
Aspects of large-N gauge theories from the lattice

Michael Teper (Oxford) - GGI, Florence 2011

• Large N :

T = 0 and T != 0, D = 2 + 1 and D = 3 + 1: a lightning survey
– but avoiding what other speakers might talk about e.g. small V , k-strings, ...

• Flux tubes and string theory :

effective string theories - recent progress

fundamental flux tubes in D=2+1

fundamental flux tubes in D=3+1

• Concluding remarks
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Basic questions for the large-N limit

• Large-N scaling?

• Is N = ∞ confining?

• Is N = 3 close to N = ∞?

– glueball masses

– meson masses
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large-N scaling:

• g2N fixed as N → ∞?

• leading correction 1/N2?

=⇒ use accurate calculations of
√

σ:

D = 2 + 1 : lima→0

√
σ

g2N
versus 1

N2

D = 3 + 1 : g2(µ)N versus µ for various N

3



Continuum limit of N ∈ [2, 8] in D = 2 + 1 Bringoltz,MT hep-th/0611286

1/N2

√
σ

g2N

0.30.250.20.150.10.050

0.2

0.18

0.16

conventional fit:
√
σ

g2N
= 0.19638(9)− 0.1144(8)

N2
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Athenodorou,Bringoltz,MT ArXiv:1103.5854

fits =⇒
√
σ

g2N
= c0 +

c1
Nγ ⇒ γ = 1.97± 0.10

√
σ

g2Nα = c0 +
c1
N2 ⇒ α = 1.002± 0.004

√
σ

g2Nα = c0 +
c1
Nγ ⇒ α = 1.008± 0.015, γ = 2.18± 0.40

=⇒

strong support for non-perturbative validity of usual large-N counting

i.e.
√
σ

g2N
= c0 +

c1
N2 + · · ·
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D = 3 + 1 : (lattice) running coupling for N ∈ [2, 8]

µ̂ = 1
a
√
σ

g2I (µ̂)N

121086420

6.5

5.5

4.5

3.5

SU(2), ◦; SU(3), ◦; SU(4), •; SU(6), •; SU(8), •.

Continuum running: SF coupling, Alpha collaboration + Lucini and Moriatis,

0805.2913.

6



Fitting the coupling at various N one finds:

•, Allton, MT, Trivini, arXiv:0803.1092; ◦ Lucini, Moraitis, arXiv:0805.2913

1/N2

ΛMS√
σ

0.30.20.10

0.8

0.6

0.4

0.2

0

only show statistical errors ... fit:
ΛMS√

σ = 0.503(2)(40) + 0.33(3)(3)
N2

i.e. SU(3) close to SU(∞)
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D=3+1, SU(6) : energy of flux loop closed around a spatial torus

H. Meyer, M. Teper: hep-lat/0411039 a
√
σ " 0.252

l
√

σ

aE0(l)

654321

1.5

1

0.5

0

−→ linear confinement: E0(l) ( σl − π
3l + · · · at large N
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D=2+1, SU(6) : energy of flux loop closed around a spatial torus

Athenodorou, Bringoltz, MT: arXiv:1103.5854 a
√
σ " 0.086

l
√

σ

aE0(l)

654321

0.6

0.5

0.4

0.3

0.2

0.1

0

−→ linear confinement: E0(l) ( σl − π
6l + · · · at large N
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Glueball mass spectrum: large-N limit

B.Lucini, MT, U.Wenger: hep-lat/0404008

1/N2

m√
σ

0.250.20.150.10.050

8

7

6

5

4

3

2

1

0

(•) 0++; (◦) 2++ −→ SU(3) is ‘close to’ SU(∞) for lightest masses

10



−→

• N = ∞ gauge theories are linearly confining

• SU(3) is ‘close to’ SU(∞) for some basic physical quantities
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Is QCD3 close to QCD∞?

• Del Debbio, Lucini, Patella and Pica, arXiv:0712:3036.

• Bali and Bursa, arXiv:0806:2278; arXiv:0708:3427.

Hietanen, Narayanan, Patel and Prays, arXiv:0901:3752.

Strategy:

quenched QCDN
N→∞−→ full QCDN=∞

- perform quenched QCD calculations at various N at a common value of a and

various common values of m

- extrapolate at each fixed m to N = ∞, with O(1/N2) corrections

- now do conventional (full QCD) chiral extrapolation

- repeat for various a and extrapolate to continuum

• now compare to full QCD (or expt!) with SU(3)
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N = 2, 3, 4, 6 for a
√

σ ( 0.21 Bali, Bursa
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also for a
√

σ ( 0.33 Del Debbio et al
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DD etal, BB−→
lim

N→∞,a→0

mρ√
σ
= 1.79(5)

versus, in the real world :
mρ√
σ
( 770MeV

440MeV ( 1.75

=⇒
N = 3 is ‘close to’ N = ∞ for full QCD · · ·

BUT: Hietanen et al ⇒ mρ
N=19∼ 2mQCD3

ρ !
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Some questions for QCD∞:

Scalar mesons as N → ∞ : do the ≤ 1GeV states disappear?

The scalar nonet and the place of lightest scalar glueball?

Flavour singlet tensor and pseudoscalar mesons and glueballs?

Excited states stable −→ Regge trajectories?

Excited states stable −→ clean meson excitation spectrum.

SU(2nf ) baryon (Dashen-Manohar) symmetry as N → 3.
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Physics at finite temperature:

• RHIC and LHC experiments

• area of choice for AdS/CFT applications:

SUSY ∼ gauge theory : Tc < T < few× Tc

since :

adjoint fermions acquire a Matsubara mass

scalars then unprotected and acquire mass

also :

SQGP – strongly coupled quark-gluon plasma paradigm

• AdS/CFT is at large N , so important to check what features of QCD at

T ≥ Tc have small finite N corrections.
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Deconfining temperature in D = 3 + 1 Lucini, MT, Wenger: hep-lat/0307017,0502003

1/N2

Tc√
σ

0.30.20.10

1

0.8

0.6

0.4

0.2

0

2nd order ◦ ; 1st order •

⇒ Tc√
σ = 0.597(4) + 0.45(3)

N2 and Evac ∼ −O(N2) ∼ gluon condensate
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Tc in D = 2 + 1 J. Liddle, MT : arXiv:0803.2128

Holland, Pepe, Wiese : arXiv:0712.1216

1/N2

Tc√
σ

0.30.250.20.150.10.050

1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

⇒ Tc√
σ = 0.903(3) + 0.88(5)

N2 and Evac ∼ −O(N2) ∼ gluon condensate
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Confinement-deconfinement latent heat in D = 3 + 1

Lucini, MT, Wenger: hep-lat/0307017,0502003

1/N2

1
Tc

{
Lh
N2

} 1
4

0.150.10.050

1.2

0.9

0.6

0.3

0

⇒

large-N deconfinement is ‘normal’ first order
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Confinement-deconfinement interface tension

a = 1/5Tc Lucini, MT, Wenger: hep-lat/0502003

N

σcd
T 3
c

1098765432

0.8

0.6

0.4

0.2

0

fit : σcd
T3
c

= 0.0138N2 − 0.104 = 0.0138N2
(
1− 7.53

N2

)

⇒ interface tension small and O(1/N2) corrections are large
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Strongly Coupled Gluon Plasma - at large N?

Bringoltz, MT, hep-lat/0506034; Panero, arXiv:0907.3719; Datta, Gupta,arXiv:1006.0938
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N=4, 163x5
N=8, 83x5
N=3, 203x5
N=3, 323x6, Boyd et al.

Tc < T < few× Tc pressure anomaly is ‘independent’ of N
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∆ ≡ ε− 3p

Bringoltz, MT : hep-lat/0506034

[ ∆ =0 in Stefan-Boltzman gas and SUSY ]
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Some conclusions from this (highly incomplete) survey

• large-N counting as described by ’t Hooft

• SU(∞) linearly confining

• N = 3 close to N = ∞ for many basic physical quantities, both at T = 0

and T != 0

• ... but not always, e.g. interface tension

• and mesons in QCDN need to be clarified

• SGP is ∼ ‘independent’ of N
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Flux tubes and string theory

↔

Confining flux tubes in SU(N) gauge theories and their effective string

theory description

• Veneziano amplitude

• ’t Hooft large-N – genus diagram expansion

• Polyakov action

• Maldacena ... AdS/CFT/QCD ...

at large N , flux tubes and perhaps the whole gauge theory can be

described by a weakly-coupled string theory
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focus on the spectrum of flux tubes

closed around a spatial torus of length l

— both D=2+1 and D=3+1

• flux localised in ‘tubes’; long flux tubes, l
√

σ - 1 look like ‘thin strings’

• at l = lc = 1/Tc there is a ‘deconfining’ phase transition: 1st order for

N ≥ 3 in D = 4 and for N ≥ 4 in D = 3

• so may have a simple string description of the closed string spectrum for

all l ≥ lc

• most plausible at N → ∞ where scattering, mixing and decay, e.g string

→ string + glueball, go away

Note: the static potential V (r) describes the transition in r between UV (Coulomb

potential) and IF (flux tubes) physics; potentially of great interest as N → ∞.
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calculate the ground state energy of a confining flux tube winding around a

spatial torus of length l, using correlators of Polyakov loops:

〈l†p(τ)lp(0)〉 =
∑

n,p cn(p, l)e
−En(p,l)τ τ→∞∝ exp{−E0(l)τ}

in pictures

!

"

−→
→ t

↑
x

lp l†p

!

"

l

#$
τ

a flux tube sweeps out a cylindrical l × τ surface S · · · integrate over these world

sheets with an effective string action ∝
∫

cyl=l×τ

dSe−Seff [S]
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but also a flux tube attached to the static sources propagating in the x-direction:

〈l†p(τ)lp(0)〉 =
∑

n e−Ên(τ)l l→∞∝ exp{−Ê0(τ)l}

in pictures

!

"
!

→ t
↑
x

lp l†p

!

"

l

#$
τ

this is an example of an open-closed string ‘duality’
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⇒

∑

n,p

cn(p, l)e
−En(p,l)τ =

∑

n

e−Ên(τ)l =

∫

cyl=l×τ

dSe−Seff [S]

where Seff [S] is the effective string action for the surface S

⇒

the string partition function will predict the spectrum Ên(τ) – just a

Laplace transform – but will be constrained by the Lorentz invariance

encoded in En(p, l)
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Parameterising S (static gauge):

• h(x, t) is transverse displacement (vector in D = 3 + 1) from minimal

surface x ∈ [0, l] and t ∈ [0, τ ], i.e.

Seff [S] −→ Seff [h]

and we integrate over the field h(x, t)

• translation invariance ⇒ Seff [h] cannot depend on position but only on

∂αh, with α = x, t, ⇒ we can do a derivative expansion:

Seff ∼ σlτ +
∫ τ

0
dt

∫ l

0
dx 1

2∂h∂h+
∑

cn,i

∫ τ

0
dt

∫ l

0
dx∂n+ihn

• ⇒ an expansion of En(l) in powers of 1/σl2

• open-closed duality constrains some of these coefficients ⇒ some

correction terms in E(l) = σl + · · · are ‘universal’
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⇒

e.g. any Seff ⇒

E0(l)
l→∞
= σl− π(D − 2)

6l
− {π(D − 2)}2

72

1

σl3
− {π(D − 2)}3

432

1

σ2l5
+O

(
1

l7

)

universal terms:

◦ O
(
1
l

)
Luscher correction, ∼ 1980

◦ O
(

1
l3

)
Luscher, Weisz; Drummond, ∼ 2004

◦ O
(

1
l5

)
Aharony et al, ∼ 2009-10

also for En(l)

−→ simplest free string theory : Nambu-Goto in flat space-time · · ·
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Nambu-Goto free string theory
∫
DSe−κA[S]

Spectrum:

E2(l) = (σ l)2 + 8πσ
(

NL+NR
2 − D−2

24

)
+

(
2πq
l

)2
.

p = 2πq/l = total momentum along string;

NL, NR = sum left and right ‘phonon’ momentum:

NL =
∑
k>0

nL(k) k, NR =
∑
k>0

nR(k) k, NL −NR = q

where

state =
∏
k>0

anL(k)
k anR(k)

−k |0〉
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Nambu-Goto ⇒

E0(l) = σl

(
1−

π(D − 2)

3σl2

) 1
2

= σl −
π(D − 2)

6l
−

{π(D − 2)}2

72

1

σl3
−

{π(D − 2)}3

432

1

σ2l5
+O

(
1

l7

)

– same universal correction terms to ground state

– also for excited states, e.g.

En(l) = σl

(
1 +

8π

σl2

(
n−

D − 2

24

)) 1
2 l>ln= σl +

∑

n=0

cn
σnl2n+1

where ln
√
σ ∼

√
8πn
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What does one find numerically?

results here are from:

• D = 2 + 1 Athenodorou, Bringoltz, MT arXiv:1103.5854

• D = 3 + 1 Athenodorou, Bringoltz, MT arXiv:1007.4720

also

Cracow School Lectures, MT arXiv:0912.3339

also see for references to other work

for recent analytic work see:

O. Aharony and E. Karzbrun, arXiv:0903.1927

O. Aharony amd M. Field, arXiv:1008.2636

O. Aharony and N. Klinghoffer, arXiv:1008.2648

O. Aharony, Talk at Confining Flux Tubes and Strings (ECT, July 2010).
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lightest 8 states with p = 0 D = 2 + 1 SU(6), small a

l
√

σ

E√
σ

87654321

14

12

10

8

6

4

2

0

Nambu-Goto : solid lines universal terms: dashed lines
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States:

|0〉
a1a−1|0〉
a2a−2|0〉, a2a−1a−1|0〉, a1a1a−2|0〉, a1a1a−1a−1|0〉
· · ·

P = (−1)number phonons = +,− for •, ◦

⇒

observe stringy degeneracies
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note: Nambu-Goto predictions for excited states have no free parameters

=⇒

• NG very good down to l
√

σ ∼ 2, i.e energy

fat short flux ‘tube’ ∼ ideal thin string

• NG very good far below value of l
√

σ where the power series expansion

diverges, i.e. where all orders are important ⇒
universal terms not enough to explain this agreeement ...

• no sign of any non-stringy modes, e.g.

E(l) ( E0(l) + µ where e.g. µ ∼ MG/2 ∼ 2
√

σ

36



lightest P = − states with p = 2πq/l: q = 0, 1, 2, 3, 4, 5 aq|0〉

l
√

σ

E√
σ

654321

20

18

16

14

12

10

8

6

4

2

0

Nambu-Goto : solid lines (ap)2 → 2− 2 cos(ap) : dashed lines
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ground state deviation from various ‘models’ D = 2 + 1

l
√

σ

E0−Emodel
σl

654321

0.02

0

−0.02

−0.04

−0.06

model = Nambu-Goto, •, universal to 1/l5, ◦, to 1/l3, $, to 1/l, +, just σl, ×
lines = plus O(1/l7) correction
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=⇒

◦ for l
√

σ ! 2 agreement with NG to " 1/1000

moreover

◦ for l
√

σ ∼ 2 contribution of NG to deviation from σl is ! 99%

despite flux tube being short and fat

◦ and leading correction to NG consistent with ∝ 1/l7 as expected

from current universality results
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γ

χ2

ndf

131197531

8

7

6

5

4

3

2

1

0

χ2 per degree of freedom for the best fit

E0(l) = ENG
0 (l) + c

lγ
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first excited q = 0, P = + state D = 2 + 1

l
√

σ

E−ENG√
σ

654321

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

fits:
c

(l
√
σ)7

- dotted curve; c
(l
√
σ)7

(
1 + 25.0

l2σ

)−2.75
- solid curve
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=⇒ if we write

1
√
σ
En(l) =

1
√
σ
ENG

n (l) +
1
√
σ
∆En(l) (1)

l→∞
=

1
√
σ
ENG

n (l) +
c

(l
√
σ)7

{
1 +

c1
l2σ

+
c2

(l2σ)2
+ · · ·

}

then correction to NG resums, just like NG,

1
√
σ
∆En(l) =

c

(l
√
σ)7

(
1 +

c′

l2σ

)−γ

)






c
(l
√
σ)7

l * ld
cc′−γ

(l
√
σ)7−2γ l + ld

and with our fit we find c ∼ 0.6× cNG
7

for most but not all light excited states:
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q = 1, P = − ground state SU(6), D = 2 + 1

l
√

σ

E−ENG√
σ

654321

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

fits:
c

(l
√
σ)7

solid curve; c
(l
√
σ)7

(
1 + 25.0

l2σ

)−2.75
: dashed curve
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D = 2 + 1 to D = 3 + 1

• additional rotational quantum number: phonon carries spin 1

• Nambu-Goto again remarkably good for most states

• BUT now there are some candidates for non-stringy (massive?) mode

excitations ...

however in general results are considerably less accurate
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p = 2πq/l for q = 0, 1, 2 D = 3 + 1, SU(3), lc
√

σ ∼ 1.5

l
√

σ

E√
σ

6.55.54.53.52.51.5

10

8

6

4

2

0

The four q = 2 states are: JPt = 0+($), 1±(◦), 2+(!), 2−(•).
Lines are Nambu-Goto predictions.
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for a precise comparison with Nambu-Goto, define:

∆E2(q, l) = E2(q; l)− E2
0(l)−

(
2πq

l

)2
NG
= 4πσ(NL +NR)

=⇒ lightest q = 1, 2 states:

l
√
σ

∆E2

4πσ

4.53.52.51.5

3

2

1

0

46



lightest few p = 0 states

l
√

σ

∆E2

4πσ

54.543.532.521.5

4

3

2

1

0

=⇒ anomalous 0−− state
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and also for p = 2π/l states

l
√

σ

∆E2

4πσ

5.54.53.52.51.5

5

4

3

2

1

0

states: JPt = 0+(◦), 0−(•), 2+(∗), 2−(+)

=⇒ anomalous 0− state
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p = 0, 0−− : is this an extra state – is there also a stringy state?

l
√

σ

∆E2

4πσ

6.55.54.53.52.51.5

5

4

3

2

1

0

ansatz: E(l) = E0(l) +m ; m = 1.85
√

σ ∼ mG/2
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similarly for p = 1, 0− : SU(3), •; SU(5), ◦

l
√

σ

∆E2

4πσ

6.55.54.53.52.51.5

6

5

4

3

2

1

0

ansatz: E(l) = E0(l) + (m2 + p2)1/2 ; m = 1.85
√

σ ∼ mG/2
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Some conclusions on confining flux tubes and strings

• flux tubes are like free Nambu-Goto strings, even when not much longer

than they are wide

• this is so for all states in D = 2 + 1 and most in D = 3 + 1

• corrections to Nambu-Goto are consistent with known universal terms,

and they resum to small contributions at smaller l for excited states

• in D = 3+ 1 we see extra states consistent with the excitation of massive

modes

• in D = 2 + 1, despite the much greater accuracy, we see no such extra

states
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