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Basic AdS/CFT correspondence:

gauge theory string theory

N = 4 SU(N) SYM ⇐⇒ N-units of 5-form flux in type IIB string theory

g2YM ⇐⇒ gs

⇒ In the simplest case, the SYM theory is in the ’t Hooft (planar limit), N → ∞, g2YM → 0

with Ng2YM kept fixed. SUGRA is valid Ngs → ∞. In which case the background geometry

is

AdS5 × S5

⇒ The main message is that AdS/CFT sets up a framework that could be used in analyzing

the dynamics of strongly coupled gauge theories, in particular, sQGP
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To make a closer link to realistic systems we need to go beyond the basic AdS/CFT:

• Beyond the conformal approximation (but still in a ’SUGRA’-land — non-conformal

theories in the planar limit and infinite ’t Hooft coupling)

⇒ deform a conformal gauge theory by a relevant operator (introduce a mass term)

⇒ consider gauge theories without explicit mass terms, but with a non-vanishing

β-function(s) for the gauge coupling(s)

• Beyond the SUGRA approximation (but still in a ’CFT’-land — conformal theories with

leading deviations from planar limit/infinite t’ Hooft coupling)

1
N -corrections ⇐⇒ gs-corrections

1
Ng2

Y M

-corrections ⇐⇒ α′-corrections

⇒ Ideally, we would like to combine the both beyonds..., but the technology is still not there

yet.
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Outline of the talk:

• Thermodynamics of strongly coupled non-conformal plasma:

Susy/non-susy mass deformations of N = 4 in QFT/supergravity (N = 2∗ model)

Gauge theories with βgY M
6= 0 in QFT/supergravity (Klebanov-Strassler model)

• Bulk viscosity of gauge theory plasma at strong coupling:

Sound modes in plasma and the corresponding quasinormal modes of the holographic

dual — N = 4 and N = 2∗ gauge theory

Bulk viscosity bound

• Hydrodynamic relaxation time of holographic models:

Why should be care about the relaxation time — fundamental & practical perspective

Relaxation time bound
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• Hydrodynamics of conformal plasma beyond SUGRA approximation:

finite ’t Hooft coupling corrections — 1/(Ng2YM )

finite 1/N corrections

is there a bound on η/s?

• sQGP as hCFT
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N = 2∗ gauge theory (a QFT story)

=⇒ Start with N = 4 SU(N) SYM. In N = 1 4d susy language, it is a gauge theory of a

vector multiplet V , an adjoint chiral superfield Φ (related by N = 2 susy to V ) and an adjoint

pair {Q, Q̃} of chiral multiplets, forming an N = 2 hypermultiplet. The theory has a

superpotential:

W =
2
√
2

g2YM
Tr
([

Q, Q̃
]

Φ
)

We can break susy down to N = 2, by giving a mass for N = 2 hypermultiplet:

W =
2
√
2

g2YM
Tr
([

Q, Q̃
]

Φ
)

+
m

g2YM

(

TrQ2 + TrQ̃2
)

This theory is known as N = 2∗ gauge theory
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When m 6= 0, the mass deformation lifts the {Q, Q̃} hypermultiplet moduli directions; we

are left with the (N − 1) complex dimensional Coulomb branch, parametrized by

Φ = diag (a1, a2, · · · , aN) ,
∑

i

ai = 0

We will study N = 2∗ gauge theory at a particular point on the Coulomb branch moduli

space:

ai ∈ [−a0, a0] , a20 =
m2g2YMN

π

with the (continuous in the large N -limit) linear number density

ρ(a) =
2

m2g2YM

√

a20 − a2 ,

∫ a0

−a0

da ρ(a) = N

Reason: we understand the dual supergravity solution only at this point on the moduli space.
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N = 2∗ gauge theory (a supergravity story — a.k.a Pilch-Warner flow)

Consider 5d gauged supergravity, dual to N = 2∗ gauge theory. The effective

five-dimensional action is

S =
1

4πG5

∫

M5

dξ5
√−g

(

1
4R− (∂α)2 − (∂χ)2 − P

)

,

where the potential P is

P =
1

16

[

(

∂W

∂α

)2

+

(

∂W

∂χ

)2
]

− 1

3
W 2 ,

with the superpotential

W = − 1

ρ2
− 1

2
ρ4 cosh(2χ) , α ≡

√
3 ln ρ

=⇒ The 2 supergravity scalars {α, χ} are holographic dual to dim-2 and dim-3 operators

which are nothing but (correspondingly) the bosonic and the fermionic mass terms of the

N = 4 → N = 2 SYM mass deformation.
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PW geometry ansatz:

ds25 = e2A
(

−dt2 + d~x 2
)

+ dr2

solving the Killing spinor equations, we find a susy flow:

dA

dr
= −1

3
W ,

dα

dr
=

1

4

∂W

∂α
,

dχ

dr
=

1

4

∂W

∂χ

Solutions to above are characterized by a single parameter k:

eA =
kρ2

sinh(2χ)
, ρ6 = cosh(2χ) + sinh2(2χ) ln

sinh(χ)

cosh(χ)

In was found (Polchinski,Peet,AB) that

k = 2m

9



Introduce

x̂ ≡ e−r/2 ,

then

χ = kx̂

[

1 + k2x̂2
(

1
3 + 4

3 ln(kx̂)
)

+ k4x̂4
(

− 7
90 + 10

3 ln(kx̂) + 20
9 ln2(kx̂)

)

+O
(

k6x̂6 ln3(kx̂)
)

]

,

ρ = 1+k2x̂2
(

1
3 + 2

3 ln(kx̂)
)

+k4x̂4
(

1
18 + 2 ln(kx̂) + 2

3 ln
2(kx̂)

)

+O
(

k6x̂6 ln3(kx̂)
)

,

A = − ln(2x̂)− 1
3k

2x̂2 − k4x̂4
(

2
9 + 10

9 ln(kx̂) + 4
9 ln

2(kx̂)
)

+O
(

k6x̂6 ln3(kx̂)
)

Or in standard Poincare-patch AdS5 radial coordinate:

A ∝ ln r, α ∝ k2 ln r

r2
, χ ∝ k

r
, r → ∞

10



=⇒ Notice that the nonnormalizable components of {α, χ} are related — this is holographic

dual to N = 2 susy preserving condition on the gauge theory side:

mb = mf

But in general, we can keep mb 6= mf :

A ∝ ln r, α ∝ m2
b ln r

r2
, χ ∝ mf

r
, r → ∞

The precise relation, including numerical coefficients can be works out.

=⇒ There are no singularity-free flows (geometries) with mb 6= mf and at zero temperature

T = 0. However, one can study mb 6= mf mass deformations of N = 4 SYM at finite

temperature.
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=⇒To study holographic duality in full details, we need the full ten-dimensional background of

type IIB supergravity, i.e, we need the lift of 5-dimensional gauged SUGRA solutions. This will

be obvious when we discuss jet quenching in N = 2
∗.

Such a lift was constructed in J.Liu,AB. Specifically, for any 5d solution, the 5d background:

ds25 = gµνdx
µdxν , plus {α, χ}

is uplifted to a solution of 10d type IIB supergravity:

ds210(E) = Ω2ds25+Ω2 4

ρ2

[

1

c
dθ2 + ρ6 cos2(θ)

(

σ2
1

cX2
+

σ2
2 + σ2

3

X1

)

+ sin2(θ)
1

X2
dφ2

]

Ω2 =
(cX1X2)

1/4

ρ
, X1 = cos2 θ+ c(r)ρ6 sin2 θ , X2 = c cos2 θ+ ρ6 sin2 θ

with

c ≡ cosh 2χ ,

plus dilaton-axion, various 3-form fluxes, various 5-form fluxes.
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Thermodynamics of N = 2∗ for (non-)susy mass-deformations (with J.Liu,P.Kerner,...)

Consider metric ansatz:

ds25 = −c21(r) dt
2 + c22(r)

(

dx2
1 + dx2

2 + dx2
3

)

+ dr2

Introducing a new radial coordinate

x ≡ 1− c1
c2

,

with x → 0+ being the boundary and x → 1− being the horizon, we find:

c′′2 + 4c2 (α
′)2 − 1

x− 1
c′2 −

5

c2
(c′2)

2 +
4

3
c2 (χ

′)2 = 0

α′′+
1

x− 1
α′−

∂P
∂α

12Pc22(x− 1)

[

(x−1)
(

6(α′)2 + 2(χ′)2
)

c22−3c′2c2−6(c′2)
2(x−1)

]

= 0

χ′′+
1

x− 1
χ′−

∂P
∂χ

4Pc22(x− 1)

[

(x−1)
(

6(α′)2 + 2(χ′)2
)

c22−3c′2c2−6(c′2)
2(x−1)

]

= 0
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We look for a solution to above subject to the following (fixed) boundary conditions:

=⇒ near the boundary, x ∝ r−4 → 0+
{

c2(x), α(x), χ(x)

}

→
{

x−1/4,
m2
b

T 2
x1/2 lnx,

mf

T
x1/4

}

of course, we need a precise coefficients here relating the non-normalizable components of the sugra

scalars to the gauge theory masses

=⇒ near the horizon, x → 1− (to have a regular, non-singular Schwarzschild horizon)
{

c2(x), α(x), χ(x)

}

→
{

constant , constant , constant

}
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System of above equations can be solved analytically when mb

T ≪ 1 and
mf

T ≪ 1 With the

help of the holographic renormalization (in this model AB) we can independently compute the

free energy density F = −P , the energy density E , and the entropy density s of the

resulting black brane solution:

−F = P =
1

8
π2N2T 4

[

1− 192

π2
ln(πT ) δ21 −

8

π
δ22

]

E =
3

8
π2N2T 4

[

1 +
64

π2
(ln(πT )− 1) δ21 −

8

3π
δ22

]

s =
1

2
π2N2T 3

(

1− 48

π2
δ21 −

4

π
δ22

)

with

δ1 = − 1

24π

(mb

T

)2

, δ2 =

[

Γ
(

3
4

)]2

2π3/2

mf

T
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A highly nontrivial consistency test on the analysis, as well as on the identification of gauge

theory/supergravity parameters are the basic thermodynamics identities:

F = E − sT

dE = Tds

=⇒ For finite (not small) mb/T and mf/T we need to do numerical analysis. However, we

always check the consistency of the thermodynamic relations. In our numerics

dE − Tds

dE ∼ 10−3
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The phase diagram of the model depends on

∆ ≡
m2
f

m2
b

:

• when ∆ ≥ 1 there is no phase transition in the system;

• when ∆ < 1 there is a critical point in the system with the divergent specific heat. The

corresponding critical exponent is α = 0.5:

cV ∼ |1− Tc/T |−α

where Tc = Tc(∆).

For concreteness we discuss below 2 cases:

(a) ∆ = 1 (’susy’ flows at finite temperature)

(b) ∆ = 0 (’bosonic’ flows at finite temperature)
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Before we discuss the flows, recall the lattice data for the QCD:
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Figure 1: QCD thermodynamics from lattice; F.Karsch and E.Laermann, hep-lat/0305025.
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• RHIC QGP is strongly coupled because equilibrium plasma temperature is roughly the

QCD deconfinement temperature,

Tplasma ∼ Tdeconfinement ∼ ΛQCD

• Thus scale invariance is strongly broken and it is not clear why conformal N = 4 plasma

or near-conformal plasma thermodynamics/hydrodynamics should be relevant...

Surprisingly...
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Figure 2: Equation of state of the mass deformed N = 4 gauge theory plasma. At T ∼ m

the deviation from the conformal thermodynamics is ∼ 2%. For the ideal gas approximation

the deviation is about 40%. (S.Deakin, P.Kerner, J.Liu, AB, hep-th/0701142.)

=⇒N = 2∗ model appears to share a ’thermodynamic plateau’ with QCD!
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⇒ Compare with yesterday Chris Altes’s talk:
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T

Figure 3: Blue dots are the data points. The red curve fit on the left is ∝
(

mb

T

)4
— from the

analytic high-T result we actually expect ∝
(

mb

T

)4
ln T

mb
. The red curve on the right is the fit

of the ’top’ of the stress-energy trace with c0 + c1
(

mb

T

)2
+ c2

(

mb

T

)4
.

⇒ This model, however, does not have confinement/deconfinement phase transition...
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Klebanov-Strassler model (a QFT story)

=⇒ The staring point again is N = 4 SU(N) SYM.

Consider a Z2 orbifold of above SYM:

N = 4 → N = 2

SU(N)1

A1

A2

B1

B2

SU(N)2

SU(N)1 × SU(N)2

Ai : (N̄ ,N)

Bi : (N, N̄)

WN=2 = g1 TrΦ1

[

A1B1 +A2B2
]

+ g2 TrΦ2

[

B1A1 + B2A2
]

Note: βi = 0⇒ g1, g2 are exactly marginal couplings
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Turn on the mass term that breaks SUSY N = 2 → N = 1

WN=2 → WN=1 = WN=2 +m Tr
(

Φ2
1 − Φ2

2

)

⇒ Integrating out the massive fields we find

Weff = λTrAiBjAkBℓǫikǫjℓ

⇒ Klebanov and Witten argued that at energy scales ≪ m the theory flows to a strongly

interactive superconformal field theory; the coupling λ is exactly marginal, and thus the fields

Ai, Bj develop large anomalous dimensions

[Ai]UV = 1 → [Ai]IR =
3

4
⇒ γAi = −1

4

[Bi]UV = 1 → [Bi]IR =
3

4
⇒ γBi = −1

4

⇒ From the exact NSWZ gauge β-functions (accounting for the anomalous dim of fields) we

find

βi = 0
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Consider a discrete deformation

SU(N)1 → SU(N +M)1 , M ≪ N

SU(N +M)1

A1

A2

B1

B2

SU(N)2

β1 ∼ 3(N +M)− 2N(1− γAi − γBj ) = 3M +O(M3/N2)

β2 ∼ 3N − 2(N +M)(1− γAi − γBj ) = −3M +O(M3/N2)
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From the β-functions:
4π

g21(µ)
+

4π

g22(µ)
= const

4π

g21(µ)
− 4π

g22(µ)
∼ M ln

µ

Λ

where Λ is the strong coupling scale of the theory

E
E = µ

g1g1 g2g2

1
g2
1

= 0 , SU(N +M)

is strongly coupled

1
g2
2

= 0 , SU(N)

is strongly coupled

What is the effective description of the theory past the Landau poles?
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⇒ Using Seiberg duality for N = 1 SUSY gauge theory, the extension of the model past the

Landau poles results in self-similarity cascade (Klebanov and Strassler):

N → N(µ) ∼ 2M2 ln
µ

Λ

UV : N → N +M , IR : N → N −M

⇒ If N is a multiple of M , the theory in the deep infrared is N = 1 SU(M) SYM; this

theory confines with the spontaneous chiral U(1)R symmetry breaking
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Klebanov-Strassler model (a supergravity story)

It is possible to derive an effective 5d action from string theory dual to KS model in the

deconfined phase with unbroken chiral symmetry:

S =
1

16πG5

∫

M5

dξ5
√−g

(

R − 40

3
(∂f)2 − 20(∂w)2 − 1

2
(∂Φ)2

− 1

4M2
(∂K)2e−Φ−4f−4w − P

)

P = −24e−
16
3 f−2w + 4e−

16
3 f−12w +M2eΦ−

28
3 f+4w +

1

2
K2e−

40
3 f

⇒ The 4 supergravity scalars {Φ, f, w,K} encode operators of dim={4, 4, 6, 8}.

⇒ It is possible (though quite technical) to repeat thermodynamic analysis analogous to

those of the N = 2∗ model.
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F
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The free energy density F , divided by sT , as a function of TΛ . On the left we plot

temperatures at and slightly above the deconfinement transition, and on the right much higher

temperatures. Note:
(

T

Λ

)

deconfinement

= 0.614111(3)

F
sT

∣

∣

∣

∣

conformal

= −1

4

which is different from the cascading model at TΛ = 10 result by ∼ 12%

⇒ No ’thermodynamic plateau’ near the deconfinement transition!
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⇒ Compare with yesterday Chris Altes’s talk:

2 3 4 5

10

20

30

40

50

(E − 3P )/T 4

T
Tc

Figure 4: Blue dots are the data points. The dashed red vertical line denotes second-order

transition. There is chiral symmetry breaking transition prior to the red line. At high tempera-

tures the trace drops as 1/(T 4 ln T
Tc
)

29



Summary of holographic non-conformal thermodynamics:

Most important: by deforming appropriately AdS/CFT correspondence we can produce

examples of nontrivial renormalization group flows of gauge theories. It does not make sense

to believe in AdS/CFT, but question holographic dualities for nonconformal models. Hence:

AdS/CFT =⇒ gauge/string duality

Of cause, if does not mean that ’anything’ goes: each realistic holographic duality must be

derivable (in a sense of N = 4 SYM) from string theory.

Resulting nonconformal plasma have rich thermodynamics — first and second order phase

transitions, (de)confinement, chiral symmetry breaking, etc.

In QCD plasma there is a distinctive ’thermodynamic plateau’ in the vicinity of the phase

transition (crossover) — some holographic models share it, the other do not ⇒ one has to be

careful of blindly applying holographic results appropriate for conformal theories to strongly

coupled QGP.
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Sound modes in plasma and in its holographic dual

Hydrodynamics is an effective theory describing near-equilibrium phenomena in (relativistic)

QFT:

∇νT
µν = 0

The stress-energy tensor includes both an equilibrium part (E and P terms) and a dissipative

part Πµν

Tµν = Euµuν + P∆µν +Πµν .

where uµ is a local 4-velocity of the fluid and

∆µν = gµν + uµuν , Πµνu
ν = 0

Effective hydrodynamic description is equivalent to a derivative expansion of Πµν in local

velocity gradients
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Thus, to linear order in the derivative expansion

Πµν = Πµν1 (η, ζ) = −ησµν − ζ∆µν(∇αu
α)

(σµν ∝ ∇νu
µ) with {η, ζ} being the viscosity coefficients.

⇒ It is straightforward to study dispersion relation of the linearized fluctuations in above

theory: there are sound and shear modes.

The dispersion relation of a sound mode is given by

ω = ±csk − iΓk2 +O(k3) ,

where cs is the speed of the sound waves (obtained from the equation of state), and Γ is the

sound wave attenuation (determined by the shear and the bulk viscosities)

c2s =
∂P
∂E , Γ =

(

2

3

η

E + P +
1

2

ζ

E + P

)

=
2

3T

η

s

(

1 +
3

4

ζ

η

)

⇒ Once we know the sound wave dispersion relation, and the shear viscosity, we can extract

the bulk viscosity of non-conformal plasma.
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To understand how to describe sound waves in dual holographic models, recall that the

on-shell fluctuations in plasma will show up as poles of the energy-stress tensor 2-point

correlation functions.

⇒ A plasma stress-energy tensor is holographically dual to a 5d graviton, and thus the

energy-momentum fluctuations in plasma are dual to the graviton quasinormal modes (Kovtun

and Starinets)

⇒ I explain the notion of the quasinormal modes using N = 4 SYM plasma as an example:

S =
1

16πG5

∫

M5

dξ5
√−g (R+ 12)

where I set the AdS radius to 1
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⇒ The equilibrium sate of N = 4 plasma is described by a BH solution:

ds25 = gµνdx
µdxν =

π2T 2

r

(

−(1− r2)dt2 + d~x3
)

+
dr2

4(1− r2)r2

where T is the Hawking temperature of the BH (to be identified with the plasma temperature)

⇒ Consider the graviton hµν fluctuations

gµν → gµν + hµν

⇒ We can always choose the gauge

hµr = 0

⇒ At a linearized level, we can assume that

hµν = hµν(t, x3, r) ∼ e−iωt+iqx3

⇒ Above fluctuations preserve O(2) symmetry — rotations in x1 − x2 plane
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⇒ Because of the symmetry, fluctuations of different helicities would decouple from each

other:

helicity− 2 : {hx1x2
} , {hx1x1

− hx2x2
}

helicity− 1 : {htx1
, hx1x3

} , {htx2
, hx2x3

}
helicity− 0 : {htt, haa ≡ hx1x1

+ hx2x2
, htx3

, hx3x3
}

⇒ The shear modes correspond to helicity-1 fluctuations; the sound modes are encoded in

helicity-0 fluctuations; helicity-2 fluctuations are not hydrodynamic

⇒ Introduce

htt = e−iωt+iqx3
π2T 2(1− r2)

r
Htt(r)

htz = e−iωt+iqx3
π2T 2

r
Htz(r)

haa = e−iωt+iqx3
π2T 2

r
Haa(r)

hzz = e−iωt+iqx3
π2T 2

r
Hzz(r)
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From the Einstein equations

Rµν

[

gµν + hµν

]

= −4(gµν + hµν)

we obtain

4 second-order differential equations for

{Htt, Htz, Haa, Hzz}

3 first order differential constraints associated with fixing the gauge

htr = hzr = hrr = 0

⇒ Had the constraints been algebraic, it could have been used to eliminate 3 fields, and

produce a single (4-3=1) second order differential equation
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⇒ The differential elimination is possible if one uses a gauge-invariant variables!

(Kovtun-Starinets):

first, identify residual diffeomorphisms

xµ → xµ + ξµ =⇒ gµν → gµν −∇µξν −∇νξµ

such that

gµr → gµr =⇒ 0 = ∇µξr +∇rξµ

under above transformations

{Htt, Htz, Haa, Hzz} → {H ′
tt, H

′
tz, H

′
aa, H

′
zz}

second, introduce a linear combination of metric fluctuations that stays invariant

Z ≡ 4
q

w
Htz + 2Hzz −Haa

(

1− (1 + r2)
q2

w2

)

+ 2(1− r2)
q2

w2
Htt → Z ′ = Z
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⇒ The equation of motion for Z we completely decouple:

0 = Z ′′ +Az Z
′ + Bz Z

Az = −3q2r4 − 2q2r2 + 3q2 − 3w2r2 − 3w2

(−1 + r2)r(−3q2 + 3w2 + q2r2)

Bz =
4q2r5 + q4r4 − 4q2r3 + 4w2q2r2 − 4q4r2 + 3q4 + 3w4 − 6w2q2

r(−3q2 + 3w2 + q2r2)(−1 + r2)2

where

w =
w

2πT
, q =

q

2πT
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⇒ Let’s analyze the asymptotic behavior of above equation near the horizon, i.e., as r → 1

Z ∼ (1− r2)α , =⇒ α = ±i
w

2

Thus, near the horizon,

z(t, x3, r) = e−iwt+iqx
3

Z(r) ∼ exp

[

−iw

(

2πT t∓ 1

2
ln(1− r)

)

+ iqx3

]

So, the modes with α = −iw2 moves into the horizon and modes with α = +iw2 moves

away from the horizon

⇒ Near the boundary, r → 0,

Z ∼ # 1 +#r2

The leading asymptotic actually changes the background metric, thus, to determine physical

fluctuations in N = 4 SYM plasma in flat space-time we must insist that

Z(r → 0) = 0

leading to a Dirichlet condition at the boundary
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⇒ Notice that equation for Z is homogeneous, so imposing

α = +i
w

2
+ Dirichlet

or

α = −i
w

2
+ Dirichlet

would determine the dispersion relation for the quasinormal mode Z :

w = w(q)

A careful analysis of the quasinormal equation show that

α = ±i
w

2
=⇒ ±Im

[

w(q)

]

> 0

⇒ Poles in the retarded (advanced) correlation function of the stress-energy tensor

correspond to the gravitational fluctuations with α = −iw2 (α = +iw2 )
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⇒ It is not possible to solve equation for Z analytically; in the hydrodynamic limit

w ≪ 1 , q ≪ 1 , w ∼ q

we find (up to an overall constant)

Z(r) = (1− r2)−iw/2
(

z0(r) + iw z1(r) +O(w2, q2)
)

with

z0 =
q2(1 + r2)− 3w2

2q2 − 3w2
, z1 =

2q2(r2 − 1)

2q2 − 3w2

The Dirichlet boundary condition Z(0) = 0 then determines the sound channel quasinormal

(hydrodynamic) mode:

w = ± 1√
3
q− i

3
q
2 +O(q3)

Comparing with the hydro prediction we read-off

c2s =
1

3
, 2πTΓ =

1

3
4π

η

s

(

1 +
3

4

ζ

η

)

=
1

3

⇒ Given the universality of shear viscosity in holographic models,

η

s
=

1

4π
=⇒ ζ

η
= 0
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Analysis of the non-conformal model, although technically more difficult, are conceptually

identical

⇒ Consider N = 2∗ model:

There is a decoupled set of helicity-0 fluctuations in the background, dual to a sound wave,

{Htt, Htz, Haa, Hzz}+ {δα, δχ}

where {δα} and {δχ} are the fluctuations of the background supergravity scalars {α, χ}
we expect 4+2-3=3 independent coupled second-order equations for the fluctuations

for the metric ansatz

ds25 = −c21(r) dt
2 + c22(r) d~x

2 + dr2

the gauge-invariant combinations of the fluctuations are:
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ZH = 4
q

ω
Htz + 2Hzz −Haa

(

1− q2

ω2

c′1c1
c′2c2

)

+ 2
q2

ω2

c21
c22

Htt

Zφ = δα− α′

(ln c42)
′
Haa

Zψ = δχ− χ′

(ln c42)
′
Haa

and the equations take form:

AH Z ′′
H +BH Z ′

H + CH ZH +DH Zφ + EH Zψ = 0

AφZ
′′
φ +BφZ

′
φ + CφZφ +DφZψ + EφZ

′
H + FφZH = 0

AψZ
′′
ψ +BψZ

′
ψ + CψZψ +DψZφ + EψZ

′
H + FψZH = 0

where the coefficients {A···, B···, · · · , F···} depend on the background values c1, c2, α, χ.

⇒ The rest of analysis goes as in N = 4 case, except numerically.
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3
− c2s

)

ζ
η

m
T

≈ 12

m
T

→ +∞

Figure 5: Ratio of viscosities ζ
η versus the speed of sound in N = 2∗ gauge theory plasma

with “supersymmetric” mass deformation parameters mb = mf = m. The dashed line

represents the bulk viscosity inequality ζ
η ≥ 2

(

1
3 − c2s

)

. We computed the bulk viscosity up

to m/T ≈ 12. A single point represents extrapolation of the speed of sound and the viscosity

ratio to T → +0.
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Figure 6: Ratio of viscosities ζ
η in N = 2∗ gauge theory plasma with zero fermionic mass

deformation parameter mf = 0.
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ζ
η

Figure 7: Ratio of viscosities ζ
η in N = 2∗ gauge theory plasma near the critical point. Note

that the critical point corresponds to c2s = 0.

=⇒ Notice that the bulk viscosity is finite at the mean-field-theory critical point; the value

favourably compares with Meyer’s lattice simulations.
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Estimates for the viscosity of QGP at RHIC. It is tempting to use the N = 2∗ strongly

coupled gauge theory plasma results to estimate the bulk viscosity of QGP produced at RHIC.

For c2s in the range 0.27− 0.31, as in QCD at T = 1.5Tdeconfinement we find

ζ

η

∣

∣

∣

∣

mf=0

≈ 0.17− 0.61 ,
ζ

η

∣

∣

∣

∣

mb=mf=m

≈ 0.07− 0.15 . (1)

Since RHIC produces QGP close to its criticality, we believe that mf = 0N = 2∗ gauge

theory model would reflect physics more accurately.
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Summary on (first-order) hydrodynamic transport in non-conformal plasma

First,
η

s
=

1

4π

In all explicit examples of gauge-string duality, for a strongly coupled plasma d spatial

dimensions,
ζ

η
≥ 2

(

1

d
− c2s

)

Bulk viscosity is finite in the vicinity of the phase transition; but is grows very rapidly:

dζ

dT
∼ T 2

c

(

1− Tc
T

)−1/2

, T → Tc
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Relaxation time of holographic plasma

⇒ Recall the effective field theory formulation of hydrodynamics:

Tµν = Euµuν + P∆µν +Πµν .

To simplify further discussion we consider only CFT’s from now on: ζ = 0 , E = 3P . To

second order in the derivative expansion

Πµν = Πµν1 (η) + Πµν2 (η, τπ, κ, λ1, λ2, λ3)

= −ησµν − ητπ

[

〈u · ∇σµν〉+ 1

3
(∇ · u)σµν

]

+ non− linear terms + · · ·

⇒ It is straightforward to study dispersion relation of the linearized fluctuations in above

theory
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The dispersion relation of the shear channel fluctuations is given by

0 = −w
2 τπT − iw

2π
+ q

2 η

s
,

where w = ω/(2πT ) and q = q/(2πT ). Now the speed with which a wave-front

propagates out from a discontinuity in any initial data is governed by

lim
|q|→∞

Re(w)

q

∣

∣

∣

∣

[shear]

=

√

η

s τπT
≡ vfront[shear] .

Hence causality in this channel imposes the restriction

τπT ≥ η

s
.

Notice: the first-order hydrodynamics is recovered in the limit τπ → 0, so causality is always

violated at this order in the derivative truncation

Similar considerations in the sound channel imposes the (more stringent) restriction

τπT ≥ 2
η

s
.
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So, the relaxation time is required to restore causality of relativistic effective theory of

near-equilibrium dynamics, i.e., the hydrodynamics.

⇒ One might worry that the causality constraint on the τΠ is obtained from the regime

outside the validity of the effective hydrodynamic approximation (derivative expansion is not

valid in this regime). In general, the causality of the effective hydrodynamics depends on the

microscopic parameters of the theory — in the CFT case, the central charges of the theory. In

some models it can be shown what once the full non-equilibrium theory is causal, it’s

second-order truncated (in the velocity gradients) hydrodynamic description is causal as

explained above.

practical perspective:

⇒ Even though first-order hydrodynamics is self-consistent in its regime of applicability, the

numerical hydrodynamic simulations are typically unstable. Stability is restored with the

introduction of the relaxation time. In other words: the breakdown of first-order hydro arises

from the modes outside its regime of applicability but the computer does not know it!
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Holographic bound in τeff in supergravity approximation

⇒ How do we define the effective relaxation time?

The causal viscous relativistic hydrodynamics has many second order transport coefficients:

in CFT cases - 5

in non-CFT cases (see Romatschke) - 13

In practical simulations one usually introduces a single second-order transport coefficient (in

order to limit the phenomenological parameter space). As a result, different simulations ’turn

on’ different combinations of the second order transport coefficients. In order to relate

different hydrodynamic models, we introduce τeff , defined from the sound wave dispersion

relation as follows

ω = ±csk − iΓk2 ± Γ

cs

(

c2sτeff −
Γ

2

)

k3 +O(k4) ,

where cs is the speed of the sound waves (obtained from the equation of state), and Γ is the

sound wave attenuation (determined by the shear and the bulk viscosities)

c2s =
∂P
∂E , Γ =

(

2

3

η

E + P +
1

2

ζ

E + P

)

.
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As defined, τeff is

the relaxation time of Müller-Israel-Stewart hydrodynamics

it coincides with τπ of the conformal hydrodynamics

in general non-conformal hydrodynamics of Romatschke

τeff =
τπ + 3

4
ζ
η τΠ

1 + 3
4
ζ
η

.

⇒ It is clear how to extract the relaxation time in a particular holographic model: we simply

need to compute the sound channel quasinormal dispersion relation to order O(k3)

Observation: in all explicit examples gauge/string duality

τeffT ≥ τN=4
π T =

2− ln 2

2π
≡ τ∗πT

where τ∗π is the relaxation time of N = 4 plasma
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τeff near the phase transition

0.1 0.2 0.3 0.4

1.5

2.0

2.5

3.0

3.5

(

1
3 − c2s

)

3c2s × τeff

τ⋆
π

Figure 8: Effective relaxation time τeff of N = 2∗ strongly coupled plasma. The vertical red

line indicates a phase transition with vanishing speed of sound. Since c2s ∝ (T −Tc)
1/2 near

the phase transition, τeffTc ∝ |1− Tc/T |−1/2.

The critical slow-down suggested by Song and Heinz indeed happens in holographic models!
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Summary on the holographic relaxation time:

Relaxation time is necessary to reinstate causality in hydrodynamic evolution

(I did not talk about this) Relaxation time affects (=suppresses) cavitation of the

hydrodynamic evolution, in particular given that in holographic models near the phase

transition

τeffTc ∝ |1− Tc/T |−1/2

Relaxation time in strongly coupled (planar) non-conformal models is longer than that in

N = 4 SYM plasma at the same temperature.

(running ahead) the status of the relaxation time bound is exactly the same as that of the

shear viscosity bound: whenever the former is violated, the latter is violated as well.
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Beyond infinite ’t Hooft coupling for η/s in AdS/CFT

⇒ Consider N = 4 SU(N) SYM in the planar (’t Hooft limit):

N → ∞ , g2YM → 0 =⇒ λ ≡ Ng2YM = const

⇒ We would like to understand leading in 1
λ corrections to the (first-order) transport

coefficients

first, since the theory is conformal for all values of λ,

c2s =
1

3
, ζ = 0

and the only corrections can happen for the shear viscosity

It can be derived from the string theory that in the planar limit, the leading 1
λ corrections for

any conformal plasma (with equal central charges — see later) are described by the following

effective action

S5 =
1

16πG5

∫

d5ξ
√−g

(

R+ 12 + γW +O(γ2)
)

W ≡ ChmnkCpmnqC
rsp
h Cqrsk +

1

2
ChkmnCrqmnC

rsp
h Cqrsk
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where Chmnk is a 5d Weyl tensor, and

γ =
1

8
ξ(3)(α′)3 =⇒ (forN = 4) γ =

1

8
ξ(3)λ−3/2

⇒ We can generalize the computation of the sound channel quasinormal mode and extract

shear viscosity ratio from the sound attenuation

w = ± 1√
3
− iΓk2 +O(k3) , 2πTΓ =

1

3
4π

η

s

⇒ I will outline the main steps of the computation, and emphasize some of the

misconceptions that appeared in the literature recently with regards to such computations:

First, one needs to determine the corrected equilibrium thermodynamics of the theory — it

can be extracted from the α′-corrected black D3-brane solution:

P =
1

3
E =

π2N2T 4

8

(

1 + 15γ +O(γ2)
)
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Second, we need to derive the equations for the helicity-0 metric fluctuations to order O(γ)

in the O(γ) corrected black-brane solution, and set-up the gauge-invariant combination of

the fluctuations. We find:

• precisely the same combination of fluctuations as in N = 2∗ case is gauge-invariant,

and decouples

Z = 4
q

ω
Htz + 2Hzz −Haa

(

1− q2

ω2

c′1c1
c′2c2

)

+ 2
q2

ω2

c21
c22

Htt

where ci are the O(g)-correction metric warp factors

ds25 = −c21(r) dt
2 + c22(r) d~x

2 + dr2

• the EOM for Z takes the form

A Z ′′ +B Z ′ + C Z = γ
(

D Z(iv) + E Z ′′′ + F Z ′′ +G Z ′ +H Z
)

+O(γ2)

where we extracted explicit γ dependence
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• boundary conditions on Z are unchanged:

Z(r → 1) ∼ (1− r)−iw/2 , Z(r → 0) ∼ r2

where w = w/(2πT ) — it is important to include α′ corrections to the BH temperature!

⇒ At appears that equation for Z is forth order, while I’m setting only 2 boundary conditions

— this is consistent as the higher-derivative effective action derived in string theory is

consistent only perturbatively! It simply does not make sense (in a context of effective action

to study the propagation of modes which appear non-perturbatively in γ).

⇒ In fact, one must use lower order equations of motion for Z to eliminate the higher

derivatives. Thus, using

A Z ′′ + B Z ′ + C Z = O(γ0)

we can eliminate all the derivatives on the RHS up to the first order:

A Z ′′ +B Z ′ + C Z = γ
(

G̃ Z ′ + H̃ Z
)

+O(γ2)

The boundary value problem for the quasinormal mode Z to order G(γ) is well defined
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We find the following O(g) dispersion relation for the sound channel quasinormal mode:

w =
1√
3
q− iq2

(

1

3
+

120

3
γ

)

+O(q3)

which produces

η

s
=

1

4π

(

1 + 120γ +O(γ2)

)

=
1

4π

(

1 +
15ζ(3)

λ3/2
+O(λ−3)

)

⇒ I can not cover it here, but it is possible to compute leading 1
N corrections to the shear

viscosity ration for the N = 4 SYM plasma ( Myers et.al):

η

s
=

1

4π

(

1 +
15ζ(3)

λ3/2
+

5

16

λ1/2

N2
+ · · ·

)

⇒ Notice that the KSS viscosity bound survives — does it mean that it is always true in

holographic plasma?
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NO! —- finite 1
N corrections

=⇒ A given conformal gauge theory is characterized by two different central charges c and

a, defining its conformal anomaly

〈Tµµ 〉 =
c

16π2
I4 −

a

16π2
E4

where

E4 = RµνρλR
µνρλ − 4RµνR

µν + R2 , I4 = RµνρλR
µνρλ − 2RµνR

µν +
1

3
R2

=⇒ In the planar limit

c = a

=⇒ In a conformal toy model of QCD we expect

c 6= a

because of the presence of fundamental matter.
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Consider an effective higher-derivative model of gauge theory/string theory duality

S =

∫

d5x
√−g

(

1

κ2
R− Λ + c1RabcdR

abcd + c2RabR
ab + c3R

2 +O(R4)

)

where κ2 = 16πGN . The holographic conformal anomaly is

〈Tµµ 〉holographic =
(

− l3

8κ2
+ c2l + 5c3l

)

(E4 − I4) +
c1l

2
(E4 + I4)

while Kats et.al and Brigante et.al found

η

s
=

1

4π

(

1− 8c1κ
2

ℓ2
+ · · ·

)

=
1

4π

(

1− (c− a)

c
+ · · ·

)

=
1

4π
(1−∆+ · · · )

• Notice that c1 coefficient can come only form RabcdR
abcd, and it is precisely the

coefficient that corresponds to having in the dual CFT c 6= a. In particular R4-terms does

not effect (c− a) anomaly of a CFT.

• The KSS viscosity bound is violated in a CFT whenever (c-a) is positive. The violation is

under control, if |c− a|/c ≪ 1.
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Non-universal violation of the KSS bound

Consider a superconformal gauge theory. The superconformal algebra implies the existence

of an anomaly-free U(1)R symmetry. It was found in Anselmi et.al that

c− a = − 1

16

(

dimG+
∑

i

(dimRi) (ri − 1)

)

c =
1

32

(

4 (dimG) +
∑

i

(dimRi) (1− ri)
(

5− 9(1− ri)
2
)

)

where ri denote the R-charge of a matter chiral multiplet in the representation Ri

=⇒ So all we need to do is to scan through the list of available CFT’s and compute (c− a).
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• Superconformal gauge theories with exactly marginal gauge coupling

Consider SU(Nc) supersymmetric gauge theory with nadj χsf in the adjoint

representation, nf flavors in the fundamental representation, nsym flavors in the symmetric

representation and nasym flavors in the anti-symmetric representation. It is easy now to

enumerate all the models with G = SU(Nc) and ∆ ≪ 1 as Nc → ∞:

(nadj , nasym, nsym, nf ) c− a ∆

(a) (3,0,0,0) 0 0

(b) (2,1,0,1) 3Nc+1
48

1
4Nc

+O(N−2
c )

(c) (1,2,0,2) 3Nc+1
24

1
2Nc

+O(N−2
c )

(d) (1,1,1,0) 1
24

1
6N2

c
+O(N−4

c )

(e) (0,3,0,3) 3Nc+1
16

3
4Nc

+O(N−2
c )

(f) (0,2,1,1) Nc+1
16

1
4Nc

+O(N−2
c )
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For the Sp(2Nc) supersymmetric gauge theories

(nadj , nasym, nf ) c− a ∆

(a) (3,0,0) 0 0

(b) (2,1,4) 6Nc−1
48

1
4Nc

+O(N−2
c )

(c) (1,2,8) 6Nc−1
24

1
2Nc

+O(N−2
c )

(d) (0,3,12) 6Nc−1
16

3
4Nc

+O(N−2
c )

=⇒ The are no models in this class with orthogonal gauge groups
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• N = 2 superconformal fixed points from F-theory

Consider N D3-branes probing an F-theory singularity generated by n7 coincident (p, q)

7-branes, resulting in a constant dilaton. As N → ∞,

c− a =
1

4
N (δ − 1)− 1

24
, ∆ =

δ − 1

Nδ
+O(N−2)

where δ is a definite angle characterizing an F-theory singularity with a symmetry group G

G H0 H1 H2 D4 E6 E7 E8

n7 2 3 4 6 8 9 10

δ 6/5 4/3 3/2 2 3 4 6

Notice that in all cases 0 < ∆ ≪ 1 as N → ∞.
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=⇒ In all examples presented the KSS bound is violated since (c− a) > 0

=⇒ There many more CFT’s with c 6= a. For them, however, c− a ∼ c and so we can not

say anything reliable about KSS bound. Curiously though, we did not find a single CFT with

c 6= a so that (c− a) < 0.
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Is there a bound on η
s ?

⇒ In realistic holographic models (derivable from string theory) corrections to η/s are due to

higher derivative terms, thus these corrections are necessarily perturbative.

⇒ To address the bound on η/s one considers models of AdS/CFT correspondence:

we use the rules of holography

we do not care whether or not the model is embeddable in string theory

⇒ A nice model of this type is a Gauss-Bonnet gravity:

S5 =
1

2ℓ3P

∫

d5x
√−g

[

12

L2
+R+

λGB
2

L2
(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

]

This model is solvable for any λGB i.e., , we can find exact (analytic) black hole solution and

study its near-equilibrium properties.
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⇒Computing the boundary stress-energy tensor of I we identify a dual gauge theory as a

CFT with central charges {c, a} given by

c =
π2

23/2
L3

ℓ3P
(1 +

√

1− 4λGB)
3/2
√

1− 4λGB

a =
π2

23/2
L3

ℓ3P
(1 +

√

1− 4λGB)
3/2

(

3
√

1− 4λGB − 2
)

or
c− a

c
= 2

(

1√
1− 4λGB

− 1

)

⇒ It is straightforward to study dispersion relation of the quasinormal modes of the GB black

holes — these quasinormal modes are dual to linearized fluctuations in plasma (the shear

and the sound channel modes)

For the shear viscosity one finds (Brigante et.al)

η

s
=

1

4π

[

1− 4λGB

]
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For the relaxation time:

-0.6 -0.4 -0.2

0.02

0.04

0.06

λGB

λmin
λmax

τπT − 2ηs

Figure 9: Causality of the second-order Gauss-Bonnet hydrodynamics is violated once τΠT <

2ηs . Thus, λGB ∈ [λmin, λmax], where λmin = −0.711(2) and λmax = 0.113(0).70



⇒ Previous analysis were based on the effective theory of the successive local-velocity

derivative expansion in GB plasma

⇒ However, given the gravity dual we can study dispersion relation of quasinormal modes in

GB plasma without any reference to a hydrodynamic expansion!

In this way we find that causality is violated in GB CFT plasma, unless

− 7

36
≤ λGB ≤ 9

100

which translates into the following constrain on the CFT central charges

−1

2
<

c− a

c
<

1

2

and correspondingly, introduces the lower bound on the shear viscosity

η

s
≥ 1

4π

16

25

⇒ Unfortunately, it appears that making a holographic model more complicated, it is possible

to lower η/s even further — the existence of the low bound on η/s in holographic models is

still an open question
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Summary on corrections to shear viscosity in holographic conformal models

There are generically 2 types of corrections:

• finite (exactly) marginal coupling corrections — t’ Hooft coupling corrections

• nonplanar corrections due to (c− a) 6= 0

The former (universally) satisfy KSS bound, while the latter (universally) violate it

In some simple holographic models there is a lower bound on η/s, induced by the violation

of the microcausality in the theory

It is possible to engineer (seemingly consistent) holographic models with arbitrarily low η/s
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sQGP ad hCFT

⇒ Suppose we want to model the hydrodynamics of strongly coupled QGP by a holographic

model of a CFT plasma

⇒ Consider boost-invariant hydro simulations either within MIS framework or conformal hydro

framework by Baier et.al.:

∂τ ǫ = − 4ǫ

3τ
+

Φ

τ

τΠ∂τΦ =
4η

3τ
− Φ− 4τΠ

3τ
Φ

or

∂τ ǫ = − 4ǫ

3τ
+

Φ

τ

τΠ∂τΦ =
4η

3τ
− Φ− 4τΠ

3τ
Φ− λ1

2η2
Φ2

To specify the flow uniquely (up to initial conditions) we need 3 (or 4) independent

parameters, Ai:

P = PSB
3

4
A1 ,

η

s
=

1

4π
A2 , τΠT =

1

2π
A3 ,

λ1T

η
=

1

2π
A4
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Question: does there exist a (computationally reliable) model of holographic CFT plasma what

would reproduce Ai?

Assume that this hCFT has:

• an exactly marginal coupling — analog of t’Hooft couping — γ

• different central charges — δ = (c− a)/a

• a stress-energy 3-point parameter — t4 (typically t4 ∝ δ2)

⇒ We expect that γ or t4 is zero — t4 vanishes identically for SUSY plasma (at zero

temperature), and when the plasma is non-SUSY, we don’t expect any marginal couplings —

thus we have two tunable parameters, which for consistency all must be small.

Then...
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A1 =

{

1 +
9

4
δ +

3

8
δ2 +

1

180
t4 + 15γ +O

(

δ3, δt4, t
2
4, γ

2
)

}

A2 =

{

1− δ +
7

4
δ2 − 4

45
t4 + 120γ +O

(

δ3, δt4, t
2
4, γ

2
)

}

A3 =

{

2− ln 2− 11

8
δ − 125

64
δ2 − 13

540
t4 +

375

2
γ +O

(

δ3, δt4, t
2
4, γ

2
)

}

A4 =
1

2π

{

1− 1

4
δ − 73

32
δ2 − 1

135
t4 + 215γ +O

(

δ3, δt4, t
2
4, γ

2
)

}

’sQGP = hCFT’ becomes a falsifiable test!
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