

Phase transitions in holographic QCD with Dense Media

B. Gwak, M. Kim, BHL, Y.Seo, S.-J. Sin, arXiv:1105.xxxx

Bum-Hoon Lee Center for Quantum Spacetime Sogang University Seoul, Korea

Seminar @ GGI April 26, 2011

Contents

I. Introduction

- Motivation
- AdS/CFT Holography Principle, Dictionary
- AdS/QCD : Top-down & Bottom up approach
- II. Dual Geometry BHL, Park ,Sin JHEP 0907,(2009)
 - Dual Geometry at finite temperature (w/o chemical potential)
 - Dual Geometry at finite (arbitrary) density
- III. Phases of Holographic QCD

B. Gwak, M. Kim, B.-H.L., Y.Seo, S.-J. Sin, arXiv:1105.xxxx

IV. Summary

I. Introduction : Motivation & Basics

- AdS-CFT Holography: Useful tool for strongly interacting system such as QCD, Condensed Matter, etc.
- Holography idea of AdS/CFT applied to QCD is called AdS/QCD
- With AdS-QCD, how to explain properties such as confinement, x-symm breaking, phases, etc. ?
 Exists holographic model studies
 Wot well understood

Main idea on holography through the Dp branes

★ Dp branes carry tension (energy) and charge (source for p+2 form)
→ Gravity in AdS space (dim = ((p+1)+1))

 $\rightarrow \mu$

★ Dp brane's low energy dynamics by fluctuating open strings
→ Yang-Mills in (p+1) dim. (CFT)

(<u>Closed string picture</u>) : Dp branes carry energy \rightarrow AdS ((p+1)+1) dim) and RR-charge \rightarrow source for p+2 form flux H $S_{IIB} = \frac{1}{4\kappa_B^2} \int \sqrt{G} e^{-2\Phi} (2R_G + 8\partial_\mu \Phi \partial^\mu \Phi - |H_3|^2) - \frac{1}{4\kappa_B^2} \int \left[\sqrt{G} (|F_1|^2 + |\tilde{F}_3|^2 + \frac{1}{2}|\tilde{F}_5|^2) + C_4 \wedge H_3 \wedge F_3 \right] + \text{fermions}$ $= \int ds^2 = f_p^{-1/2} (-dt^2 + dx_1^2 + \dots + dx_p^2) + f_p^{1/2} (dx_{p+1}^2 + \dots + dx_9^2) , \\ e^{-2\phi} = f_p^{\frac{p-3}{2}} , \qquad f_p = 1 + nc_p^{10}/r^{7-p} \quad \text{(harmonic function)} \\ A_{0 \dots p} = -\frac{1}{2} (f_p^{-1} - 1) ,$ Ex) D3 brane : $ds^{2} = f^{-1/2} dx_{||}^{2} + f^{1/2} (dr^{2} + r^{2} d\Omega_{5}^{2}) \quad f = 1 + \frac{4\pi g N \alpha'^{2}}{r^{4}}$ $\phi = \text{constant} \quad \text{(conformal symmetry)}$ The near horizon limit gives AdS x S5 $\alpha' \to 0$, $U \equiv \frac{r}{\alpha'} = \text{fixed}$ $ds^{2} = \alpha' \left[\frac{U^{2}}{\sqrt{4\pi g N}} dx_{||}^{2} + \sqrt{4\pi g N} \frac{dU^{2}}{U^{2}} + \sqrt{4\pi g N} d\Omega_{5}^{2} \right]$ the radius of S_{5} = the radius of AdS_{5} AdS5 x S5 $R_{sph}^2/\alpha' = \sqrt{4\pi g N}$ • Isometry : SO(4, 2) x SO (6) $gN \gg 1 \implies$ SUGRA approach is reliable

(open string picture of Dp branes) Low Energy Dynamics --> p+1 dim. SUSY SU(Nc) YM Theories

Ex) D3–D7 -> 3+1 dim. N=2 SU(Nc) YM theory with Nf hypermultiplets

Toward the more realistic models : AdS/CFT with flavors - Intersecting D-Branes

7-7 open strings : Low energy dynamics for D7 branes (DBI action) $S_{D7} = -\mu_7 \int d^8 \xi \sqrt{-\det\left(P[G]_{ab} + 2\pi\alpha' F_{ab}\right)} + \frac{(2\pi\alpha')^2}{2}\mu_7 \int P[C^{(4)}] \wedge F \wedge F$ $\mu_7 = [(2\pi)^7 g_s \alpha'^4]^{-1}$

AdS/CFT Holography : simplest example

Extension of the AdS/CFT

- with $\beta(q^2) \rightarrow 0$ (asym. freedom)
- less SUSY
- Finite T QFT
- Chemical potential
- Fundamental matters flavor brane
 - quenched approx.
- QCD ? (phases, etc.)

in asymptotic AdS

Black Hole b.g. bulk gauge field

- w/o back reaction

in ??

Witten 98; Gubser, Klebanov, Polyakov 98

Partition function of bulk
gravity theory (semi-classial)

$$Z_{i} = \int_{\phi_{0}} \mathcal{D}\phi \exp\left(-S[\phi, g_{\mu\nu}]\right)$$

$$\phi(t, \mathbf{x}; u = \infty) = u^{\Delta - 4}\phi_{0}(t, \mathbf{x})$$

$$\phi_{0} \text{ bdry value of the bulk field } \phi$$

$$\begin{array}{l} \underline{\text{Generating functional of bdry}}\\ \hline \textbf{QFT for operator} & \mathcal{O} \\ Z_{1} &= \left\langle \exp \int_{boundary} d^{d}x \phi_{0} \mathcal{O} \right\rangle \\ &= \int \underline{\mathcal{D}} \Phi \exp\{iS_{4} + i \int \phi_{0}(x) \mathcal{O}\} \\ \phi_{0} \vdots \text{ source of the bdry op. } \mathcal{O} \end{array}$$

•
$$\phi$$
: scalar \rightarrow $S = \int d^4x du \sqrt{-g} \left(g^{ab} \partial_a \phi \partial_b \phi - m^2 \phi_*^2 \right) \phi(u) \sim u^{4-\Delta} \phi_0 + u^{\Delta} \langle \mathcal{O} \rangle$

AdS/CFT Dictionary

Correlation functions by

$$\frac{\delta^n Z_{\text{string}}}{\delta \phi_0(t_1, \mathbf{x}_1) \cdots \delta \phi_0(t_n, \mathbf{x}_n)} = \left\langle T \, \mathcal{O}(t_1, \mathbf{x}_1) \cdots \mathcal{O}(t_n, \mathbf{x}_n) \right\rangle_{\text{field theory}}$$

- Radial coord. r in the bulk is proportional to the energy scale E of QFT
- 5D bulk field ϕ w/ 5D mass m_5
- 5D gauge symmetry
- Large r (small z)
- $\begin{array}{ccc} \leftarrow \rightarrow & \text{Operator} & \bigcirc \\ \leftarrow \rightarrow & \text{w/ Operator dimesion} & \varDelta \\ \leftarrow \rightarrow & \text{Current (global symmetry)} \end{array}$
 - \leftrightarrow Large Q

 ϕ (p-form Field in 5D) $\mathcal{O}(\text{Operator in QFT}) < ->$ $(\Delta - p)(\Delta + p - 4) = m_5^2$ Conformal dimension

 m_5^2 : mass (squared)

Note : the fluctuation field ϕ on the bulk space corresponds to a source for the QCD Operator \mathcal{O} .

Ex)	4D: $\mathcal{O}(x)$	5D: $\phi(x)$;, z)	р	Δ	$(m_5)^2$
	$\bar{q}_L \gamma^\mu t^a q_L$	$A^a_{L\mu}$		1	3	0
	$\bar{q}_R \gamma^{\mu} t^a q_R$	$A_{R\mu}^{\overline{a}}$		1	3	0
	$ar{q}^{lpha}_R q^{eta}_L$	$q_L^{\beta} \qquad (2/z) X^{\alpha\beta}$		0	3	-3
	$\overline{\langle \operatorname{Tr} G^2 \rangle}$ Gluon cond . dilaton				4	0
	$\frac{q_L\gamma^{\mu}q_L}{\bar{q}_R\gamma^{\mu}q_R}$ baryon d	ensity vect	or w/ U(1)	1	3	0
	$\begin{array}{c} \underline{\text{fields in gravity}}\\ \bullet \text{ massless dilaton}\\ \bullet \text{ scalar field with } \\ m^2 = -\frac{3}{R^2}\\ \bullet \text{ m=0 vector field } A_{\mu} \text{ in the } \end{array}$			•	operator gluon conde chiral conde	$rac{1}{2} ext{s of QCD} \\ ext{nsation} \langle ext{Tr} G^2 angle \\ ext{nsation} ar{q}_R q_L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
			dual	•	mesons in the	
	$SU(N_f)$ gauge g			$SU(N_f)$ flav	vor group	

Temperatue

Black hole gemometry

•
$$T = \frac{r_T}{\pi R^2}$$

Flavor degrees of freedom $f^2(z) = 1 - (\frac{z}{z_T})^4$ $T = \frac{1}{\pi z_T}$

Adding probe brane

•
$$y(\rho) = M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$
 $(\rho >> 1)$

Chemical potential or Density

• Turning on U(1) gauge field on probe brane

•
$$A_{\mu} \leftrightarrow < J^{\mu} > = \bar{\psi} \gamma^{\mu} \psi$$

•
$$A_t = \mu + \frac{Q}{\rho^2} + \cdots$$
 ($\rho >> 1$)

Source of gauge field

- End point of fundamental strings
- Physical object which carry U(1) baryon charge
- \bullet Fundamental strings which connect probe brane and black hole \rightarrow Quarks
- Fundamental strings which connect probe brane and baryon vertex → Baryons

AdS/QCD

<u>Goal</u>: Try to understand QCD using the 5 dimensional dual gravity theory (AdS/CFT correspondence)

Need the dual geometry of QCD.

1. Approaches:

Top-down Approach :

rooted in string theory

Find brane config. for the gravity dual

Bottom-up Approach : phenomenological Introduce fields, etc. as needed based on the AdS/CFT * Hard Wall Model – Introduce IR brane for confinement * Soft Wall Model – dilaton running

Light-Front : radial direction of AdS <-> Parton momenta (Brodsky, de Teramond, 2006)

Top-Down Approach

Observation :

- Nc of D3 branes
 AdS5 x S5 <-> N=4 SUSY YM
- Nc of D3 / orbifold, etc. : AdS5 x X <-> N=2, 1 YM

QFT with Asymptotic AdS SUGRA Duals

- N=1* Polchinski & Strassler, hep-th/0003136
- Cascading Gauge Theory Klebanov & Strassler, JHEP 2000
- Nc of D3 & N_f of D7 Kruczenski ,Mateos, Myers, Winters 2004 N=2 SYM with quarks massive (in general): m_q Probe approximation (N_c>>N_f) (~ quenched approx.) (No back reaction to the bulk gometry from the flavor branes.) Free energy ~ Flavor-brane action
- Nc of D4 b.g. (Witten) + N_f of D8 system Sakai & Sugimoto 2005 Topology : R(1,3) x R2 x S4 The Effective Action : 5D U(Nf) YM CS theory $S_{5dim} \simeq S_{YM} + S_{CS}$ -> closely related to QCD
- etc.

Bottom-Up Approach

Introduce the contents (fields, etc.) as needed based on the AdS/CFT – Phenomenological

- Kaluza-Klein modes radial excitations of hadrons identified by the symmetry properties of the modes
- Confinement realized in
 - * Soft Wall Model by dilaton running
 - * Hard Wall Model by introducing IR brane for confinement

Ex) Confinement –Deconfinement

			Erlich, Kat	z, Son, Step	hanov, PR	L (2005)					
EX) Hard w	all model										
Infrared	Brane at z = Confinement	z_m	$x_1, x_2, \phi_0(x)$	$\phi(x,z)$							
Metric –	Slice of AdS metr	ic		z							
$ds^2 = \frac{1}{z^2}$	$(-dz^2 + dx^{\mu}dx_{\mu}),$	$0 < z \le$	$z_m z = \epsilon$	z =	z_m						
5D action	(Nf=2)		UV	IR							
$S = \int d^5 x_{\rm N}$	$\sqrt{-g}\left(-\frac{1}{2g_5^2}\operatorname{Tr}\left(L_{MN}L^{MI}\right)\right)$	$^{N}+R_{MN}R^{MN})+$	$\mathrm{Tr}\left(D_M X ^2+\right)$	$m_X^2 X ^2 \Big) \Big)$							
$X_0(z) =$	$=\frac{1}{2}Mz + \frac{1}{2}\Sigma z^3$	$\frac{4\mathrm{D:}\ \mathcal{O}(x)}{\bar{\pi}}$	5D: $\phi(x,z)$	<u>p</u>	Δ	$(m_5)^2$					
		$= \frac{q_L \gamma' \iota q_L}{\bar{a}_B \gamma^{\mu} t^a a_B}$	$A_{L\mu}$ $A_{B\mu}^{a}$	1	3 3	0					
Observable	(MeV)	$\overline{q}_R^{\alpha} q_L^{\beta}$	$(2/z)X^{\alpha\beta}$	0	3	-3					
m_{π}	139.6±0.0004 [8]	139.6^{*}	141								
$m_{ ho}$	775.8 ± 0.5 [8]	775.8^{*}	832	Param	Parameters						
m_{a_1}	1230 ± 40 [8]	1363	1220	<u>r arann</u>							
f_{π}	92.4 ± 0.35 [8]	92.4^{*}	84.0	m_q	σz_m						
$F_{\rho}^{1/2}$	345 ± 8 [15]	329	353	2	$12\pi^2$						
$F_{a_1}^{1/2}$	433 ± 13 [6, 16]	486	440	$g_5^z =$	N_c						
$g_{\rho\pi\pi}$	6.03 ± 0.07 [8]	4.48	5.29		- · C]					

Witten '98

2. The Dual Geometry

(for the pure Yang-Mills theory without quark matters)

1) Low T (confining phase) : tAdS (thermal) AdS space, no stable AdS black hole

2) High T (deconfining phase) : AdS BH Schwarzschild-type AdS black hole

This geometry is described by the following action

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{g} \left(-\mathcal{R} + 2\Lambda\right)$$

$$A = -\frac{6}{R^2}: \text{ cosmological constant}$$

$$R \qquad : \text{ AdS radius}$$

"confinement" phase "de-confinement" phase Thermal AdS (Low T) \longrightarrow AdS-BH (High T) Hawking-Page transition Transition of bulk geometry at temperature $\beta(=1/T)$.

Herzog [hep-th/0608151]

tAdS with IR cut-off (hard wall model) → confinement

•In region I, the Coulomb-like potential.

 $E \sim -\frac{1}{r}$

 $E \sim T_s L$

• In region II, the confining potential.

3) Hawking-Page phase transition [Herzog, Phys.Rev.Lett.98:091601,2007]

To investigate the Hawking-Page transition, we should calculate the free energy, which is proportional to the gravity on-shell action.

The regularized on-shell action 1) for the tAdS, $S_{tAdS} = \frac{4R^3}{\kappa^2} \int_0^{\beta'} dt \int_{\epsilon}^{z_{IR}} dz \frac{\beta'}{z^5}$: arbitrary 2) for the AdS BH $S_{AdSBH} = \frac{4R^3}{\kappa^2} \int_0^{\pi z_h} dt \int_{\epsilon}^{z_h} dz \frac{1}{z^5}$ To remove the divergence at z = 0the period in the t-direction of tAdS β' = the period in t-direction of AdS BH at $z \in \beta' = \pi z_h \sqrt{f(\epsilon)}$ Using this, the difference of two actions : $\Delta S = \lim_{\epsilon \to 0} (S_{AdSBH} - S_{tAdS}) = \frac{\pi z_h R^3}{\kappa^2} \left(\frac{1}{z_{IR}^4} - \frac{1}{2z_h^4}\right)$

Note: Phenomenology such as meson spectrum, etc. can be studied by embedding D7, etc.

Dual geometry for finite chemical potential

5-dimensional action dual to the gauge theory with quark matters

$$S = \int d^5x \sqrt{G} \left[\frac{1}{2\kappa^2} \left(-\mathcal{R} + 2\Lambda \right) + \frac{1}{4g^2} F_{MN} F^{MN} \right] \begin{array}{l} \text{Euclidean} \\ \text{Wick rotation } t \to -i\tau \end{array}$$

Equations of motion

1) Einstein equation $\mathcal{R}_{MN} - \frac{1}{2}G_{MN}\mathcal{R} + G_{MN}\Lambda = \frac{\kappa^2}{g^2}\left(F_{MP}F_N^P - \frac{1}{4}G_{MN}F_{PQ}F^{PQ}\right)$

2) Maxwell equation $0 = \partial_M \sqrt{-G} G^{MP} G^{NQ} F_{PQ}$

<u>Ansatz:</u>

$$\int_{a_0}^{a_2} ds^2 = \frac{R^2}{z^2} \left(f(z)dt^2 + d\vec{x}^2 + \frac{1}{f(z)}dz^2 \right)$$

$$A_0 = A(z) \text{ and other are zero.}$$

Solutions

S.-J. Sin, 2007

most general solution, which is RNAdS BH (RN AdS black hole)

$$f(z) = 1 - mz^4 + q^2 z^6$$

$$A(z) = i (\mu - Qz^2)$$

$$m$$
black hole mass
black charge
$$\mu$$
quark chemical potential

phase (quark-gluon plasma)

$$\mu \qquad \text{quark chemical potential} \\ Q = \sqrt{\frac{3g^2R^2}{2\kappa^2}} q \qquad \text{quark number density}$$

Note

The value of A₀ at the boundary (z = 0) corresponds to the quark chemical potential µ of QCD.
 The dual operator of A₀ is denoted by Q , which is the

quark (or baryon) number density operator.

3) We use
$$\frac{1}{2\kappa^2} = \frac{N_c^2}{8\pi^2 R^3}$$
 and $\frac{1}{g^2} = \frac{N_c N_f}{4\pi^2 R}$

• What is the dual geometry of the confining (or hadronic) phase?

Note : Solutions in both phases are valid for arbitrary densities

RNAdS BH (QGP)

$$ds^{2} = \frac{R^{2}}{z^{2}} \left((1 - mz^{4} + q^{2}z^{6})d\tau^{2} + d\vec{x}^{2} + \frac{1}{1 - mz^{4} + q^{2}z^{6}}dz^{2} \right)$$

- black hole horizon z_+ : $0 = f(z_+) = 1 mz_+^4 + q^2 z_+^6$
- Hawking temperature $T_{RN} = \frac{1}{\pi z_+} \left(1 \frac{1}{2}q^2 z_+^6 \right)$
- For the norm of A_0 at the black hole horizon $||A(z)|| \equiv g^{\tau\tau}A_{\tau}A_{\tau}$ to be regular, we should impose the Dirichlet boundary condition $A(z_+) = 0$
- From this, we can obtain a relation between Q and μ

$$Q^2 = \frac{\mu^2}{z_+^4}$$

• Using these relations, can rewrite z_+ as a function of μ and T_{RN}

$$z_{+} = \frac{3g^2 R^2}{2\kappa^2 \mu^2} \left(\sqrt{\pi^2 T_{RN}^2 + \frac{4\kappa^2 \mu^2}{3g^2 R^2}} - \pi T_{RN} \right)$$

tcAdS (Hadronic phase)

• Impose the Dirichlet boundary condition at the IR cut-off

 $A(z_{IR}) = i\alpha\mu,$

where α is an arbitrary constant and will be determined later.

• Using this, we can find the relation between μ and Q

$$Q = \frac{(1-\alpha)\mu}{z_{IR}^2}.$$

• After imposing the Dirichlet B.C at the UV cut-off, the renormalized on-shell action for the tcAdS

$$\begin{split} \bar{S}_{tc}^{D} &= -\frac{V_{3}R^{3}}{\kappa^{2}} \frac{1}{T_{tc}} \left(\frac{1}{z_{IR}^{4}} + \frac{2\kappa^{2}}{3g^{2}R^{2}} \frac{(1-\alpha)^{2}\mu^{2}}{z_{IR}^{2}} \right) \\ &\equiv \frac{\Omega_{tc}}{T_{tc}} \end{split}$$

• From this renormalized action, the particle number is reduced to

$$N = \frac{2}{3}(1-\alpha)\frac{2R}{g^2}QV_3$$

• Using the Legendre transformation, N should satisfy the following relation $\mu N = S_b T_{tc}$

where the boundary action for the tcAdS is given by

$$S_b = \frac{\mu}{T_{tc}} \frac{2R}{g^2} QV_3$$

• So, we see that α should be -1/2 for the consistency.

Then, the renormalized on-shell action for the tcAdS

$$\bar{S}_{tc}^{D} = -\frac{V_{3}R^{3}}{\kappa^{2}} \frac{1}{T_{tc}} \left(\frac{1}{z_{IR}^{4}} + \frac{3\kappa^{2}}{2g^{2}R^{2}} \frac{\mu^{2}}{z_{IR}^{2}} \right)$$

with $\mu = \frac{2}{3}Qz_{IR}^{2}$.

Hawking-Page transition

• The difference of the on-shell actions for RN AdS BH and tcAdS

$$\Delta S = S_{RN}^D - S_{tc}^D$$
$$= \frac{V_3 R^3}{\kappa^2} \frac{1}{T_{RN}} \left(\frac{1}{z_{IR}^4} - \frac{1}{2z_+^4} + \frac{3\kappa^2}{2g^2 R^2} \frac{\mu^2}{z_{IR}^2} - \frac{\kappa^2}{3g^2 R^2} \frac{\mu^2}{z_+^2} \right)$$

• Wher
$$\Delta S = 0$$
 , Hawking-Page transition occurs

• Suppose that $\Delta S = 0$ at a critical point $z_+ = z_c$ 1) For $z_+ < z_c$, ΔS becomes negative. \Longrightarrow deconfining phase

2) For $z_c < z_+ \le z_{IR}$, tcAdS is stable. \implies confining phase

• Introducing new dimensionless variables

$$\tilde{z}_c \equiv \frac{z_c}{z_{IR}},$$

$$\tilde{\mu}_c \equiv \mu_c z_{IR},$$

$$\tilde{T}_c \equiv T_c z_{IR},$$

the Hawking-Page transition occurs at

$$\int_{-}^{\tilde{\mu}_{c}} = \sqrt{\frac{3N_{c}}{N_{f}}} \frac{(1-2\tilde{z}_{c}^{4})}{\tilde{z}_{c}^{2}(9\tilde{z}_{c}^{2}-2)} ,$$
$$\tilde{T}_{c} = \frac{1}{\pi\tilde{z}_{c}} \left(1 - \frac{1-2\tilde{z}_{c}^{4}}{9\tilde{z}_{c}^{2}-2}\right) .$$

• After the Legendre transformation, the Hawking-Page transition in the fixed quark number density case occurs at

$$\tilde{Q}_{c} = \sqrt{\frac{3N_{c}}{2N_{f}} \frac{(1-2\tilde{z}_{c}^{4})}{\tilde{z}_{c}^{4}(5\tilde{z}_{c}^{2}-2)}},$$

$$\tilde{T}_{c} = \frac{1}{\pi\tilde{z}_{c}} \left[1 - \frac{\tilde{z}_{c}^{2}}{2} \frac{(1-2\tilde{z}_{c}^{4})}{(5\tilde{z}_{c}^{2}-2)} \right]$$

Light meson spectra in the hadronic phase

Turn on the fluctuation in bulk corresponding the meson spectra in QCD

$$\Delta S = \int d^5 x \sqrt{G} \operatorname{Tr} \left[|DX|^2 - \frac{3}{R^2} |X|^2 + \frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) \right]$$

III. AdS/QCD based on B. Gwak, M. Kim, BHL,Y.Seo, S.-J. Sin, arXiv :1105.xxxx the D7 embedding in black D3/D-instanton geometry

Motivation

- Alternative to the Geometrical phase Transition for in AdS/CFT ?
- Baryon Vertex (phase) and confinement at finite T (Black Hole Background) ?

Finite Temperature with Dilaton background (Solution of Type IIB SUGRA) $ds_{10}^{2} = e^{\Phi/2} \left[\frac{r^{2}}{R^{2}} \left(f(r)^{2} dt^{2} + d\vec{x}^{2} \right) + \frac{1}{f(r)^{2}} \frac{R^{2}}{r^{2}} dr^{2} + R^{3} d\Omega_{5}^{2} \right], \quad R^{4} = 4\pi g_{s} N_{c} \alpha'^{2}$ $e^{\Phi} = 1 + \frac{q}{r_{T}^{4}} \log \frac{1}{f(r)^{2}}, \quad \chi = -e^{-\Phi} + \chi_{0},$ $f(r) = \sqrt{1 - \left(\frac{r_{T}}{r}\right)^{4}}, \quad T = r_{T}/\pi R^{2}$

Zero Temperature Limit : becomes near horizon geometry of D3-D(-1)

$$ds^{2} = e^{\Phi/2} \left[\frac{r^{2}}{R^{2}} \left(dt^{2} + d\vec{x}^{2} \right) + \frac{R^{2}}{r^{2}} \left(dr^{2} + r^{2} d\Omega_{5}^{2} \right) \right], \quad \text{(Liu \& Tseytlin 9903091)}$$
$$e^{\Phi} = 1 + \frac{q}{r^{4}}, \quad \chi = -e^{-\Phi} + \xi_{\infty}.$$
$$\bullet \quad \text{AdSxS5 at UV Flat at IR (w/ dilaton singular)}$$
$$\bullet \quad \text{N=2 (with aluon condensation)}$$

Ex) Zero Temperature and without density

Background Metric by D3 & D-instantons

$$ds^{2} = e^{\Phi/2} \left[\frac{r^{2}}{R^{2}} \left(dt^{2} + d\vec{x}^{2} \right) + \frac{R^{2}}{r^{2}} \left(dr^{2} + r^{2} d\Omega_{5}^{2} \right) \right] \left[\begin{array}{c} \cdot \operatorname{AdSxS5 at UV}_{Flat at IR} (w/, dilaton singular) \\ \cdot \operatorname{N=2} (with gluon condensation) \\ \cdot \operatorname{N=2} (wit$$

solution of D7 brane embeddings

q dependence of chiral condensation

Ex) Finite Temperature and without density

Finite Temperature (Black Hole geometry) of D3/D-instanton system

$$\begin{split} ds_{10}^2 &= e^{\Phi/2} \left[\frac{r^2}{R^2} \left(f(r)^2 dt^2 + d\vec{x}^2 \right) + \frac{1}{f(r)^2} \frac{R^2}{r^2} dr^2 + R^3 d\Omega_5^2 \right] & \qquad \text{Quark-Gluon} \\ e^{\Phi} &= 1 + \frac{q}{r_T^4} \log \frac{1}{f(r)^2}, \qquad \chi = -e^{-\Phi} + \chi_0, \\ f(r) &= \sqrt{1 - \left(\frac{r_T}{r}\right)^4}, \qquad T = r_T / \pi R^2. \end{split}$$

 $\frac{d\xi^2}{\xi^2} = \frac{dr^2}{r^2 f^2}$

 $\rightarrow \mu$

Rewrite in terms of dimensionless parameter

$$ds^{2} = e^{\Phi/2} \left[\frac{r^{2}}{R^{2}} \left(f(r)^{2} dt^{2} + d\vec{x}^{2} \right) + \frac{R^{2}}{\xi^{2}} \left(d\xi^{2} + \xi^{2} d\Omega_{5}^{2} \right) \right],$$

or

$$ds^{2} = e^{\Phi/2} \left[\frac{r^{2}}{R^{2}} \left(f(r)^{2} dt^{2} + d\vec{x}^{2} \right) + \frac{R^{2}}{\xi^{2}} \left(d\rho^{2} + \rho^{2} \Omega_{3}^{2} + dy^{2} + y^{2} d\phi^{2} \right) \right]$$

where
$$\xi^{2} = \rho^{2} + y^{2}$$

where

$$\left(\frac{r}{r_T}\right)^2 = \frac{1}{2} \left(\frac{\xi^2}{\xi_T^2} + \frac{\xi_T^2}{\xi^2}\right), \text{ and } f = \left(\frac{1 - \xi_T^4 / \xi^4}{1 + \xi_T^4 / \xi^4}\right) \equiv \frac{\omega_-}{\omega_+}.$$

Induced metric on D7

$$ds_{D7}^2 = e^{\Phi/2} \left[\frac{r^2}{R^2} \left(f(r)^2 dt^2 + d\vec{x}^2 \right) + \frac{R^2}{\xi^2} \left((1 + y'^2) d\rho^2 + \rho^2 \Omega_3^2 \right) \right]$$

OBI action of D7

$$S_{D7} = \tau_7 \int dt d\rho e^{\Phi} \rho^3 \omega_+ \omega_- \sqrt{1 + y'^2}, \qquad \tau_7 = \xi_T^4 \mu_7 V_3 \Omega_3$$

Minkowski and Black Hole embedding

Finite temperature without density

Chiral condensation

q dependence of chiral symmetry restoration temperature

Finite Temperature and with finite density

Turn on U(1) gauge field on D7 brane DBI action of D7

$$S_{D7} = -\tau_7 \int dt d\rho \rho^3 e^{\Phi/2} \omega_+^{3/2} \sqrt{e^{\Phi/2} \frac{\omega_-^2}{\omega_+} (1 + \dot{y}^2) - \tilde{F}^2} := \int dt d\rho \mathcal{L}_{D7},$$

$$\tau_7 = \mu_7 V_4 \Omega_3, \quad \tilde{F} = 2\pi \alpha' F_{t\rho}$$

Minkowski and Black Hole embedding

Legendre transformation

$$\begin{aligned} \mathcal{H}_{D7} &= \tilde{F} \frac{\partial \mathcal{L}_{D7}}{\partial \tilde{F}} - \mathcal{L}_{D}, \\ &= \tau_7 \int d\rho \sqrt{e^{\Phi} \frac{\omega_-^2}{\omega_+} (1 + \dot{y}^2)} \sqrt{\frac{\tilde{Q}^2}{\tau_7^2}} + \rho^6 e^{\Phi} \omega_+^3, \end{aligned}$$

Source of U(1) gauge field on D7 brane is endpoint of fundamental strings
 There are two way to attaching fundamental strings on D7 brane

Quark Phase

- As q increases, the repulsion effect on D7 also increases.
- F1 strings connect BH horizon and probe brane
- Physical object is freely moving quark

• In $m_q \rightarrow 0$ limit, we have two phases

(Note : If q=0, then the trivial flat embedding is the unique solution for $m_q \rightarrow 0$.)

Finite quark mass $m_q \neq 0$

ιĝ

Baryon Phase

Background metric
$$F_{t\theta} \neq 0$$

 $ds^2 = e^{\Phi/2} \left[\frac{r^2}{R^2} \left(f(r)^2 dt^2 + d\vec{x}^2 \right) + R^2 \left(\frac{d\xi^2}{\xi^2} + d\theta^2 + \sin^2\theta d\Omega_4^2 \right) \right]$

Induced metric on D5

$$ds_{D5}^2 = e^{\Phi/2} \left[\frac{r^2}{R^2} f^2 dt^2 + R^2 \left(\frac{\xi'^2}{\xi^2} + 1 \right) d\theta^2 + R^2 \sin^2 \theta d\Omega_4^2 \right]$$

DBI action

$$S_{D5} = -\mu_5 \int e^{-\Phi} \sqrt{-\det(g + 2\pi\alpha' F)} + \mu_5 \int A_{(1)} \wedge G_{(5)}$$
$$= \tau_5 \int dt d\theta \sin^4 \theta e^{\Phi} \left[-\sqrt{e^{\Phi} \frac{\omega_-^2}{\omega_+} (\xi^2 + \xi'^2) - \tilde{F}^2} + 4\tilde{A}_t \right]$$

D7 brane at the tip of D5 with force balance condition

- F1's connect spherical D5 & probe D7
- Phys. Ob. = baryon vtx (bd state of Nc quarks)
- x-symm.
 broken

Phase transition

- for give m_q and q, there are two kind of embeddings in same temperature
- we have to choose physical embedding by comparing free energy
- free energy for quark phase

$$\mathcal{F}_{\mathrm{quark}}(\hat{Q}) = \tau_7 \int_{\rho_{min}}^{\infty} d\rho \hat{\mathcal{H}}_{D7}(\hat{Q}) \Big|_{\mathrm{quark phase}}$$

free energy for baryon phase

$$\mathcal{F}_{\mathrm{baryon}}(\hat{Q}) = \tau_7 \int d\rho \hat{\mathcal{H}}_{D7}(Q) \Big|_{\mathrm{baryon \ phase}} + \frac{Q}{N_C} \tau_5 \int d\theta \hat{\mathcal{H}}_{D5}$$

black: baryon phase

purple: quark phase without chiral symmetry, red: quark phase with chiral symmetry

Density dependence of free energy (for $m_q = 0$ and q=15)

Phase Diagram

Zero quark mass

IV. Summary

Holographic Principles :

(d+1 dim.) (classical) Sugra ↔ (d dim.) (quantum) YM theories

- AdS/QCD Top–down Approach & Bottom–up Approach
- QCD using Holographic dual Geometry
 - w/o chemical potential –
 phase : confined phase ↔ deconfined phase transition
 Geometry : thermal AdS ↔ AdS BH
 Hawking-Page transition
 - in dense matter (U(1) chemical potential→ baryon density)
 deconfined phase by RNAdS BH ↔ hadronic phase by tcAdS
 Hawking-Page phase transition
- In the hadronic phase, the quark density dependence of the light meson masses has been investigated.

IV. Summary - continued

- Holographic QCD model in D3/D-instanton background
- Two phases and phase transitions : for given T and density quark phase : physical objects : quarks
 baryon phase : baryon (vertex) as a physical object
- We study phase structure with and without quark mass
- We also study density dependence of chemical potential (eq. of state) and phase structure in grand canonical ensemble
- Future works : Meson spectrum & beyond probe approximation, etc.

