped Mott insulator1,2,3 de-
scribed by the Hubbard model naturally resolves the two-
component conundrum in the cuprates. The propagating
degrees of freedom that constitute the two fluids are the
standard projected electron in the lower Hubbard band
and a bound composite excitation composed of a charge
2e boson and a hole. It is the unbinding of the latter that
gives rise to the strange metal regime.

We review some of the key features of the our effective
low energy theory of Mottness, the complete details of
which have been worked out elsewhere1,2,3,4. Our start-
ing point is the usual Hubbard model

HHubb = −t
∑

i,j,σ

gijc
†
i,σcj,σ + U

∑

i,σ

c†i,↑c
†
i,↓ci,↓ci,↑ (2)

where i, j label lattice sites, gij is equal to one if i, j are
nearest neighbours, ciσ annihilates an electron with spin
σ on lattice site i, t is the nearest-neighbour hopping ma-
trix element and U the energy cost when two electrons
doubly occupy the same site. The cuprates live in the
strongly coupled regime in which the interactions domi-
nate as t ≈ 0.5eV and U = 4eV. A low-energy effective
action is then obtained by integrating out the physics
on the U -scale. Because double occupancy occurs in
the ground state, integrating out the U -scale physics is
not equivalent to integrating out double occupancy. We
solved this problem by extending the Hilbert space to
include a new fermionic oscillator which represents the
creation or annihilation of double occpancy only when
a constraint is solved. The new fermionic oscillator en-
ters the action with a mass of U and hence represents the
high-energy scale, which must be integrated out to gener-
ate the low-energy action. The corresponding low-energy

PRL,  vol. 97, 247003 (2006).

4

0 200 400 600 800 1000

10

100

0.00 0.05
0

2

4

6

0.00 0.05
0.0

0.2

0.4

0.6

0.8

1.0

(a)

 1
/n

e
ff

 Temperature (K)

0.05
0.04
0.03
0.02

x=
0.01

La
2-x

Sr
x
CuO

4

(b)

n
1

x

(c)

!
C

T
 (

e
V

)

x

FIG. 3: (color online) (a) T dependences of 1/neff (=
eRH/VCu) for a series of LSCO single crystals in the lightly-
doped region, x = 0.01 – 0.05, with their fits (solid lines) using
Eq. (2). The fitting parameters, n1 and ∆CT , are shown in
panels (b) and (c).

mensional), for the ease of understanding the meaning of
the numbers. Since the plateau in RH(T ) at moderate
temperature gives neff that is essentially equal to x at
low doping,13 the impurity term n0e−∆imp/2kBT in Eq.
(1) should be replaced with x to describe RH(T ) in this
region.28 Hence, we fit the data for x = 0.01 – 0.05 to

RH(T ) =
VCu

e

(

x + n1e
−∆CT /2kBT

)−1

. (2)

The solid lines in Fig. 3(a) are the results of the fittings.29

Note that the upturn at very low temperature seen in
all the data is due to the strong Anderson localization13

that reduces the number of mobile carriers and naturally
causes a deviation from Eq. (2). Obviously, Eq. (2) gives
a reasonable account of the essential feature of the data
(except for the Anderson localization), and hence one
may conclude that the thermal activation of holes gives
rise to the exponential decrease in RH at high tempera-
ture not only at x = 0 but also at low doping. This in
turn indicates that there are strong charge fluctuations
in lightly-doped cuprates at !400 K, where the charge
transport must become incoherent; therefore, it is prob-
ably not reasonable to describe RH in this regime using
theories developed for a metallic system (i.e., for coherent
electrons with well-defined wave vectors), such as that in
Ref. 10.

The doping dependences of the parameters n1 and
∆CT in Eq. (2) obtained from the fits are shown in

Figs. 3(b) and 3(c). It is notable that n1, a rough mea-
sure of the number of available states for thermal activa-
tions (but is amplified by various additional effects24,25)
is essentially doping-independent for x = 0 – 0.05 [Fig.
3(b)], which would imply that thermal creations of car-
riers of essentially the same nature are taking place in
this doping range. On the other hand, the gap ∆CT for
the thermal activation [Fig. 3(c)] shows a sudden drop
from 0.89 to 0.53 eV upon doping only 1% of holes to the
parent insulator, but then shows only a small decrease
with x. Probably, there are two possibilities to inter-
pret this result. One is to take the reduction in ∆CT to
be a result of the softening of the main CT gap upon
slight doping; in this case, the same bands are involved
in the activation process after the doping, and our ob-
servation that n1 is essentially doping independent is in
good accord. Considering the fact that doping to a Mott
insulator necessarily involves a change in the electronic
structure at a high energy scale of the order of the on-site
repulsion U (because doping one hole to a Mott insulator
not only creates a hole state but also removes one state
from the upper Hubbard band),30 it would be possible
that a slight doping induces a relatively large change in
the band structure. The other possibility is that the so-
called “in-gap states”12 are created in the middle of the
original CT gap upon hole doping and our ∆CT actually
measures the charge-transfer excitations from these new
states to the upper Hubbard band (conduction band). In
this case, one would expect n1 for x ≥ 0.01 to be much
smaller than that for x =0; however, a large n1 might be
possible for some particular shape of the band edge,31 so
our result in Fig. 3(b) cannot conclusively exclude this
possibility. In any case, the true nature of ∆CT in the
doped system is best left as an open question, and its
identification is actually at the heart of understanding
what really happens upon doping to a Mott insulator. It
is intriguing to note that our ∆CT for the lightly-doped
region coincides rather well with the peak frequency of
the mid-infrared (MIR) absorption seen in the optical
conductivity of LSCO,32 so the MIR absorption may also
have something to do with the CT excitations.

In passing, previous studies of the doping dependence
of the CT gap using high-energy probes33,34 have found
a hardening of the gap, which appears to be at odds
with the first possibility discussed above. However,
Markiewicz and Bansil argued26 that those high-energy
experiments may only see hard branches of the various
modes of the CT excitations; naturally, our thermody-
namic measurement probes the CT excitation of the low-
est energy, which may not be easily seen by the high-
energy probes. In this regard, it should be noted that
our ∆CT measures the effective excitation energy at high
temperature, which is naturally smaller than the band
gap at T = 0, so a care must be taken when comparing
our ∆CT to that calculated theoretically for T = 0.

Ono, et al., Phys. Rev. B 75, 024515 
(2007)
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Charge 2e Boson Underlies Two - Fluid Model of the Pseudogap in Cuprate
Superconductors

Shiladitya Chakraborty and Philip Phillips
Department of Physics, University of Illinois 1110 W. Green Street, Urbana, IL 61801, U.S.A.

(Dated: May 18, 2009)

Starting from the effective low energy theory of a doped Mott insulator1,2,3, we show that the
effective carrier density in the underdoped regime agrees with a two - fluid description. Namely, it has
distinct temperature independent and thermally activated components. We identify the thermally
activated component as the bound state of a hole and a charge 2e boson, which occurs naturally in
the effective theory. The thermally activated unbinding of this state leads to the strange metal and
subsequent T−linear resistivity.

The normal state of the high-Tc copper oxide super-
conductors exhibits a variety of anomalous features in
the underdoped regime which any successful theory of
these materials must explain. Central to the exotica
of the underdoped cuprates are the pseudogap5,6 and
strange metal phases. These phases are closely linked
because once the suppression of the density of states at
the chemical potential, a key experimental signature of
the pseudogap, ceases at some critical temperature, T ∗, a
metallic state ensues. Such behavior is suggestive of a lo-
calized, or more properly, a ‘bound’ electronic state that
is liberated at T ∗. While the upturn7,8 of the resistivity
at low temperatures is consistent with this bound state
scenario or charge localization9,10,11,12 a more direct sig-
nature is the activated temperature dependence14,15,16 of
the Hall coefficient. In a Fermi liquid, the inverse of the
Hall coefficient is a measure of the carrier density which
of course is independent of temperature. However, in the
underdoped cuprates, the inverse of the Hall coefficient
is strongly temperature dependent14,15,16. Gor’kov and
Teitel’baum13 observed remarkably that the charge car-
rier concentration, nHall, extracted from the inverse of
the Hall coefficient in La2−xSrxCuO4 (LSCO) obeys an
empirical formula,

nHall(x, T ) = n0(x) + n1(x) exp(−∆(x)/T ), (1)

appropriate or a two-component or two-fluid system.
One of the components is independent of temperature,
n0(x) (x the doping level) while the other is strongly
temperature dependent, n1(x) exp(−∆(x, T )). The key
observation here is that the temperature dependence in
nHall is carried entirely within ∆(x, T ) which defines
a characteristic activation energy scale for the system.
Gor’kov and Teitel‘baum’s13 analysis suggests that the
activation energy is set by the pseudogap energy scale.
Consequently, the bound component should be liber-
ated beyond the T ∗ scale for the onset of the pseudo-
gap. Should nHall be an accurate representation of the
effective charge carrier concentration in the cuprates, the
above observation indicates that the underdoped or pseu-
dogap phase necessitates a two-fluid description, which
has been championed17 recently to explain NMR, inelas-
tic neutron scattering and thermodynamic measurements
on these systems. Nonetheless, the microscopic origin of

the two fluids has not been advanced. That is, there is
no microscopic prescription for the precise nature of the
propagating degrees of freedom that underlie the tem-
perature dependence of nHall. For example, Gor‘kov and
Teitel‘baum13 attributed the unbinding of the localized
charges above T ∗ to excitations from van Hove singu-
larities at the bottom of the band up to the chemical
potential.

By contrast, our explanation of the the two fluids re-
lies entirely on the strong correlations of a doped Mott
insulator, that is, Mottness. Here we show that the ex-
act low-energy theory of a doped Mott insulator1,2,3 de-
scribed by the Hubbard model naturally resolves the two-
component conundrum in the cuprates. The propagating
degrees of freedom that constitute the two fluids are the
standard projected electron in the lower Hubbard band
and a bound composite excitation composed of a charge
2e boson and a hole. It is the unbinding of the latter that
gives rise to the strange metal regime.

We review some of the key features of the our effective
low energy theory of Mottness, the complete details of
which have been worked out elsewhere1,2,3,4. Our start-
ing point is the usual Hubbard model

HHubb = −t
∑

i,j,σ

gijc
†
i,σcj,σ + U

∑

i,σ

c†i,↑c
†
i,↓ci,↓ci,↑ (2)

where i, j label lattice sites, gij is equal to one if i, j are
nearest neighbours, ciσ annihilates an electron with spin
σ on lattice site i, t is the nearest-neighbour hopping ma-
trix element and U the energy cost when two electrons
doubly occupy the same site. The cuprates live in the
strongly coupled regime in which the interactions domi-
nate as t ≈ 0.5eV and U = 4eV. A low-energy effective
action is then obtained by integrating out the physics
on the U -scale. Because double occupancy occurs in
the ground state, integrating out the U -scale physics is
not equivalent to integrating out double occupancy. We
solved this problem by extending the Hilbert space to
include a new fermionic oscillator which represents the
creation or annihilation of double occpancy only when
a constraint is solved. The new fermionic oscillator en-
ters the action with a mass of U and hence represents the
high-energy scale, which must be integrated out to gener-
ate the low-energy action. The corresponding low-energy

PRL,  vol. 97, 247003 (2006).
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FIG. 3: (color online) (a) T dependences of 1/neff (=
eRH/VCu) for a series of LSCO single crystals in the lightly-
doped region, x = 0.01 – 0.05, with their fits (solid lines) using
Eq. (2). The fitting parameters, n1 and ∆CT , are shown in
panels (b) and (c).

mensional), for the ease of understanding the meaning of
the numbers. Since the plateau in RH(T ) at moderate
temperature gives neff that is essentially equal to x at
low doping,13 the impurity term n0e−∆imp/2kBT in Eq.
(1) should be replaced with x to describe RH(T ) in this
region.28 Hence, we fit the data for x = 0.01 – 0.05 to

RH(T ) =
VCu

e

(

x + n1e
−∆CT /2kBT

)−1

. (2)

The solid lines in Fig. 3(a) are the results of the fittings.29

Note that the upturn at very low temperature seen in
all the data is due to the strong Anderson localization13

that reduces the number of mobile carriers and naturally
causes a deviation from Eq. (2). Obviously, Eq. (2) gives
a reasonable account of the essential feature of the data
(except for the Anderson localization), and hence one
may conclude that the thermal activation of holes gives
rise to the exponential decrease in RH at high tempera-
ture not only at x = 0 but also at low doping. This in
turn indicates that there are strong charge fluctuations
in lightly-doped cuprates at !400 K, where the charge
transport must become incoherent; therefore, it is prob-
ably not reasonable to describe RH in this regime using
theories developed for a metallic system (i.e., for coherent
electrons with well-defined wave vectors), such as that in
Ref. 10.

The doping dependences of the parameters n1 and
∆CT in Eq. (2) obtained from the fits are shown in

Figs. 3(b) and 3(c). It is notable that n1, a rough mea-
sure of the number of available states for thermal activa-
tions (but is amplified by various additional effects24,25)
is essentially doping-independent for x = 0 – 0.05 [Fig.
3(b)], which would imply that thermal creations of car-
riers of essentially the same nature are taking place in
this doping range. On the other hand, the gap ∆CT for
the thermal activation [Fig. 3(c)] shows a sudden drop
from 0.89 to 0.53 eV upon doping only 1% of holes to the
parent insulator, but then shows only a small decrease
with x. Probably, there are two possibilities to inter-
pret this result. One is to take the reduction in ∆CT to
be a result of the softening of the main CT gap upon
slight doping; in this case, the same bands are involved
in the activation process after the doping, and our ob-
servation that n1 is essentially doping independent is in
good accord. Considering the fact that doping to a Mott
insulator necessarily involves a change in the electronic
structure at a high energy scale of the order of the on-site
repulsion U (because doping one hole to a Mott insulator
not only creates a hole state but also removes one state
from the upper Hubbard band),30 it would be possible
that a slight doping induces a relatively large change in
the band structure. The other possibility is that the so-
called “in-gap states”12 are created in the middle of the
original CT gap upon hole doping and our ∆CT actually
measures the charge-transfer excitations from these new
states to the upper Hubbard band (conduction band). In
this case, one would expect n1 for x ≥ 0.01 to be much
smaller than that for x =0; however, a large n1 might be
possible for some particular shape of the band edge,31 so
our result in Fig. 3(b) cannot conclusively exclude this
possibility. In any case, the true nature of ∆CT in the
doped system is best left as an open question, and its
identification is actually at the heart of understanding
what really happens upon doping to a Mott insulator. It
is intriguing to note that our ∆CT for the lightly-doped
region coincides rather well with the peak frequency of
the mid-infrared (MIR) absorption seen in the optical
conductivity of LSCO,32 so the MIR absorption may also
have something to do with the CT excitations.

In passing, previous studies of the doping dependence
of the CT gap using high-energy probes33,34 have found
a hardening of the gap, which appears to be at odds
with the first possibility discussed above. However,
Markiewicz and Bansil argued26 that those high-energy
experiments may only see hard branches of the various
modes of the CT excitations; naturally, our thermody-
namic measurement probes the CT excitation of the low-
est energy, which may not be easily seen by the high-
energy probes. In this regard, it should be noted that
our ∆CT measures the effective excitation energy at high
temperature, which is naturally smaller than the band
gap at T = 0, so a care must be taken when comparing
our ∆CT to that calculated theoretically for T = 0.

Ono, et al., Phys. Rev. B 75, 024515 
(2007)
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G(k, ω) =
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∫

[Dϕ∗][Dϕ]G(k, ω, ϕ) exp−
∑

k
(E0+Ek−λk−
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β
ln(1+exp−βλk )) (10)

where

G(k, ω, ϕ) =
sin2 θk[ϕ]

ω + λk[ϕ]
+

cos2 θk[ϕ]

ω − λk[ϕ]
(11)

is the exact Green function corresponding to the La-
grangian, Eq. (7), which has a two-branch structure, cor-
responding to the bare electrons and the coupled holon-
doublon state respectively. The role of the ϕ field, which
determines the weight of the second branch, is vital to
our understanding of the properties of Mott systems, as
was demonstrated previously3,4. It is trivial to see that
in the limit of vanishing s (no ϕ field), the γkσ’s reduce
to the bare electron operators ck and the first term in
Eq.(11) vanishes. The two-fluid nature of the response
stems from this fact of the theory. Namely, the first term
contributes only when ϕ "= 0 and the second when ϕ = 0.
These contributions correspond to the dynamical and
static components of the spectral weight, respectively.

We obtained the Green function G(k, ω) by a numer-
ical integration of Eq.(10) over the ϕ field. The Hall
coefficient RH was computed from the spectral function
A(k, ω) using the Kubo formula19

RH = σxy/σ2
xx, (12)

where

σxy =
2π2|e|3aB

3h̄2

∫

dω(
∂f(ω)

∂ω
)

1

N

∑

k

(
∂εk
∂kx

)2

×
∂2εk
∂ky

2 A(k, ω)3 (13)

and

σxx =
πe2

2h̄a

∫

dω(−
∂f(ω)

∂ω
)

1

N

∑

k

(
∂εk
∂kx

)2A(k, ω)2 (14)

with σxx and σxy the diagonal and off-diagonal compo-
nents of the conductivity tensor respectively, f(ω) is the
Fermi distribution function, and B is the normal compo-
nent of the external magnetic field. The effective charge
carrier density nHall is then obtained using the relation
RH = −1/(nHalle).

Fig.1 shows a set of plots of nHall as a function of
the inverse temperature, each corresponding to a differ-
ent value of hole-doping, x, in the underdoped regime
(x ranging from 0.05 to 0.20). The plots fit remarkably
well to an exponentially decaying form. In other words,
the computed charge carrier density within the charge
2e boson theory of a doped Mott insulator agrees well
with the form given in Eq. (1) proposed by Gor’kov
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grangian, Eq. (7), which has a two-branch structure, cor-
responding to the bare electrons and the coupled holon-
doublon state respectively. The role of the ϕ field, which
determines the weight of the second branch, is vital to
our understanding of the properties of Mott systems, as
was demonstrated previously3,4. It is trivial to see that
in the limit of vanishing s (no ϕ field), the γkσ’s reduce
to the bare electron operators ck and the first term in
Eq.(11) vanishes. The two-fluid nature of the response
stems from this fact of the theory. Namely, the first term
contributes only when ϕ "= 0 and the second when ϕ = 0.
These contributions correspond to the dynamical and
static components of the spectral weight, respectively.

We obtained the Green function G(k, ω) by a numer-
ical integration of Eq.(10) over the ϕ field. The Hall
coefficient RH was computed from the spectral function
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with σxx and σxy the diagonal and off-diagonal compo-
nents of the conductivity tensor respectively, f(ω) is the
Fermi distribution function, and B is the normal compo-
nent of the external magnetic field. The effective charge
carrier density nHall is then obtained using the relation
RH = −1/(nHalle).

Fig.1 shows a set of plots of nHall as a function of
the inverse temperature, each corresponding to a differ-
ent value of hole-doping, x, in the underdoped regime
(x ranging from 0.05 to 0.20). The plots fit remarkably
well to an exponentially decaying form. In other words,
the computed charge carrier density within the charge
2e boson theory of a doped Mott insulator agrees well
with the form given in Eq. (1) proposed by Gor’kov
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in Fig.(1) to Eq.( 1) plotted as a function of hole doping
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cates that the bound component contributing to the charge
density does in fact give rise to the pseudogap.

and Teitel’baum13. The inset shows the temperature-
independent part of the charge density as a function of
x. This quantity exceeds the nominal doping level. This
deviation is expected as the Hall coefficient is expected
to change sign around x = 0.320 in hole-doped samples.
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∑
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where

G(k, ω, ϕ) =
sin2 θk[ϕ]

ω + λk[ϕ]
+

cos2 θk[ϕ]

ω − λk[ϕ]
(11)

is the exact Green function corresponding to the La-
grangian, Eq. (7), which has a two-branch structure, cor-
responding to the bare electrons and the coupled holon-
doublon state respectively. The role of the ϕ field, which
determines the weight of the second branch, is vital to
our understanding of the properties of Mott systems, as
was demonstrated previously3,4. It is trivial to see that
in the limit of vanishing s (no ϕ field), the γkσ’s reduce
to the bare electron operators ck and the first term in
Eq.(11) vanishes. The two-fluid nature of the response
stems from this fact of the theory. Namely, the first term
contributes only when ϕ "= 0 and the second when ϕ = 0.
These contributions correspond to the dynamical and
static components of the spectral weight, respectively.

We obtained the Green function G(k, ω) by a numer-
ical integration of Eq.(10) over the ϕ field. The Hall
coefficient RH was computed from the spectral function
A(k, ω) using the Kubo formula19

RH = σxy/σ2
xx, (12)

where
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∂εk
∂kx

)2A(k, ω)2 (14)

with σxx and σxy the diagonal and off-diagonal compo-
nents of the conductivity tensor respectively, f(ω) is the
Fermi distribution function, and B is the normal compo-
nent of the external magnetic field. The effective charge
carrier density nHall is then obtained using the relation
RH = −1/(nHalle).

Fig.1 shows a set of plots of nHall as a function of
the inverse temperature, each corresponding to a differ-
ent value of hole-doping, x, in the underdoped regime
(x ranging from 0.05 to 0.20). The plots fit remarkably
well to an exponentially decaying form. In other words,
the computed charge carrier density within the charge
2e boson theory of a doped Mott insulator agrees well
with the form given in Eq. (1) proposed by Gor’kov

0 50 100 150
0

0.5

1

1.5

2

2.5

T
!1

 (eV
!1

)

n
H

a
ll
(T

)

 

 

x = 0.05

x = 0.10

x = 0.15

x = 0.2

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

x

n
0
(x

)

n
0
 = x

FIG. 1: nHall plotted as a function of inverse temperature
for four different values of hole doping x: 1) solid circles,
x = 0.05, 2) diamonds, x = 0.10, 3) triangles, x = 0.15,
and 4) squares, x = 0.2. The inset shows the temperature
indepenent part of the carrier density as a function of x. Note
it exceeds the nominal doping level indicated by the straight
line.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x
!

(x
) 

(e
V

)

 

 

Theory

LSCO

LSCO

FIG. 2: ∆(x) (solid circles) obtained from fitting the plots
in Fig.(1) to Eq.( 1) plotted as a function of hole doping
x. The experimental values are also shown for LSCO: solid
triangles15,16,21 and squares14 The excellent agreement indi-
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and Teitel’baum13. The inset shows the temperature-
independent part of the charge density as a function of
x. This quantity exceeds the nominal doping level. This
deviation is expected as the Hall coefficient is expected
to change sign around x = 0.320 in hole-doped samples.
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Figure 3. a) Normalized flourescence[53] yield at the O K edge of La2−xSrxCuO4+δ.

In the undoped sample, the only absorption occurs at 530eV, indicated by B. Upon

doping the intensity at B is transferred to the feature at A, located at 528eV. b)

Gaussian fits to the absorption features at A and B with the background subtracted.

Reprinted from Chen, et al. Phys. Rev. Lett. 66, 104 (1991).

can be understood simply by turning on the hopping[4]. When the hopping is non-zero,

empty sites are created as a result of the creation of double occupancy. Such events

increase the number of available states for particle addition and as a consequence the

LESW increases faster than 2x. It is important to recall that the argument leading to

the LESW exceeding 2x relies on the strong coupling limit. If this limit is not relevant

to the ground state at a particular filling, the previous argument fails.

2.2. Breakdown of Fermi Liquid Theory: More than just Electrons

A natural question arises. Is spectral weight transfer important? A way of gauging

importance is to determine if spectral weight transfer plays any role in a low-energy

theory. A low-energy theory is properly considered to be natural if there are no relevant

perturbations. Several years ago, Polchinski[42] and others[43, 44, 45] considered Fermi

liquid theory from the standpoint of renormalisation. They found[42, 43, 44, 45] that as

long as one posits that the charge carriers are electrons, there are no relevant interactions

(except for pairing) that destroy the Fermi liquid state. The setup[42] is as follows.

Decompose the momenta into the Fermi momentum and a component orthogonal to



Finite Temperature Mott transition
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