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Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞

In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Why hydro at this workshop?

Motivation for this workshop: understand QCD

Two conventional expansions for QCD: g→0 and N→∞
In this talk: look at high-temperature QCD

Static equilibrium state can be studied by lattice QCD

Real-time dynamics is much harder

Thermodynamics = simplest possible effective theory at T>0

Hydrodynamics = next simplest effective theory at T>0

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 4 / 58



Why hydro?

Next simplest effective theory

Heraclitus (535 – 475 BC) : Everything flows...

“Everything” includes relativistic QFT with a stable thermal
equilibrium state and conserved energy-momentum tensor
How well a given substance flows depends on its viscosity

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 5 / 58



Why hydro?

Next simplest effective theory

Heraclitus (535 – 475 BC) : Everything flows...

“Everything” includes relativistic QFT with a stable thermal
equilibrium state and conserved energy-momentum tensor

How well a given substance flows depends on its viscosity

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 5 / 58



Why hydro?

Next simplest effective theory

Heraclitus (535 – 475 BC) : Everything flows...

“Everything” includes relativistic QFT with a stable thermal
equilibrium state and conserved energy-momentum tensor
How well a given substance flows depends on its viscosity

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 5 / 58



Why hydro?

Viscosity of QCD

No reliable theoretical method to calculate viscosity at T & Tc

Experimental program (RHIC, LHC), fit data to hydro simulations:

...the degree of collective interaction, rapid thermalization, and
extremely low viscosity of the matter being formed at RHIC make
this the most nearly perfect liquid ever observed.

BNL Press Release, 2005

Perfect liquid means no viscosity, η=0.

Large-N limit: η ∼ N2 →∞
Small-coupling limit: η ∼ 1/g4 →∞

Note that η = 0 is not the same as η =∞.

However, QCD at T & Tc is a nearly-erfect fluid not because η = 0,
but because η is small compared to something.
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Why hydro?

Kinematic viscosity of QCD

A natural measure of viscosity at a given T is

η

s
= ~ × (dimensionless number)

Hydro fits to data:
η

s
= (0.1± 0.1± 0.08) ~ Luzum+Romatschke, 2008

g→0, pure glue SU(3):
η

s
=

3.87

g4 ln 1/g
~ Arnold+Moore+Yaffe, 2000

N→∞, λ→∞ gauge-gravity:
η

s
=

~
4π

PK+Son+Starinets, 2004
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Why hydro?

Calculate viscosity in real QCD?

Real QCD has neither N =∞, nor λ =∞, nor g = 0.

Can we say anything about the viscosity of QCD without making the
above approximations?
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Hydro fluctuations

Linearized relativistic hydro

Relativistic hydro with µ = 0:

∂ε

∂t
+ ∇·π = 0 ,

∂πi
∂t

+ ∂jTij = 0 .

Tij = Pδij − γη
(
∂iπj + ∂jπi −

2

d
δij∇·π

)
− γζδij∇·π + ...

γη ≡ η/w̄, γζ ≡ ζ/w̄, and w̄ = ε̄+P̄ .

Fluctuations of π⊥ : ω = −iγηk2 ,

Fluctuations of π‖, ε : ω = ±vs|k| − i
γs
2
k2 , γs ≡ γζ +

2d−2

d
γη .
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Hydro fluctuations

Simple picture for viscosity

Viscosity measures rate of momentum transfer between layers of fluid

η = ρvth`mfp

Maxwell, 1860

x

y

`mfp ∼
1

nσ
∼ T

λ2

η0 ∼
N2T 3

λ2
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Hydro fluctuations

Simple picture for viscosity (2)

Elementary excitations are not the only way to transfer momentum.
Momentum can also be transfered by collective excitations.

x

y `mfp ∼
1
η

ε+P
k2

η1 ∼
∫ kmax

d3k
T

η0
ε+P
k2
∼ kmaxT

2

η0/s

Total viscosity ηtotal = η0 + η1 is bounded from below

This integral IR finite in d = 3+1, but IR divergent in d = 2+1
Forster+Nelson+Stephen, 1977
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Hydro fluctuations

The rest of the talk will expand on these points

Namely

How do hydro fluctuations change viscosity in d = 3+1?

How do hydro fluctuations change second-order hydrodynamics?

How do hydro fluctuations change viscosity in d = 2+1?
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A simple calculation

Interaction of hydro modes

In hydro, there are no arbitrary “coupling constants” like g

Coefficients of non-linear terms are fixed by symmetry
(Galilean or Lorentz) E.g.

Jµ = nuµ + νµ , T µν = (ε+P )uµuν + Pηµν + τµν .

All transport coefs η, ζ, κ are present already in linearized hydro

Interaction of modes will change hydro correlation functions

Was known since late 1960’s – “mode-mode coupling”
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A simple calculation

Long-time tails

Start with J = −D∇n+ nv, take k = 0. Schematically:

〈J(t)J(0)〉 ⊃
∫
ddx 〈n(t,x)v(t,x)n(0)v(0)〉

=

∫
ddx 〈n(t,x)n(0)〉〈v(t, x)v(0)〉

∼
∫
ddk e−Dk2te−γηk

2t

∼
[

1

(D+γη)t

]d/2
See e.g. Arnold+Yaffe, PRD 1997
(known since late 1960’s)

When FT, the convective contribution to S(ω) is

S(ω) ∼ ω1/2 , d = 3

S(ω) ∼ ln(ω) , d = 2
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A simple calculation

Correction to Kubo formulas

Recall Kubo formula for the diffusion constant:

DχT = lim
ω→0

1

2d
Sii(ω,k=0)

This was derived in linear response. With the non-linear temrs:

Dfull = lim
ω→0

(
D + const ω1/2

)
, d = 3

Dfull = lim
ω→0

(D + const ln(ω)) , d = 2

Same applies to shear viscosity:

ηfull = lim
ω→0

(
η + const ω1/2

)
, d = 3

ηfull = lim
ω→0

(η + const ln(ω)) , d = 2

In 2+1 dimensional hydro, transport coefficients blow up
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A simple calculation

Comment

In AdS/CFT, the ln(ω) correction is 1/N3/2 suppressed

Transport coefficients come out finite in 3 + 1 dimensional
classical gravity

Long-time tails come from quantum corrections to classical
gravity

Kovtun+Yaffe, 2003
Caron-Huot + Saremi, 2009

This is an example where long-time limit does not commute
with large-N limit
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A simple calculation

Can do the same calculation in momentum space

Tij Tkl

One-loop diagram with sound and/or shear waves in the loop

Sxy,xy(ω,k=0) = (ε+P )2

∫
dω′

2π

d3k

(2π)3(
∆xx(ω

′,k)∆yy(ω−ω′,−k) + ∆xy(ω
′,k)∆yx(ω−ω′,−k)

)
where ∆ij = FT of 〈ui(x)uj(0)〉
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A simple calculation

When the dust settles...

GR
xy,xy(ω � kmax,k=0) = −iωη0

−iω 17Tkmax

120π2γη0
+ (1 + i)ω3/2 (7 + (3/2)3/2)T

240πγ
3/2
η0

+O
(
(kmaxγη0)

2, ω2
)

PK+Moore+Romatschke, 2011

The contribution due to hydro fluctuations is suppressed at either
small coupling, or large N
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A simple calculation

Implications for the shear viscosity

The function η + c/η has a minimum, hence viscosity is bounded
from below

The exact value of the minimum depends on the UV cutoff of
the hydro effective theory

Estimate kmaxγη0 ∼ 1/2, then

ηtotal/s & 0.16~

at T & Tc

Current hydro simulations of QGP are blind to these effects
because they simply solve the classical hydro equations and
ignore the fluctuations
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A simple calculation

This was for one-derivative hydro

Take diffusion equation, add higher-derivative terms

∂n

∂t
= D∇2n+D2∇4n+ . . .

Hydro loop corrections imply:

D blows up in 2+1 dim, but is finite in 3+1 dim

D2 blows up even in 3+1 dim, D2 = limω→0
const
ω1/2

DeSchepper + Van Beyeren + Ernst, 1974

Alternatively, the dispersion of hydro modes has no analytic
expansion in powers of |k|, i.e. ω 6= c1|k|+ c2k

2 + c4k
4 + . . .

Interaction of hydro modes produces ∞ many fractional powers
ω = c1|k|+ c2k

2 + a1|k|5/2 + a2|k|11/4 + . . .
Ernst + Dorfman, 1975
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A simple calculation

Exactly the same happens for second-order

relativistic hydro (Israel-Stewart)

In linearized second order hydro:

GR
xy,xy(ω,k) = P − iωη +

(
ητΠ −

κ

2

)
ω2 − κ

2
k2 + . . .

Baier+Romatschke+Son+Starinets+Stephanov, 2007

But this gets seriously modified by 1-loop hydro fluctuations,

GR
xy,xy(ω,k=0) = P − iωη − const |ω|3/2(1 + i sign(ω)) + . . .

Blindly apply Kubo formula

ητΠ −
κ

2
= lim

ω→0

1

2

∂2

∂ω2
ReGR

xy,xy(ω,k=0) →∞

This means τΠ does not exist
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A simple calculation

Can we save second-order hydro?

Can estimate when ω3/2 term becomes comparable to ω2 term

2nd-order hydro breaks down below some ω∗ depends on η0/s

If η0/s ∼ 0.16, then ω∗ ∼ T/20,
2nd-order hydro OK for heavy-ion collisions

If η0/s ∼ 0.08, then ω∗ ∼ 2.5T ,
2nd order hydro makes no sense for heavy-ion collisions

PK+Moore+Romatschke, 2011
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A simple calculation

Is there hope for hydrodynamics?

So is 2+1 hydro meaningless?
Is 3+1 hydro meaningless beyond first derivatives?

Hydro is not meaningless.
Rather, viscosity, conductivity etc become scale-dependent
“running masses” in the low-energy effective hydro theory

To find this low-energy effective hydro theory, need both dissipation
(transport coefficients) and fluctuations (thermally excited modes)
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Fluctuations: Brownian motion

Outline

1. Why hydro?

2. Hydro fluctuations

3. A simple calculation

4. Fluctuations: Brownian motion

5. Fluctuations: Diffusion equation

6. Fluctuations: Linear hydrodynamics

7. Fluctuations: Non-linear hydrodynamics

8. Conclusions
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Fluctuations: Brownian motion

Langevin equation

Brownian particle:

m
d2x

dt2
= −(6πηa)

dx

dt
+ f(t) ,

(6πηa) = friction coefficient (Stokes law)
f(t) = random force

Take q ≡ dx
dt

, ⇒ Langevin equation:

q̇(t) + γq(t) = ξ(t)

Noise properties:

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = Cδ(t− t′) .

C determines the strength of the noise
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Fluctuations: Brownian motion

Correlation function of q(t)

Take the Langevin equation q̇(t) + γq(t) = ξ(t)

Solve for q(t) in terms of ξ(t)

Find 〈q(t)q(t′)〉 by averaging over ξ(t)

When γt, γt′ � 1, find

〈q(t)q(t′)〉 =
C

2γ
e−γ|t−t

′|

Fourier transform:

S(ω) =
C

ω2 + γ2
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Fluctuations: Brownian motion

Noise strength

Recall 〈ξ(t)ξ(t′)〉 = Cδ(t− t′)
What determines the noise strength C?

Assume thermal equilibrium
Demand that the correlation functions satisfy the FDT:

ImGR(ω) =
ω

2T
S(ω)

To find GR, introduce source (external force)

δq(t) =

∫
dt′GR(t−t′) δf(t′)

Langevin equation gives GR(ω) = i
ω+iγ

Demand FDT:
C = 2T
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Fluctuations: Brownian motion

Path integral for Brownian particle

Let us now represent the Brownian motion as Quantum Mechanics
(0+1 dimensional quantum field theory)
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Fluctuations: Brownian motion

Path integral for Brownian particle

Step 1 Write Langevin equation as EoM ≡ (q̇ + ∂F
∂q
− ξ) = 0

Step 2 Gaussian noise:

〈...〉 =

∫
Dξ e−W [ξ](...) , where W [ξ] =

1

2C

∫
dt′ ξ(t′)2 .

Step 3 Recall δ(f(x)) ∼ δ(x−x0), where x0 solves f(x0) = 0. So∫
Dq J δ(EoM) q(t1) q(t2)... = qξ(t1)︸ ︷︷ ︸ qξ(t2)︸ ︷︷ ︸ ...

satisfy EoM(q, ξ) = 0

Step 4 Write δ(EoM) =
∫
Dp ei

∫
pEoM , do the integral over ξ(t).
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Fluctuations: Brownian motion

Path integral for Brownian particle (2)

When the dust settles:

〈 q(t1) ... q(tn) 〉 =

∫
DqDp J eiS[q,p] q(t1) ... q(tn)

where

S[q, p] =

∫
dt

(
pq̇ + p

∂F

∂q
+
iC

2
p2

)
.

For the simple Langevin equation F (q) = 1
2
γq2,

S(ω) = FT of 〈q(t)q(t′)〉 =
C

ω2 + γ2
,

as expected.
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Fluctuations: Brownian motion

Bottomline:

In the stochastic model

q̇(t) +
∂F (q)

∂q︸ ︷︷ ︸ = ξ(t)︸︷︷︸
relaxation term noise term

correlation functions can be derived from field theory with

S[q, p] =

∫
dt

(
pq̇ + p

∂F

∂q
+
iC

2
p2

)
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Fluctuations: Diffusion equation

Outline

1. Why hydro?
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Fluctuations: Diffusion equation

Fields

Many variables: qi(t)→ φ(x, t)

Langevin equation:

q̇(t) = −∂F (q)

∂q
+ ξ(t) → ∂

∂t
φ(x, t) = −Γ

δF [φ]

δφ
+ ξ(x, t)

Functional F [φ] depends on the problem e.g.

F [φ] =

∫
ddx

(
a

2
φ2 +

b

2
(∇φ)2 +

λ

24
φ4

)
is “model A” in the classification of dynamic critical phenomena by
Hohenberg and Halperin, RMP, 1977

Also called “time-dependent Landau-Ginzburg theory”

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 35 / 58



Fluctuations: Diffusion equation

Fields

Many variables: qi(t)→ φ(x, t)

Langevin equation:

q̇(t) = −∂F (q)

∂q
+ ξ(t) → ∂

∂t
φ(x, t) = −Γ

δF [φ]

δφ
+ ξ(x, t)

Functional F [φ] depends on the problem

e.g.

F [φ] =

∫
ddx

(
a

2
φ2 +

b

2
(∇φ)2 +

λ

24
φ4

)
is “model A” in the classification of dynamic critical phenomena by
Hohenberg and Halperin, RMP, 1977

Also called “time-dependent Landau-Ginzburg theory”

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 35 / 58



Fluctuations: Diffusion equation

Fields

Many variables: qi(t)→ φ(x, t)

Langevin equation:

q̇(t) = −∂F (q)

∂q
+ ξ(t) → ∂

∂t
φ(x, t) = −Γ

δF [φ]

δφ
+ ξ(x, t)

Functional F [φ] depends on the problem e.g.

F [φ] =

∫
ddx

(
a

2
φ2 +

b

2
(∇φ)2 +

λ

24
φ4

)
is “model A” in the classification of dynamic critical phenomena by
Hohenberg and Halperin, RMP, 1977

Also called “time-dependent Landau-Ginzburg theory”

Pavel Kovtun (University of Victoria) Hydrodynamic fluctuations GGI, May 3, 2011 35 / 58



Fluctuations: Diffusion equation

Effective action

Gaussian noise: 〈ξ(x1, t1)ξ(x2, t2)〉 = C δ(x1−x2)δ(t1−t2)

Correlation functions:

〈φ(x1, t1)...φ(xn, tn)〉 =

∫
DφDχ JeiS[φ,χ]φ(x1, t1)...φ(xn, tn) ,

where

S[φ, χ] =

∫
dt ddx

(
χ∂tφ+ χΓ

δF

δφ
+ i

C

2
χ2

)
.

In model A (λ = 0) :

Sφφ(ω,k) =
(

FT of 〈φ(x1, t1)φ(x2, t2)〉
)

=
C

ω2 + Γ2(a+ bk2)2
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Fluctuations: Diffusion equation

Retarded function

Effective action for model A (Langevin eqn for fields) :

S[φ, χ] =

∫
dt ddx

(
χ∂tφ+ χΓ

δF

δφ
+ i

C

2
χ2

)
.

Add source as F [φ]→ F [φ]−
∫
dt ddxhφ

Response of the field:

δ〈φ(x, t)〉 = −iΓ
∫
dt′ ddx′G(t−t′,x−x′)δh(x′, t′)

where G(t−t′,x−x′) ≡ 〈φ(x, t)χ(x′, t′)〉.
Can identify

GR(t,x) = −iΓ〈φ(x, t)χ(0)〉 , GA(t,x) = −iΓ〈φ(0)χ(x, t)〉 .
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Fluctuations: Diffusion equation

Fluctuation-dissipation theorem

Note: Sφφ(x, t) ≡ 〈φ(x, t)φ(0)〉 and G(x, t) ≡ 〈φ(x, t)χ(0)〉
are not independent.

Integrate out χ:

Sφφ(ω,k) = −C
ω

ReG(ω,k)

This is FDT in the effective field theory for φ

GR(ω,k) and Sφφ(ω,k) are related by FDT provided the noise
strength is

C = 2TΓ

In model A (λ = 0)

GR(ω,k) =
−Γ

iω − Γ(a+bk2)
, Sφφ(ω,k) =

C

ω2 + Γ2(a+bk2)2
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Fluctuations: Diffusion equation

Model A

Nice singulatities of correlation functions,
but still not quite hydrodynamics
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Fluctuations: Diffusion equation

Diffusion

Note that model A (Langevin eqn for fields) does not describe
diffusion of a conserved density

Field φ is referred to as a “non-conserved order parameter”

Diffusion equation ∂tn(t,x) = D∇2n(t,x) predicts

GR(ω,k) =
−Dχk2

iω −Dk2
, Snn(ω,k) =

2DTχk2

ω2 + (Dk2)2

where χ ≡ ∂〈n〉/∂µ is static susceptibility

Guess: take model A, with Γ→ Dχk2. This is “model B” in
the classification of Hohenberg and Halperin, RMP, 1977
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Fluctuations: Diffusion equation

Model B

Stochastic equation

∂

∂t
n(x, t) = γ∇2 δF [n]

δn
+ ξ(x, t)

with the free energy

F [n] =

∫
ddx

(
a

2
n2 +

b

2
(∇n)2 + ...

)
and Gaussian noise

〈ξ(x, t)ξ(x′, t′)〉 = −2Tγ∇2δ(x−x′)δ(t−t′)
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Fluctuations: Diffusion equation

Bottomline

Correlation functions for the simple diffusion equation:

〈n(x, t)n(x′, t′)...〉 =

∫
DnDψ eiS[n,ψ]n(x, t)n(x′, t′)...

S[n, ψ] =
∫
t,x

(
ψ ∂n
∂t
− ψD∇2n+ iDχT (∇ψ)2

)

Can integrate out ψ, get a non-local effective action for n only

Seff [n] =
1

2

∫
t,x,x′

E(x, t)D(x,x′)E(x′, t)

where E(x, t) ≡ (∂n
∂t
−D∇2n), and ∇2D(x,x′) = − 1

2DχT
δ(x−x′).

This effective action produces the correct hydro response functions
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Fluctuations: Diffusion equation

Bottomline

We have an effective action for simple diffusion

This effective action is not meant to reproduce the classical
diffusion equation

Rather, it is to be used to construct the generating functional
for the correlation functions of J0(x)

i) at low energies
ii) in real time
iii) near thermal equilibrium

Now that we know how to construct the effective action for diffusion,
can do the same for hydrodynamics
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Fluctuations: Linear hydrodynamics

Outline

1. Why hydro?

2. Hydro fluctuations

3. A simple calculation

4. Fluctuations: Brownian motion

5. Fluctuations: Diffusion equation

6. Fluctuations: Linear hydrodynamics

7. Fluctuations: Non-linear hydrodynamics

8. Conclusions
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Fluctuations: Linear hydrodynamics

Stochastic model for linearized hydro

∂ε

∂t
= −∇·π ,

∂πi
∂t

= −v2
s∂iε+Mijπj + ξi(x, t) .

Dissipative terms:

Mij ≡ γη(∇2δij − ∂i∂j) + γs∂i∂j

Noise correlations:

〈ξi(x, t)ξj(x′, t′)〉 = −2w̄TMijδ(x−x′)δ(t−t′)

Note the same Mij must appear both in the hydro equations, and in the noise correlations
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Fluctuations: Linear hydrodynamics

Functional integral for hydro

Correlation functions in linearized hydro:

〈ε(x, t)πk(x′, t′)...〉 =

∫
DεDπDηDλ eiSε(x, t)πk(x′, t′)...

S =
∫
t,x

(
η
(
∂ε
∂t+∇·π

)
+ λi

(
∂πi
∂t +v2

s∂iε−Mijπj

)
− iw̄T λiMijλj

)

Can integrate out the auxiliary field λ:

Seff [ε,π] =
1

2

∫
t,x,x′

Ei(t,x)Dij(x,x
′)Ej(t,x

′)

where Ei ≡ (∂πi
∂t

+v2
s∂iε−Mijπj), and MijDjk = − 1

2w̄T
δ(x−x′)δik

Note the action Seff [ε,π] is time-reversal invariant, as it should be

This effective action produces the correct hydro response functions
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Fluctuations: Linear hydrodynamics

Correlation functions

Once know Sπiπj(ω,k), the others follow from energy conservation:

ωSεπi(ω,k) = klSπlπi(ω,k) ,

ωSεε(ω,k) = klSπlε(ω,k) .

Can read off correlation functions from the effective action Seff [ε,π]:

Sπiπj(ω,k) =

(
δij−

kikj
k2

)
2γηw̄Tk

2

ω2+(γηk2)2
+
kikj
k2

2γsw̄Tk
2ω2

(ω2−v2
sk

2)2 + (γsk2ω)2︸ ︷︷ ︸ ︸ ︷︷ ︸
shear mode sound mode
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Fluctuations: Linear hydrodynamics

Bottomline

We have an effective action for linearized relativistic hydro

This effective action is not meant to reproduce the classical
hydro equations

Rather, it is to be used to construct the generating functional
for the correlation functions of T 0µ(x)

i) at low energies
ii) in real time
iii) near thermal equilibrium

Now that we know how to construct the effective action for linearized
hydro, can look at the full non-linear hydrodynamics
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Fluctuations: Non-linear hydrodynamics

Outline

1. Why hydro?

2. Hydro fluctuations

3. A simple calculation

4. Fluctuations: Brownian motion

5. Fluctuations: Diffusion equation

6. Fluctuations: Linear hydrodynamics

7. Fluctuations: Non-linear hydrodynamics

8. Conclusions
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Fluctuations: Non-linear hydrodynamics

A simple toy model

Incompressible fluid: impose ∇·π = 0 Forster+Nelson+Stephen, 1977

Momentum conservation:

∂tπi = −∂jTij + ξi , Tij = Pδij − γη(∂iπj+∂jπi) +
πiπj
w̄

Current conservation:

∂tn = −∂iJi + θ , Ji = −D∂in +
nπi
w̄

Stochastic model:

∂tπi = −∂iP + γη∇2πi −
(π·∇)πi

w̄
+ ξi ,

∂tn = D∇2n − (π·∇)n

w̄
+ θ ,

Note that the convective term couples charge density fluctuations to
momentum density fluctuations
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Fluctuations: Non-linear hydrodynamics

Effective action for the toy model

Seff =

∫
dt ddx

(
L(2) + L(int)

)
L(2) = −σ

2
ρ∇2ρ− σ̃

2
λi∇2λi − iρ(∂tn−D∇2n)− iλi(∂tπi−Γ∇2πi)

+ψ̄i(∂t−Γ∇2)ψi + ψ̄n(∂t−D∇2)ψn ,

L(int) = − i

w
ρπi∂in−

i

w
λiπj∂jπi

+
1

w
ψ̄i∂kπi ψk +

1

w
ψ̄iπk∂kψi +

1

w
ψ̄n∂inψi +

1

w
ψ̄nπk∂kψn ,

plus the constraints ∂iπi = 0, ∂iλi = 0, ∂iψ̄i = 0, ∂iψi = 0.
The constants are σ = 2TDχ, σ̃ = 2TΓw, Γ = η/w.
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Fluctuations: Non-linear hydrodynamics

One-loop correlation functions in the toy model

As k→0:

〈T0iT0j〉 =
2TwΓ(ω)k2

ω2 +
(

Γ(ω)k2
)2 , 〈J0J0〉 =

2TχD(ω)k2

ω2 +
(
D(ω)k2

)2 .

This looks like the familiar linear response functions, except D and η
now depend on ω.

In d=3 dimensions:

Γ(ω) = Γ− 23

30πs

√
|ω|

(4Γ)3/2
, D(ω) = D − 1

3πs

√
|ω|

[2(Γ+D)]3/2
.

Conventional Kubo formulas make sense:

D =
1

2Tχ
lim
ω→0

lim
k→0

ω2

k2
Gnn(ω,k)
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Fluctuations: Non-linear hydrodynamics

RG flow diagram in d=2

0 1 2 3 4

Η HΜL
T  s

0

1

2

3

4

DHΜL s

In the extreme low-frequency limit µ→0:

DT =

√
17− 1

2

η

s
≈ 1.56

η

s

D and η are not independent transport coefficients in extreme IR
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Conclusions

Hydro fluctuations imply that

η

s
is bounded from below in real-world QCD

Second-order relativistic hydrodynamics stricty speaking does
not exist

However, 2nd order hydro still OK for heavy-ion collisions if η/s
is sufficiently large

Fluctuation effects disappear in the N →∞ limit
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Conclusions

What I would like to understand

I only showed the effective action for linearized hydro and the
toy model. Can one find the covariant action for the full
non-linear relativistic hydro? Work in progress with GM and PR!

Effective action for hydro from AdS/CFT?

Effective action for relativistic superfluids?

How do transport coefficients in 2+1 dim flow at non-zero
density?

How do transport coefficients in 2+1 dim flow in external
magnetic field?

Other 2-nd order transport coefficients in relativistic hydro?
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Conclusions

THE END!
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