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AdS/CMT = Rich Black Hole physics
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Charged Black-hole Hair

• The origin of rich black hole physics

– Instability of charged Black holes [e.g. Gubser @ Strings 2009]

S =
∫

. . . + φ̄(A0)2φ + . . . ⇔ m2
φ ∼ −A2

0

– The holographic superconductor [Hartnoll, Herzog, Horowitz]
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BH Stability

• AdS/CFT: Ground state stability is BH stability

ZCFT (φ) = expSon−shell
AdS (φ(φ∂AdS=J))
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Bosons vs. Fermions

• What about Fermions?

S =
∫ √

−g

[
R + 6− 1

4
F 2 − Ψ̄eM

A ΓA (DM + igAM ) Ψ−mΨ̄Ψ
]

+ Sbnd

– No perturbative instability (no superradiance)

Friday, November 5, 2010



Searching for the Fermi-liquid groundstate

• Conjecture AdS-RN BH with Fermions is metastable.

– AdS-RN cannot be the true groundstate

− Large groundstate entropy

SCFT =
AH

4GN

ds2
Near horizon = L2

2

(
−ω2dt2 +

dω2

ω2
+ dxidxi

)

– Should exist 1st order transition to AdS Fermi-hair BH

− Similar indications from [Faulkner et al (unpublished)] , [Hartnoll,
Polchinski, Silverstein, Tong] , [ Kraus et al.]
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Searching for the Fermi-liquid groundstate

• What is the true dual groundstate ?

– “Free Fermi-gas” in the bulk.

PROBLEM:

– Fermi-Dirac statistics demands non-local behavior in AdS
[always true for multiple Fermions]

– Need some local approximation:

− Integrate out the fermions [Kraus..]
− Fluid/Thomas Fermi approximation [de Boer et al, Hartnoll et al.]
− Single fermion

Non-local RG flow?!
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Searching for the Fermi-liquid groundstate

• What is the true dual groundstate ?

– “Free Fermi-gas” in the bulk.

PROBLEM:

– Fermi-Dirac statistics demands non-local behavior in AdS
[always true for multiple Fermions]

SOLUTION:

– Need some local approximation:
− Integrate out the fermions [Kraus..]
− Fluid/Thomas Fermi approximation [de Boer et al, Hartnoll et al.]
− Single fermion

In all cases we wish to know how the fields behave at ∂AdS to read
off what happens in the CFT
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Fermi gas in a confining potential

• In all cases we wish to know how the fields behave at
∂AdS to read off what happens in the CFT.

– AdS acts like a confining potential well. What is it the behavior
of the Fermi gas at infinity?
− Consider a spinless fermion in a d-dim harmonic oscillator

potential well

−∂2
x

2m
+

mω2r2

2
Ψ = EΨ , ρ(r) =

∑

E<EF

Ψ̄E(r)ΨE(r)

• Thomas-Fermi:
fluid is confined and has
an edge L2 = 2/mω

ρTF ∝ (
EF

ω
− r2

L2
)d/2

• Exact answer
a long range tail: [Brack,
van Zyl]

ρexact ∝
EF /ω∑

i=0

aiLi(4
r2

L2
)e−2r2/L2
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Fermi gas in a confining potential

• In all cases we wish to know how the fields behave at
∂AdS to read off what happens in the CFT.

– AdS acts like a confining potential well. What is it the behavior
of the Fermi gas at infinity?
− Consider a spinless fermion in a d-dim harmonic oscillator

potential well

−∂2
x

2m
+

mω2r2

2
Ψ = EΨ , ρ(r) =

∑

E<EF

Ψ̄E(r)ΨE(r)

– Far away, confined composite “gas” should approximate a “point
particle”

−

Normalized Ratio of fluid
density to single particle den-
sity in same V (r) with
n = EF /2ω for n = 1, 20, 100

In[14]:= CatalanN@n_D = H1 ê Hn + 1LL * Binomial@2 n, nD
NormP@n_D = H2 ê PiL^H1 ê 4L * 2^Hn + 3 ê 2L * H1 ê Sqrt@2 n - 1DL H1 ê Sqrt@CatalanN@n - 1DDL
RatioR@r_, M_, n_D = RhoMany3D@r, MD ê HNormP@nD^2 * RhoSingle@n, 0, 0, r, 0, 0DL;
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We see that the single body wavefunction at level n = M/2 = EF ê H2 —wL -d/4 has

the same asymptotic behavior as the many body wavefunction.

In[18]:= Plot@8RatioR@r, 2, 1D, RatioR@r, 40, 20D, RatioR@r, 200, 100D<,
8r, 0, 1001<, PlotStyle Ø 8Thick<D
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Take it and run...

• We wish to know how the behavior at ∂AdS to read off
what happens in the CFT.

Conjecture:

Study a single Dirac particle in the presence of a BH

– This “hydrogen atom” captures the dynamics at ∂AdS

Single particle but large Backreaction — if charge is macroscopic

– Expect a Lifschitz S = 0 solution for any charge qF
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Building an holographic Fermi-liquid

• Instead of Ψ, work directly with probability density

Jµ
± ≡ Ψ̄±iγµΨ±

– Obtain dynamics for composite fields...

Jµ
± ≡ Ψ̄±iγµΨ± , I = Ψ̄+Ψ− , A0 = Φ

– Infer “equations of motion” from EOM of Ψ±

(∂z + 2A±) J0
± = ∓Φ

f
I.

(∂z +A+ +A−) I =
2Φ
f

(J0
+ − J0

−)

∂2
zΦ = − 1

2z3
√

f
(J0

+ + J0
−)

Recall A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√

f
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Building an holographic Fermi-liquid

• “Entropy Collapse” to a Lifshitz BH
[also Hartnoll, Polchinski, Silverstein, Tong]

– Boundary conditions at the horizon z = 1...

J0
± = J±(1− z)−1/2 + . . .

I = Ihor(1− z)−1/2 + . . .

Φ =Φ (1)
hor(1− z) ln(z − 1) + Φ(2)

hor(1− z) + . . . .

– Φ(1)
hor corresponds to a “source” on the horizon, (infinite

backreaction)

– Dynamically Φ(1)
hor = 0 → J± = 0 = Ihor

⇒ “Dirac Hair” requires (mild) backreaction at the horizon
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Building a holographic Fermi-liquid

• A holographic Migdal’s relation
– Boundary behavior of the Dirac field

Ψ+ = A+z3/2−m + B+z5/2+m + . . .

Ψ− = A−z5/2+m + B−z5/2−m + . . .

– Recall that for bosons

Φ = Jz∆ + 〈O〉Jzd−∆ + . . .

– Spontaneous symmetry breaking [Gubser, Hartnoll, Herzog, Horowitz] :

solution with J = 0, 〈O〉 #= 0.

J = 0 is the quasinormal mode.
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Building a holographic Fermi-liquid

• A holographic Migdal’s relation
– Boundary behavior of the Dirac field

Ψ+ = A+z3/2−m + B+z5/2+m + . . .

Ψ− = A−z5/2+m + B−z5/2−m + . . .

– For fermions the Green’s function

G(ω, k) =
Z

ω − vF (k − kF )
+ reg =

B−
A+

– For A±(kF ) = 0, B−(kF ) cannot be a fermionic vev.

Instead

Z " B−(kF )
A+(kF )

=
|B−(kF )|2

∂ωW Migdal: nF : Z

nF (k)  

k →

Sunday, September 12, 2010
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The meaning of J−

• The Green’s function (bulk extension)

G(z) = Ψ−(z)SΨ−1
+ (z) , /D +A±Ψ± = −/TΨ∓

– Convenient way to solve G directly

∂zG = (A+ −A−)G + G/T G− /T Ψ+(z)SΨ−1
+ (z)

– Consider however the combinations (ΓI = {11 , γi, γij , . . .})

JI
±(z) = Ψ̄−1

+ (z0)Ψ̄±(z)ΓIΨ±(z)Ψ−1
+ (z0)

GI(z) = Ψ̄−1
+ (z0)Ψ̄+(z)ΓIΨ−(z)SΨ−1

+ (z)

If T i has only a single nonvanishing component,
these are the same equations as before.
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The meaning of J−

• The Green’s function (bulk extension)

G(z) = Ψ−(z)SΨ−1
+ (z) , /D +A±Ψ± = −/TΨ∓

– Consider the combinations (ΓI = {11 , γi, γij , . . .})

JI
±(z) = Ψ̄−1

+ (z0)Ψ̄±(z)ΓIΨ±(z)Ψ−1
+ (z0)

GI(z) = Ψ̄−1
+ (z0)Ψ̄+(z)ΓIΨ−(z)SΨ−1

+ (z)

– For generic ω, k:

JI
−(z0) = (J11

+ )−1ḠΓIG
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The meaning of J−

• The Green’s function (bulk extension)

G(z) = Ψ−(z)SΨ−1
+ (z) , /D + A±Ψ± = −/TΨ∓

– Consider the combinations (ΓI = {11 , γi, γij , . . .})

JI
±(z) = Ψ̄−1

+ (z0)Ψ̄±(z)ΓIΨ±(z)Ψ−1
+ (z0)

GI(z) = Ψ̄−1
+ (z0)Ψ̄+(z)ΓIΨ−(z)SΨ−1

+ (z)

– For pole ω(k):

JI
− = ΓIG|on−shell

Trγ0GF (ω(k))|on−shell = fFD(T, ω(k))ρstates(ω(k))

.
J−(ω(k), k) = nF (k)
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Building an holographic Fermi-liquid

• “Proof” AdS-RN BH with Fermions is metastable.5
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FIG. 2: Zoom in at near-critical region: we clearly see the sharp step. The behavior is reminiscent of a first order transition or
a sharp crossover.
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Testing the holographic Fermi-liquid

• Luttinger theorem Check

– Radial profile of “hair”
[CSZ preliminary]
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Can we understand FL stability from AdS/CFT?
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Natural stability of Bosonic Groundstates

• Stability is determined by the Free Energy:
– Landau-Ginzburg

F(φ) =
∫

ddx
1
2
(∂iφ)2 +

1
2
m2φ2 +

1
4
λφ4 + . . .

∣∣∣∣
extremum

– Wilson
The quantum-mechanical partition function/path integral at
low-energies is expressed in terms of fluctuations of φ

Z(β,φ) =
∫
Dϕe−βF(φ+ϕ)

– The control parameter in the Free energy is the boson vev 〈φ〉.
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Is the Fermi Liquid stable?

• Since Fermions cannot have a vev, there is no such
understanding of the (stability) of the Fermi Liquid.

〈Ψ〉 = 0 [by definition]

– Perturbatively OK [Shankar, Polchinski]

Calculation assumes FL groundstate;
no global, ab initio explanation of the groundstate. (local vs
global minimum)

– Experimentally OK...

This is the mystery. Experimentally FL extremely robust
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The mystery of He3

• Normal FL picture: dressed electrons
• There are many systems where this picture fails.

– He3 [Landau]

− Liquid at 3.2K
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− strongly coupled van der Waals liquid: rinterparticle " rHe3 :
no notion of individual He3 atoms(!)

− stays liquid due to quantum-fluctuations.
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The mystery of He3

• Normal FL picture: dressed electrons
• There are many systems where this picture fails.

– He3 [Landau]

− Liquid at 3.2K

− Becomes a regular Fermi Liquid at T = 0.32K (EF = 4.9K)
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[Enss, Hunklinger Low Temperature Physics]

− rinterparticle " rHe3 cannot think of these as dressed He3 atoms(!)
Direct liquid to FL transition
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The mystery of He3

• Normal FL picture: dressed electrons
• There are many systems where this picture fails.

– He3 [Landau]

− Liquid at 3.2K

− Becomes a regular Fermi Liquid at T = 0.32K (EF = 4.9K)

− (Exotic) Superfluid at T = 10−3K

[Lee, Oscheroff, Richardson, Nobel 1996]
Helium-3, Phase diagram 

High temperatures 

 
 

Differences compared to He-4: 
He-3 atoms are fermions, i.e. no ordinary BEC 

No super fluid transition at “high” temperature 

Lower Tboil, higher Pmelt, due to lower mass larger 

zero point fluctuations. 

Melting curve is non-monotonous. 

Super fliud transition around 1mK. 

Logarithmic temperature scale 

  
the polycritical point 

 

I have so far not mentioned the existence of a third
phase, which could only exist in the presence of an ap-
plied magnetic field. Evidence for this was found in the
discovery experiment where, in the presence of a mag-
netic field, instead of a single point corresponding to a
change of slope in the pressure vs time plot, there were
two closely spaced points, each involving a change in
slope in the melting pressure vs time signature (Osheroff
1973; see also Gully et al., 1973). Thus the A transition
splits into two transitions in a magnetic field. Before
hearing of these results, Vinay Ambegaokar and David
Mermin (1973) had actually predicted theoretically that
the A phase should split linearly in a magnetic field. They showed that this was required by l ! 1 BCS pairing

and named the newly discovered phase A1 . Particularly
dramatic signatures of the splitting of the A transition
into two transitions can be seen in the ultrasound data of
Lawson et al. (1975a; see Figure 10). The temperature
width of the A1 phase grows linearly with field at the
rate of 60 !K per tesla all the way up to 10 tesla and
beyond. The A1 phase is believed to have only a single
spin component, !↑↑".

Finally, the La Jolla group also investigated the phase
diagram in a magnetic field (Paulson et al., 1974) at pres-
sures below melting pressure by studying the static mag-
netization of the liquid via superconducting quantum in-
terference device (SQUID) interferometry. The 3He
sample and the magnet supplying the applied magnetic
field were contained in a separate tower surrounded by a
superconducting niobium magnetic shield. The liquid
3He sample in the tower was maintained in good ther-
mal contact with the cerium magnesium nitrate refriger-
ant in the main cell via a column of liquid 3He. The
most dramatic finding was the narrowing and finally the
vanishing of the A phase in zero field at a point called
the polycritical point as shown in Figure 11. All of the
features discussed above are summarized by the sche-
matic P-T-H phase diagram shown in Figure 12.

FIG. 10. Sound attenuation data plotted vs time for a Pomer-
anchuk cooling run clearly showing the splitting of the A tran-
sition in a magnetic field. A1 and A2 mark the two resulting
transitions (Lawson et al., 1975a). The attenuation peaks are
associated with collective mode absorption and pair breaking
near the transitions. The dashed line representing the melting
pressure shows two kinks corresponding to the splitting of the
A transition into the A1 and A2 transitions.

FIG. 9. Early specific-heat measurements of liquid 3He near
the superfluid transition (Webb et al., 1973). The shape is char-
acteristic of a BCS pairing transition.

FIG. 11. Experimental data of Paulson, Kojima and Wheatley
(1974). At the lowest magnetic field, the A phase is not present
below the polycritical point PCP at about 22 bar. In a larger
magnetic field, the B phase is suppressed in favor of the A
phase even at the lowest pressure, and the polycritical point
disappears.

657David M. Lee: The extraordinary phases of liquid 3He

Rev. Mod. Phys., Vol. 69, No. 3, July 1997
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The mystery of He3

• Normal FL picture: dressed electrons
• There are many systems where this picture fails.

– He3 [Landau]

– 2D electron gas in MOSFETs,
– High Tc superconductors, Heavy Fermion systems
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Gravitational stability of the Landau Fermi Liquid

• Only Landau Fermi-liquid excitations in AdS Dirac Hair BH
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“Proves” Robustness of the Landau FL
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Conclusion and Outlook

• Dirac instability of AdS RN explains FL stability
analogous to order parameter.

• Single fermion approximation.
– Effectiveness (qualitative)
– Reliability (quantitative)
– Applicability (small µ ∼ q∆E and/or electron star asymptotics)

• Probing other phases of fermionic matter (a new tool)

Thank you.
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