Does Nature Have a Preferred 1/Nc Expansion?

(Of course, some limits do go both ways)

Richard Lebed

work with A. Cherman & T. Cohen and with R. TerBeek

Large N Gauge Theories Galileo Galilei Institute

May, 2011

l will i	Warning: refer to this textbook	
	Proceedings Structure 37 Number 7A July 2010 Article 075021 Article Data Group Article Data Group	

Outline

- 1) Elements of large N_C phenomenology
- 2) 't Hooft large N_C vs. orientifold large N_C
- 3) How to build a baryon
- 4) Operator analysis and effective Hamiltonian
- 5) Probes: Masses vs. magnetic moments
- 6) Results: Which limit works better?

Just the Facts, Ma'am

- Large N_C QCD means:
 - QCD gauge group is enlarged from SU(3) to SU(N_C)
 - Quarks transform under fundamental representation N_c states, labeled by values of the color quantum number
- It is a well-defined gauge theory limit when $\alpha_s \sim 1/N_c$ ['t Hooft (1974)]
 - Meaningful to perform a 1/N_C expansion
 - Color singlets formed from $q\overline{q}$ pairs (color structure δ^{α}_{β}) or from N_C quarks (color structure $\epsilon^{\alpha 1, \alpha 2, ..., \alpha Nc}$)
- Mesons at large N_c are:
 - free [O(N_C⁰) masses]
 - stable $[O(1/N_c) widths]$
 - scatter weakly $[O(1/N_c^2) \text{ cross sections}]$ [Veneziano (1976)]

"Classical" Large N_C Baryons [Witten (1979)]

- Large N_c baryon masses = $O(N_c^1)$ (N_c fundamental rep quarks!)
 - Much heavier than mesons \rightarrow Treat semiclassically
- Ground-state band assumed to have totally symmetric spin × flavor wave function, each quark in an orbital s wave
 - Supported by phenomenology: For N_C = 3 these states fill a single symmetric 56 of spin × flavor SU(6): N, Δ, Σ, Ω, etc.
 - Meson-baryon trilinear coupling scales as N_C^{1/2}
 - Meson-baryon scattering amplitude scales as N_C⁰
 - Combinatorics of the N_C quarks plus 't Hooft scaling ($\alpha_s \sim 1/N_C$) gives $O(N_C^0)$ potential energy per quark
 - > Hartree approximation holds; size of baryon scales as $O(N_{C}^{0})$

For $N_c > 3$, multiplets are much bigger

									1		1								
								1		$\overline{2}$		1							
The $N_c = 1$	7						1		2		$\overline{2}$		1						
spin-1/2 "octe	et"					1		2		2		2		1					
					1		2		2		2		2		1				
				1		$\overline{2}$		$\overline{2}$		2		2		2		1			
			1		2		2		$\overline{2}$		2		$\overline{2}$		$\overline{2}$		1		
		1		$\overline{2}$		$\overline{2}$		2		2		2		2		2		1	
	1		2		2		2		2		2		$\overline{2}$		2		$\overline{2}$		1
		1		1		1		1		1		1		1		1		1	

Summary of Hadrons in 1/N_c

- If N_C is considered large, mesons exist and live long enough to be detected
 - Fact: Unflavored mesons seen all the way up to 2 GeV and beyond; if their lifetimes were sufficiently short, only collections of π's would be seen
- Baryons have N_C quarks (fundamental rep) but don't grow in size with N_C
- Meson-baryon scattering amplitudes don't grow or shrink with N_C
 - Fact: Many distinct baryon resonances (poles in scattering amplitudes) are observed

In Standard 't Hooft Large N_c, ...

- 't Hooft double-line notation: Each quark carries single directed line indicating color charge flow; gluons (in the adjoint) carry two oppositely-oriented lines

 \rightarrow Suppression of internal quark loops

But when $N_c = 3, ...$

• The fundamental (F) and two-index antisymmetric (AS) representations are equivalent:

 $q_{ij} \equiv \varepsilon_{ijk} q^k \leftrightarrow (anti-red)(anti-green) \equiv blue \leftrightarrow \square \equiv \square$

- Equivalent AS representation for arbitrary N_c has $N_c 1$ indices
- But how do we know that quarks at arbitrary N_C live in the F and not the two-index AS representation? (hence represented by double line, unsuppressed compared to gluons)
- Sociology: Because Witten says so
- *Philosophy*: If quarks are not F, then what use is the fundamental representation?
- Irritability: Give me just one good reason to even consider it!

Orientifold Large N_c

Armoni, Shifman, Veneziano (ASV): Nucl. Phys. **B667**, 170 (2003); Phys. Rev. Lett. **91**, 191601 (2003)

Pure gauge $\mathcal{N} = 1$ SUSY for U(N_c), in which a large number of

- nontrivial symmetry relations can be obtained, contains gluinos, which transform according to the *adjoint* (color-anticolor) representation
- As N_C→∞, one obtains a theory exactly equivalent in many sectors by replacing adjoint fermions with AS fermions:
- This "daughter" theory can be found to live on a brane configuration with an orientifold plane (a place where string lacks orientation)

Fig. 2. (a) A typical planar contribution to the vacuum polarization. (b) For $\mathcal{N} = 1$ SYM. (c) For the non-SUSY theory.

Baryons in the Two Limits

 Baryon wave functions comprised of N_C^F quarks have been studied since Witten (Nucl. Phys. B160, 57 [1979]):

 $B_{\rm F} \sim \epsilon^{i_1, i_2, \ldots, i_{N_c}} q_{i_1} q_{i_2} \cdots q_{i_{N_c}}$

- With AS quarks, several constructions are possible (Bolognesi, Phys. Rev. D **75**, 065030 [2007]). For example,
 - Using the same ϵ invariant with $\frac{1}{2}N_{c}$ of the AS quarks:

$$B_{\phi} \sim \epsilon^{j_1, j_2, \cdots, j_{N_c}} q_{j_1, j_2} q_{j_3, j_4} \cdots q_{j_{N_{c-1}}, j_{N_c}}$$

but B_{ϕ} baryons exist only for even N_C, and (as pointed out by Bolognesi) have other physical problems

The N_c^{AS} Baryon

• Bolognesi instead proposed a construction for baryon wave functions in which all AS quarks [$\frac{1}{2}N_{C}(N_{C} - 1)$ in total] are completely antisymmetrized; for $N_{C} = 3$ it reads:

$$B_{\psi} \sim (\epsilon_{i_2,j_2,i_1} \epsilon_{i_3,j_3,j_1} - \epsilon_{i_3,j_3,i_1} \epsilon_{i_2,j_2,j_1}) q^{i_1,j_1} q^{i_2,j_2} q^{i_3,j_3}$$

where, again, $q_{ij} \equiv \varepsilon_{ijk} q^k$

- This B_{ψ} construction reduces to B_F when $N_C = 3$
- One can build a B_{ψ} baryon for every integer $N_{C} \ge 2$
- The general $N_{\rm C}$ wave function can be expressed in closed form (RFL, unpublished)
- So let us compute observables for B_F (large N_C^F expansion) and B_{ψ} (large N_C^{AS} expansion) baryons and compare them

Parametrizing Static Baryon Properties

- The lightest (N, Δ, Σ, etc.) baryons are degenerate as N_C→∞ (for either the N_C^F or N_C^{AS} limit), and fill a multiplet that reduces for N_C = 3 to the old SU(6) 56-plet
- They differ only in quark flavor content or relative quark spin orientation, whose effects can be parametrized by operators using the basis (again, with either N_C^F or N_C^{AS} quarks):

$$J^{i} = \sum_{\alpha} q^{\dagger}_{\alpha} \left(\frac{\sigma^{i}}{2} \otimes \mathbb{1} \right) q_{\alpha},$$

$$T^{a} = \sum_{\alpha} q^{\dagger}_{\alpha} \left(\mathbb{1} \otimes \frac{\lambda^{a}}{2} \right) q_{\alpha},$$

$$G^{ia} = \sum_{\alpha} q^{\dagger}_{\alpha} \left(\frac{\sigma^{i}}{2} \otimes \frac{\lambda^{a}}{2} \right) q_{\alpha},$$

The Effective Hamiltonian

Dashen, Jenkins & Manohar; Carone, Georgi & Osofsky; Luty & March-Russell (1994)

 Processes involving the (entangled) interaction of *n* quarks are represented by *n*-body operators; in N_C^F, typical diagrams are:

2-body

3-body

- Generic *n*-body operators are suppressed by 1/N_Cⁿ [N_C^F] or 1/[½N_C(N_C-1)]ⁿ ~ 1/N_C²ⁿ [N_C^{AS}], one factor for each *J*, *T*, *G*
- From these operators construct a baryon Hamiltonian that is perturbative in powers of 1/N_c [Effective theory]

Calculating with the Hamiltonian

• For N_C^F ,

$$H = c_0 \, \mathbf{N}_{\mathsf{C}} \, \mathbf{1} + c_1^{(8)} \, \mathbf{N}_{\mathsf{C}}^0 \, \mathbf{T}^8 + c_J \, \mathbf{J}^2 / \, \mathbf{N}_{\mathsf{C}} + \dots$$

where $\mathbf{T}^8 = \sum_{quarks\ \alpha} q_{\alpha}^+ \frac{\lambda^8}{2} q_{\alpha}$, $\mathbf{J}^2 = \sum_{\alpha} \sum_{\beta} \left(q_{\alpha}^+ \frac{\sigma^i}{2} q_{\alpha} \right) \left(q_{\beta}^+ \frac{\sigma^i}{2} q_{\beta} \right)$

- For N_C^{AS} , just replace each $N_C \rightarrow N_C^2$
- c_k : dimensionless coefficients (× Λ_{QCD}), should be of order unity
- Easy to include SU(3) flavor breaking: *e.g.*, $c_1^{(8)} \rightarrow \epsilon c_1$, $\epsilon \approx 0.25$
- Since the operators form a complete set, to each one corresponds a unique combination of baryon masses
- Compare to the average multiplet mass (N_C [N_C^F], N_C² [N_C^{AS}]) (N_C^F Calculation performed by Jenkins & RFL [1995])

Calculate & tabulate matrix elements

• *e.g.*, an excerpt for a few (magnetic moment) operators in N_c^F:

 $0 \quad \left| -\frac{1}{12N_c} \sqrt{(N_c - 1)(N_c + 3)} \right|$ 0 $\Sigma^0 \Lambda$ 0 $\Sigma^{-} \begin{bmatrix} \frac{1}{18} \end{bmatrix} -\frac{1}{12N_c}(N_c-1) \begin{bmatrix} -\frac{1}{36N_c}(N_c-9) \\ -\frac{1}{6N_c} \end{bmatrix} -\frac{1}{12N_c^2}(N_c-9)$ $\Xi^{0} = \begin{bmatrix} -\frac{2}{9} \end{bmatrix} = \begin{bmatrix} -\frac{1}{18N_{c}}(N_{c}+9) \\ \frac{1}{9N_{c}}(N_{c}-3) \end{bmatrix} = \begin{bmatrix} -\frac{1}{3N_{c}} \end{bmatrix} \begin{bmatrix} \frac{1}{6N_{c}^{2}}(N_{c}-3) \\ \frac{1}{6N_{c}^{2}}(N_{c}-3) \end{bmatrix}$ $\Xi^{-} \begin{bmatrix} -\frac{2}{9} \end{bmatrix} \qquad \frac{1}{18N_c}(N_c - 9) \qquad \frac{1}{9N_c}(N_c - 9) \qquad \frac{1}{-\frac{1}{3N_c}} \begin{bmatrix} \frac{1}{6N_c^2}(N_c - 9) \\ \frac{1}{6N_c^2}(N_c - 9) \end{bmatrix}$ $\Delta^+ p$ 0 0 0 0 0 0 $\Delta^0 n$ 0 0 0 0 $0 \quad \left| \frac{1}{6\sqrt{2}N_c} \sqrt{(N_c - 1)(N_c + 3)} \right|$ 0 $\Sigma^{*0}\Lambda$ 0 0 $\frac{1}{3\sqrt{2}N_c} \qquad -\frac{1}{9\sqrt{2}N_c}(N_c - 3) \qquad 0$ $\Sigma^{*0}\Sigma^0 \left| \frac{\sqrt{2}}{9} \right|$ 0 $\Sigma^{*+}\Sigma^{+} \left| \frac{\sqrt{2}}{9} \right| = \frac{1}{12\sqrt{2}N_c}(N_c+5) \left| -\frac{1}{9\sqrt{2}N_c}(N_c+3) \right| = 0$ 0 $\Sigma^{*-}\Sigma^{-} \left| \frac{\sqrt{2}}{9} \right| - \frac{1}{12\sqrt{2}N_c}(N_c - 3) \left| -\frac{1}{9\sqrt{2}N_c}(N_c - 9) \right| 0$ 0 $\Xi^{*0}\Xi^{0} \left| \frac{\sqrt{2}}{9} \right| \frac{\sqrt{2}}{9N_{c}}(N_{c}+3) \left| -\frac{1}{9\sqrt{2}N_{c}}(N_{c}-3) \right| 0$ 0 $\Xi^{*-}\Xi^{-} \left| \frac{\sqrt{2}}{9} \right| = -\frac{\sqrt{2}}{9N_c}(N_c - 3) \left| -\frac{1}{9\sqrt{2}N_c}(N_c - 9) \right| = 0$ 0

/= 0 Baryon Mass Operators

$$\begin{split} M &= M_0^1 + M_0^8 + M_0^{27} + M_0^{64} \\ M_0^1 &= c_{(0)}^{1,0} N_c \mathbb{1} + c_{(2)}^{1,0} \frac{1}{N_c} J^2, \\ M_0^8 &= c_{(1)}^{8,0} T^8 + c_{(2)}^{8,0} \frac{1}{N_c} \{J^i, G^{i8}\} + c_{(3)}^{8,0} \frac{1}{N_c^2} \{J^2, T^8\}, \\ M_0^{27} &= c_{(2)}^{27,0} \frac{1}{N_c} \{T^8, T^8\} + c_{(3)}^{27,0} \frac{1}{N_c^2} \{T^8, \{J^i, G^{i8}\}\}, \\ M_0^{64} &= c_{(3)}^{64,0} \frac{1}{N_c^2} \{T^8, \{T^8, T^8\}\}, \end{split}$$
(3.4)

Isosinglet Mass Combinations

$$N_{0} = \frac{1}{2} (p + n),$$

$$\Sigma_{0} = \frac{1}{3} (\Sigma^{+} + \Sigma^{0} + \Sigma^{-}), \text{ and } \Lambda$$

$$\Xi_{0} = \frac{1}{2} (\Xi^{0} + \Xi^{-}),$$

$$\Delta_{0} = \frac{1}{4} (\Delta^{++} + \Delta^{+} + \Delta^{0} + \Delta^{-}),$$

$$\Sigma_{0}^{*} = \frac{1}{3} (\Sigma^{*+} + \Sigma^{*0} + \Sigma^{*-}),$$

$$\Xi_{0}^{*} = \frac{1}{2} (\Xi^{*0} + \Xi^{*-}). \text{ and } \Omega$$

Scale of SU(3) flavor breaking

• One of many possible measures:

$$\epsilon \equiv \frac{1}{3} \sum_{i=1}^{3} \frac{B_i - N_0}{(B_i + N_0)/2} \approx 0.25$$

with $B_i = \Sigma_0, \Lambda, \Xi_0$

• Any other reasonable definition should give $\epsilon \approx 0.20-0.30$

The / = 0 Mass Combinations Special to 1/N_c

	Mass Combination	Large $N_c^{\rm F}$ suppression	Large $N_c^{\rm AS}$ suppression
M_1	$5(2N_0 + 3\Sigma_0 + \Lambda + 2\Xi_0) - 4(4\Delta_0 + 3\Sigma_0^* + 2\Xi_0^* + \Omega)$	$1/N_c$	$1/N_{c}^{2}$
M_2	$5(6N_0 - 3\Sigma_0 + \Lambda - 4\Xi_0) - 2(2\Delta_0 - \Xi_0^* - \Omega)$	ϵ	ϵ
M_3	$N_0 - 3\Sigma_0 + \Lambda + \Xi_0$	ϵ/N_c	ϵ/N_c^2
M_4	$(-2N_0 - 9\Sigma_0 + 3\Lambda + 8\Xi_0) + 2(2\Delta_0 - \Xi_0^* - \Omega)$	ϵ/N_c^2	ϵ/N_c^4
M_5	$35(2N_0 - \Sigma_0 - 3\Lambda + 2\Xi_0) - 4(4\Delta_0 - 5\Sigma_0^* - 2\Xi_0^* + 3\Omega)$	ϵ^2/N_c	ϵ^2/N_c^2
M_6	$7(2N_0 - \Sigma_0 - 3\Lambda + 2\Xi_0) - 2(4\Delta_0 - 5\Sigma_0^* - 2\Xi_0^* + 3\Omega)$	ϵ^2/N_c^2	ϵ^2/N_c^4
M_7	$\Delta_0 - 3\Sigma_0^* + 3\Xi_0^* - \Omega$	ϵ^3/N_c^2	ϵ^3/N_c^4

Cherman, Cohen & RFL, Phys. Rev. D 80, 036002 [2009]: Compare these results for N_C^F and N_C^{AS}

There's *no way* N_C^{AS} can give results that good. And yet, ...

- Take each M_i and form M_i ', the same combination with all "–" signs turned to "+" (Note that M_i ' is $O(N_C)$ [N_C^F], $O(N_C^2)$ [N_C^{AS}])
- Define the scale-independent ratios $R_i \equiv M_i / (1/2 M_i)$

 $e.g., M_3 = N_0 - 3\Sigma_0 + \Lambda + \Xi_0$

 $\rightarrow R_3 = (\mathsf{N}_0 - 3\Sigma_0 + \Lambda + \Xi_0) / [\frac{1}{2} (\mathsf{N}_0 + 3\Sigma_0 + \Lambda + \Xi_0)]$

• Compute the corresponding suppression factors S_i by replacing the masses in M_i and M'_i , with their N_C and ϵ scalings

e.g., in N_{C}^{F} , $M_{3} \sim \epsilon N_{C}^{0}$, $M_{3}' \sim N_{C} \rightarrow S_{3} = \epsilon/N_{C}$

 How good is the expansion? Define accuracy A_i ≡ ln(|R_i|/S_i) A perfect prediction has |R_i| = S_i → A_i = 0 A poor prediction has |R_i|/S_i > N_C or < 1/N_C Since ln(3) ≈ 1, the figure of merit is whether all A_i turn out to lie in a band of < 2 units wide around zero

News Flash:

The baryon mass spectrum demands a $1/N_c$ expansion, but does not strongly prefer $1/N_c^{F}$ to $1/N_c^{AS}$

What about the / ≠ 0 splittings?

$$N_{1} = (p - n),$$

$$\Sigma_{1} = (\Sigma^{+} - \Sigma^{-}),$$

$$\Xi_{1} = (\Xi^{0} - \Xi^{-}),$$

$$\Delta_{1} = (3\Delta^{++} + \Delta^{+} - \Delta^{0} - 3\Delta^{-}),$$

$$\Sigma_{1}^{*} = (\Sigma^{*+} - \Sigma^{*-}),$$

$$\Xi_{1}^{*} = (\Xi^{*0} - \Xi^{*-}),$$

$$\Lambda\Sigma^{0}$$

$$\Sigma_{2} = (\Sigma^{+} - 2\Sigma^{0} + \Sigma^{-}),$$

$$\Delta_{2} = (\Delta^{++} - \Delta^{+} - \Delta^{0} + \Delta^{-}),$$

$$\Sigma_{2}^{*} = (\Sigma^{*+} - 2\Sigma^{*0} + \Sigma^{*-}).$$

$$\Delta_{3} = (\Delta^{++} - 3\Delta^{+} + 3\Delta^{0} - \Delta^{-})$$

BUT:

- Δ and Σ^{\star} isospin splittings are poorly known
- $\Lambda\Sigma^0$ not directly measured

Eliminating them leaves just two I = 1 combinations at $O(1/N_{c}^{F})$ and none at higher order \rightarrow Can just choose isospin violation parameter ϵ' to soak up extra N_c in N_c^{AS}

Only one I = 2 and no I = 3 combinations remain

 \rightarrow No decisive prediction

Can the lattice tell us something?

Absolutely!

PHYSICAL REVIEW D 81, 014502 (2010)

Lattice test of $1/N_c$ baryon mass relations

Elizabeth E. Jenkins,¹ Aneesh V. Manohar,¹ J. W. Negele,² and André Walker-Loud³ ¹Department of Physics, University of California at San Diego, La Jolla, California 92093, USA ²Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ³Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA (Received 14 July 2009; published 7 January 2010)

 $1/N_c$ baryon mass relations are compared with lattice simulations of baryon masses using different values of the light-quark masses, and hence different values of SU(3) flavor-symmetry breaking. The lattice data clearly display both the $1/N_c$ and SU(3) flavor-symmetry breaking hierarchies. The validity of $1/N_c$ baryon mass relations derived without assuming approximate SU(3) flavor symmetry also can be tested by lattice data at very large values of the strange quark mass. The $1/N_c$ expansion constrains the form of discretization effects; these are suppressed by powers of $1/N_c$ by taking suitable combinations of masses. This $1/N_c$ scaling is explicitly demonstrated in the present work.

Can the lattice tell us something?

But:

- Preliminary calculations (RFL, unpublished) using lattice simulation results (LHP Collaboration) again show that 1/N_c^F and 1/N_c^{AS} work comparably well!*
- * Perhaps not so surprising—If the lattice simulations are good, they should give numbers close to experimental data

Magnetic moments: How many?

RFL & R. TerBeek, PRD 83, 016009 (2011)

- Observables: 27
 9 (octet, incl. Σ⁰Λ) + 10 (decuplet), + 8 (octet-decuplet transitions)
- Measured: 11
 8 (octet minus Σ⁰) + 2 (decuplet: Δ⁺⁺, Ω⁻) + 1 transition (Δ⁺p)
- Independent operators: 27
 [RFL & Martin, PRD 70, 016008 (2004)]

$O(N_c^1)$	G^{33}
$O(N_c^0)$	$J^3, G^{38}, \frac{1}{N_c}T^3G^{33}, \frac{1}{N_c}N_sG^{33}, \frac{1}{N_c^2}\frac{1}{2}\{J^iG^{i3}, G^{33}\}$
$O(N_c^{-1})$	$\frac{1}{N_c}T^3J^3, \frac{1}{N_c}N_sJ^3, \frac{1}{N_c}T^3G^{38}, \frac{1}{N_c}N_sG^{38}, \frac{1}{N_c^2}\frac{1}{2}\{J^2, G^{33}\}, \frac{1}{N_c^2}(T^3)^2G^{33}, \frac{1}{N_c^2}N_s^2G^{33}, \frac$
	$\frac{1}{N_c^2}T^3N_sG^{33}, \frac{1}{N_c^2}J^iG^{i3}J^3, \frac{1}{N_c^2}\frac{1}{2}\{J^iG^{i8}, G^{33}\}, \frac{1}{N_c^2}\frac{1}{2}\{J^iG^{i3}, G^{38}\}$
$O(N_c^{-2})$	$\frac{1}{N_c^2}J^2J^3, \frac{1}{N_c^2}N_s^2J^3, \frac{1}{N_c^2}(T^3)^2J^3, \frac{1}{N_c^2}T^3N_sJ^3, \frac{1}{N_c^2}\frac{1}{2}\{J^2, G^{38}\}, \frac{1}{N_c^2}(T^3)^2G^{38}, \frac{1}{N_c^2}N_s^2G^{38}, \frac{1}{N_c^2}N_s^2$
	$\frac{1}{N_c^2}T^3N_sG^{38}, \frac{1}{N_c^2}J^iG^{i8}J^3, \frac{1}{N_c^2}\frac{1}{2}\{J^iG^{i8}, G^{38}\}$

The Single-Photon Ansatz

• Each quark in any magnetic moment operator couples proportionally to its electric charge:

$$Q = T^Q \equiv T^3 + \frac{1}{\sqrt{3}}T^8 \qquad G^{iQ} \equiv G^{i3} + \frac{1}{\sqrt{3}}G^{i8}$$

• Only 4 indpt. operators otherwise conserving SU(3) flavor exist:

$$\mathcal{O}_1 \equiv G^{3Q}, \ \mathcal{O}_2 \equiv \frac{1}{N_c} Q J^3, \ \tilde{\mathcal{O}}_3 \equiv \frac{1}{N_c^2} \frac{1}{2} \{J^2, G^{3Q}\}, \ \mathcal{O}_4 \equiv \frac{1}{N_c^2} J^i G^{iQ} J^3$$

• SU(3) flavor breaking enters as *s* quark number N_s or spin J_s :

$$\begin{split} \varepsilon \mathcal{O}_5 &\equiv \varepsilon q_s J_s^3, \ \varepsilon \mathcal{O}_6 \equiv \frac{\varepsilon}{N_c} N_s G^{3Q}, \ \varepsilon \mathcal{O}_7 \equiv \frac{\varepsilon}{N_c} Q J_s^3 \qquad \mathsf{O}(\varepsilon \mathsf{N_c}^0) \\ \varepsilon \mathcal{O}_8 &\equiv \varepsilon q_s \frac{N_s}{N_c} J^3, \ \varepsilon \mathcal{O}_9 \equiv \varepsilon \frac{N_s}{N_c^2} Q J^3, \ \varepsilon \mathcal{O}_{10} \equiv \frac{\varepsilon}{N_c^2} \frac{1}{2} \{ \mathbf{J} \cdot \mathbf{J}_s, G^{3Q} \}, \\ \varepsilon \mathcal{O}_{11} &\equiv \frac{\varepsilon}{N_c^2} J_s^j G^{jQ} J^3, \ \varepsilon \mathcal{O}_{12} \equiv \frac{\varepsilon}{N_c^2} \frac{1}{2} \{ J^j G^{jQ}, J_s^3 \} \,. \end{split}$$

Magnetic Moments: How to handle the N_c's

- Denominator N_c 's come from 't Hooft scaling \rightarrow
 - In going from $1/N_c^{F}$ to $1/N_c^{AS}$, just replace $1/N_c^{1} \rightarrow 1/N_c^{2}$

[Scaling arguments alone cannot distinguish, e.g., 1/N $_{\rm c}$ from 1/(N $_{\rm c}$ – 2)]

- Numerator N_c 's come from combinatorics \rightarrow
 - In going from $1/N_c^{F}$ to $1/N_c^{AS}$, leave $N_c(N_c-1)/2$ as is

[Counting quarks properly in each state is essential to obtaining correct electromagnetic behavior: e.g., $Q_p-Q_n=1$, *etc.*]

Operator Demotion

- If two operators X₁, X₂ give the same O(1/N_c) matrix elements for each observable but give different ones at O(1/N_c²), X₁-X₂ is called a *demoted* operator of O(1/N_c²) (More accurate and incisive accounting of 1/N_c corrections)
- For magnetic moments: $\frac{1}{2}\varepsilon \mathcal{O}_8 + \varepsilon \mathcal{O}_9$, $-\frac{1}{3}\mathcal{O}_{11} + \mathcal{O}_{12}$, $\mathcal{O}_{10} \mathcal{O}_{12}$ demoted to $O(\varepsilon N_c^{-2})$, hence neglected; $\varepsilon \mathcal{O}_{13} \equiv \frac{1}{2}\varepsilon \mathcal{O}_5 + \varepsilon \mathcal{O}_7$ demoted to $O(\varepsilon N_c^{-1})$
- Left with 9 operators: 1 at $O(N_c)$ (G^{3Q}), 1 at $O(N_c^0)$, 2 at $O(\epsilon N_c^0)$, 2 at $O(N_c^{-1})$, 3 at $O(\epsilon N_c^{-1})$
- Since 11 observables, can perform least-squares fit to the 9 operator coefficients

Magnetic moment fit parameters

- After the demotions, the 9 surviving operators are:
 O_{1,2,3,4,5,6,8,10,13} (these include all explicit and implicit N_c factors)
- Isolate SU(3)-breaking parameter ε and set overall scale μ_0 of baryon magnetic moments to make leading coefficient $d_1 = O(1)$

$$\mu_z = \mu_0 \sum_{n=1}^9 d_{i_n} \, \varepsilon^{k_{i_n}} \mathcal{O}_{i_n}$$

• Fit to $d_{1,2,3,4,5,6,8,10,13} \rightarrow \text{are they all O}(1)$?

The Goldilocks fits

No 1/N_c factors: This fit's too soft!

$d_1 = +0.995 \pm 0.116$	$d_2 = -0.029 \pm 0.138$	$d_3 = +0.150 \pm 0.075$
$d_4 = +0.051 \pm 0.121$	$d_5 = -1.708 \pm 1.593$	$d_6 = -0.085 \pm 0.420$

 $d_8 = +0.535 \pm 0.829$ $d_{10} = -0.420 \pm 0.845$ $d_{13} = +0.178 \pm 0.420$

1/N_c^{AS}: This fit's too hard!

 $d_{1} = +0.976 \pm 0.023 \qquad d_{2} = -0.188 \pm 0.176 \quad d_{3} = +12.846 \pm 1.553$ $d_{4} = +5.289 \pm 2.743 \qquad d_{5} = -1.474 \pm 0.223 \qquad d_{6} = -1.147 \pm 0.491$ $d_{8} = +4.841 \pm 1.046 \quad d_{10} = -36.332 \pm 12.322 \qquad d_{13} = +1.218 \pm 0.490$

1/N_c^F: This fit's just right

 $d_1 = +0.992 \pm 0.044 \quad d_2 = -0.078 \pm 0.148 \quad d_3 = +1.363 \pm 0.272$ $d_4 = +0.461 \pm 0.489 \quad d_5 = -1.652 \pm 0.566 \quad d_6 = -0.288 \pm 0.438$ $d_8 = +1.588 \pm 0.865 \quad d_{10} = -3.727 \pm 2.852 \quad d_{13} = +0.499 \pm 0.438$

News Flash:

Baryon magnetic moments, despite being a smaller data set than masses, strongly prefer 1/N_c^F to 1/N_c^{AS} or to no 1/N_c expansion

Using the magnetic moment fit, one can predict all the rest

TABLE VIII: Best fit values for the 16 unknown magnetic moments in units of μ_N using the $1/N_c^{\rm F}$ expansion.

$\mu_{\Sigma^{*+}} = +2.62 \pm 0.35$	$\mu_{\Delta^-}=-3.09\pm0.16$	$\mu_{\Delta^0} = +0.00 \pm 0.10$	$\mu_{\Delta^{\!+}} = +3.09 \pm 0.16$
$\mu_{\Xi^{*-}} = -2.37 \pm 0.39$	$\mu_{\Xi^{*0}} = -0.12 \pm 0.33$	$\mu_{\Sigma^{*-}} = -2.73 \pm 0.35$	$\mu_{\Sigma^{*0}} = -0.06 \pm 0.32$
$\mu_{\Sigma^{*0}\Sigma^0} = +1.21 \pm 0.31$	$\mu_{\Sigma^{*0}\Lambda} = +2.65 \pm 0.32$	$\mu_{\Delta^{\!0}n} = +3.51 \pm 0.11$	$\mu_{\Sigma^0} = +0.65 \pm 0.11$
$\mu_{\Xi^{*-}\Xi^{-}} = -0.26 \pm 0.31$	$\mu_{\Xi^{*0}\Xi^0} = +2.30 \pm 0.33$	$\mu_{\Sigma^{*-}\Sigma^{-}} = -0.26 \pm 0.31$	$\mu_{\Sigma^{*+}\Sigma^{+}} = +2.69 \pm 0.32$

Taking stock

- How can less data tell us more?
 - Sole leading mass operator, 1, gives same mass to all baryons
 - Sole leading magnetic moment operator, G^{3Q} , gives different values even for isospin multiplets (*e.g.*, $\mu_n = -\frac{2}{3} \mu_p$)

• What would it take to do better?

- In the masses: Better decuplet $(\Delta, \Sigma^*, \Xi^*)$ isospin splittings
- In the magnetic moments: Better values for μ_Σ⁰_Λ, measurements of a few octet-decuplet transitions (*e.g.*, Σ^{*}Σ)
- What if both results persist?
 - Resolved for philosophical discussion: Could different observables obey different 1/N_c expansions, or is there a unique choice obeyed by all?

Conclusions

- The baryon mass spectrum demands a 1/N_c expansion (as has been known for 16 years), but does not strongly prefer one based on fundamental representation quarks 1/N_c^F to two-index antisymmetric representation quarks, 1/N_c^{AS}
- Baryon magnetic moments, despite being a smaller data set than masses, strongly prefer the 1/N_c^F expansion to 1/N_c^{AS} or to no 1/N_c expansion
- Just a few additional data points in either set would greatly sharpen these conclusions
- Then we can argue about what the 1/N_c expansion really *means*