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Abstract

In this talk we study the relation between gluon condensate and Wilson loop expectation value from

the point of view of holography. We find the related coefficient in the operator product exapnsion of

the small supersymmetric Wilson loop and speculate on its possible form in nonsupersymmetric QCD.
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I. INTRODUCTION

The object of our study is the gluon condensate, the nonperturbative vacuum expectaion

value of the scalar gluon operator

〈αsTr(G2)〉, (1)

introduced in the framework of QCD sum rules in [1]. This value plays a major role in the

QCD sum rules method and has a variety of phenomenological applications. For instance, one

can show, that the ρ and other meson masses are proportional to 〈αsTr(G2)〉1/4 and the energy

of QCD vacuum equals ε = − b
32
〈αs

π
Tr(G2)〉. So there are strong reasons to believe, that in the

real QCD the vacuum expectation value under consideration do not vanish. The usually used

phenomenological value of the gluon condensate is of order

〈αsTr(G2)〉 ∼ (200MeV )4. (2)

In the framework of the QCD sum rules the gluon condensate is a free parameter, which can

be adjusted, to get better phenomenological results. It was then interesting to try to measure

the condensate in the fundamental theory on the lattice, to find if it really exist. For this

purpose one can study the expectation value of the small Wilson loop operator.

W (C) =
1

Nc

〈Tr Pexp[

∮

C
igAµdxµ]〉 (3)

As was shown in [2], the sufficiently small Wilson loop can be presented in the form of the

operator product expansion, which looks like (omitting the input of the perturbation theory)

W (C) = 1− 1

48

〈αstr(G
2)〉

Nc

S2 + . . . , (4)

where S is the area of the Wilson contour C. This relation was a basis for the lattice study of

the gluon condensate, which has got a reasonable value, while the procedure of subtracting of

the perturbatie input to the Wilson loop is not well defined [3].

II. THE GLUON CONDENSATE IN THE HOLOGRAPHY

In the gauge/gravity duality the gluon condensate can be calculated in two, for the first

sight unrelated, ways. First of all, as the gluon condensate is a vacuum expectation value of
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certain operator, it can be extracted as a coefficient in front of the normalizeble mode of its

dual field in the supergravity [4]. In fact there is a general way to show, that the field, dual to

the Tr(G2) operator is dilaton [15]. That means, that to describe a field theory with nonzero

gluon condensate we need to consider the supergravity background with nontrivial normalizeble

mode of the dilaton field

φ = φ0 + φ4z
4, (5)

where z is a distance from the boundary of holographic background.

From the other hand, one can study the area of the minimal sufrace, spanned on the contour

with a small radius on the boundary, which relates to the expectation value of the field theoretic

Wilson loop on this contour, and get the value of the gluon condensate as a coefficient in its

small size expansion in the spirit of lattice calculation.

To find out, if these ways are equivalent, we will take the supergravity background with

nontrivial dilaton, compute the gluon condensate there and then calculate the small Wilson

loop to check the relation (4).

We note here, that the applicability of our approach to QCD is rather subtle, because the

OPE (4) is valid at small enough size of the loop (namely r ¿ 〈αsTr(G2)〉(−1/4)), what implies

large enough energy scale. From the other hand, the supergravity description is valid only when

the coupling constant is large, what in the QCD implies a small energy scale. Recall thought,

that in the QCD the coupling becomes large already at the scale of 1GeV , that means, that

there is a window in the energy scale, where our approach is applicable.

III. THE SUPERSYMMETRIC CASE

The simple supergravity background, possessing the feature 5 and thus involving nonzero

gluon condensate, is that of D-instanton smeared on the D3-branes [5]. This background in the

string frame has the metric

ds2
D3|str =

L2

z2

√
h−1(dxµdxµ + dz2 + z2dΩ2

5) (6)

and dilaton

eφ = gsh−1, h−1 = 1 +
q

λ
z4 (7)
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The curvature radius of the AdS is related to the string coupling gs (the dilaton asymptotic

value) as L4 = λl4s , where ls =
√

α′ is a string length scale and λ = gs = Ncαs is a t’Hooft

coupling in the field theory.

To proceed with our study of the gluon condensate 〈αstr(G
2)〉 we need to fix the relation

between the dilaton field and αstr(G
2) as it was done in [6]. By the symmetry arguments we

can state, that the supergravitational dilaton field is dual to the gauge theory operator Oφ,

which is proportional to scalar gluon operator: Oφ = cφαstr(G
2). Hence, by the standard

AdS/CFT recipe [4, 7] the boundary value of the dilaton field is treated as a source of Oφ and

its normalizable mode as a vacuum expectation value 〈Oφ〉. We can compute the two-point

function 〈OφOφ〉 to fix the coefficient cφ. In order to do this we need to calculate the classical

action of the dilaton fluctuation and take the second variation with respect to its boundary

value. The kinetic term of the dilaton field has a canonical form in the Einstein frame metric,

which is defined as GE =
√

gse
− 1

2
φGS. In the Einstein frame the part of the supergravity action,

that we are interested in, is

SE =
1

(2π)7l8s

∫
d10x

√
GE

(
−1

2
∂Aφ∂Aφ

)
(8)

= − N2
c

4(2π)2

∫
d4xdz

1

2z3

(
(∂zφ)2 + (∂µφ)2

)
(9)

In the last line we assumed, that there is no dynamics along S5-sphere, and used the definition

of L given above. The solution to the equation of motion near the boundary is

ϕ(z, Q) =
Q2z2

2
K2(Qz), ϕ(0, Q) = 1, (10)

where Ki is McDonald function of the second kind. Substituting this solution back into the

action and taking the second variation we get the expected two-point function. In the leading

order of large Q expansion it is just the conformal result

〈OφOφ〉 =
N2

c

4(2π)2

1

2
ϕ(z,Q)

∂zϕ(z, Q)

z3

∣∣∣∣
z=ε

=
N2

c

4(2π)2

1

8
Q4ln(Q2ε), (11)

where ε is a AdS space cutoff, which is related to the UV cutoff in the quantum field theory. This

expression can be compared with the leading order in the large Q expansion of the correlator

of scalar gluon operators, found in the QCD sum rule approach [8]

〈tr(G2)tr(G2)〉 =
N2

c − 1

4π2
Q4ln(Q2ε2), (12)
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and this comparison in the large Nc limit allows us to fix the operator, dual to the dilaton

Oφ =
1

4
√

2
trG2 (13)

Similarly, we can compute the vacuum expectation value of Oφ. As in the considered background

the classical profile of the dilaton has a normalizable branch, φ = q
λ
z4, we find nonzero result

〈Oφ〉 =
Nc

4(2π2)
ϕ(z, Q)

φ(z, Q)

z3

∣∣∣∣
z=ε

=
Nc

αs(2π2)
q (14)

Thus, we find the desired expression for the gluon condensate in this model

〈αstr(G
2)〉 ≡ 4

√
2αsOφ = Nc

4
√

2

(2π)2
q (15)

Note that the final relation doesn’t include αs, and as 〈αstr(G
2)〉 ∼ Nc, q do not depend on

Nc. Therefore all the dependancies on Nc and αs are reproduced by hologrphy.

Now we can check the validity of the relation (4) in the D3-model. In order to compute

the Wilson loop via holography one need to study the minimal area of the string worldsheet

spanned on the Wilson contour on the boundary of the bulk space [9]

〈W (C)〉 = e−Area(C). (16)

The area of the string worldsheet, that we are interested in, is described by the Nambu-Goto

action in the string frame

SNG =
1

2πl2s

∫
d2σ

√
g, (17)

where g is the induced two-dimensional metric on the worldsheet. In the string frame metric

of the D3-model (6) the action (17) for the circular Wilson contour of the radius R takes the

form (we expand the metric in q, because q ∼ Λ4
QCD and we are considering the worldsheet in

the region of the bulk space z ∼ R ¿ Λ−1
QCD)

SNG =
2π

2πl2s

R∫

0

dr
L2

z2
r
√

ż2 + 1

(
1 +

qz4

2
+ O(q2z8)

)
. (18)

We assumed here the parametrization of the worldsheet by the radius and angle variables and

performed the integration over the latter due to the symmetry of the problem. At this stage
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we end up with one-dimensional problem of finding the solution to the equation of motion,

following from (18). This solution at q = 0 has a simple form [10]

z0(r) =
√

R2 − r2, (19)

And after the substraction of linear divergence gives a constant contribution to the area of the

minimal surface. We can calculate the correction due to the gluon condensate to the Wilson

loop expectation value using the perturbation theory on qz4. Plugging this correction into the

action (18) gives us the final result:

δ〈W 〉 ∼ L2

l2s

1

18

q

λ
R4 ∼ 1√

λ

〈αstr(G
2)〉

Nc

, (20)

where we used the result (15) and expanded the exponent in (16). On the first sight the

result is rather discouraging, because we get the wrong power of λ. But one should not be

surprised, because in fact from the very beginning the D3-model does not describe real QCD.

The holographic dual of D3-model under consideration is instead the N=4 supersymmetric

Yang-Mills theory in the background self-dual field, which breaks half supersymmetry [5]. We

note however, that the obtained relation is sensitive only to the near boundary behavior of the

dual geometry, so it will hold in other D3-based models too (for instance [11, 12]). Hence, we

state that what we have obtained (20), is the value of the coefficient in the operator product

exapnsion of the small Wilson loop in the strongly coupled, supersymmetric quantum field

theory with gluon condensate.

IV. QCD CASE

To describe QCD holographicaly one need to introduce the gravitational background, where

supersymmetry and conformal symmetry are broken. As we have already mentioned, in the

models, based on D3 brane background [11, 12], the OPE of the Wilson loop will look like (20).

But these are not the only case. For instance, the Sakai-Sugimoto AdS/QCD model [13] is

based on the D4-brane background, developed in [14]. For generality, we will consider the case

of Nc p-branes here. For arbitrary p this supergravity solution in the string frame looks as (see

[15] for a review)

ds2
p|str = h−

1
2 ηabdxadxb + h

1
2 (du2 + u2dΩ2

8−p), (21)
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with dilaton

eΦ = gsh(u)−
p−3
4 , (22)

where in the throat limit

h(u) =

(
L

u

)7−p

, (23)

L7−p = dpgsNcl
7−p
s , (24)

dp = (4π)
5−p
2 Γ

(
7− p

2

)
, (25)

and indices a, b denote the (p+1)-dimensional space parallel to p-brane. We can make the

coordinate transformation

u =

(
2

5− p

)− 2
5−p

L
7−p
5−p z−

2
5−p (26)

which brings the metric to the conformaly flat form (Poincare form), similar to (6)

ds2
p|str =

(
5− p

2

L

z

) 7−p
5−p

(
ηabdxadxb + dz2 +

(
2

p− 5

)2

z2dΩ2
8−p

)
. (27)

Given this expression we can easily compute the induced metric on the string worldsheet with

circular boundary and hence the Nambu-Goto action (17).

SNG|Dp =
1

2πl2s

R∫

0

dr

(
5− p

2

L

z

) 7−p
5−p

r
√

ż2 + 1 (28)

We note, that the string coupling constant gs as well as Nc enter this expression only via the

parameter L. Making this dependence explicit, we find

SNG|Dp ∼ (gsNc)
1

5−p ∼ λ
1

5−p (29)

We see now, that the dependance of the Nambu-Goto action on
√

λ is rigidly related to the

dimension of the underlying D-brane worldvolume. Let’s consider the case of p=4, the Sakai-

Sugimoto model. The string frame metric of this setting in the conformal coordinates (26)

is

ds2
str =

(
L

2z

)3 (
ηµνdxµdxν + f(z)dτ 2 +

1

f(z)
dz2 + 4z2dΩ2

4

)
. (30)

7



Here the τ dimension is compactified with the period δτ = 16π
3

z0, the black hole warp factor is

f(z) = 1− z6

z6
0

and µ, ν stand for usual 4D space indices. The dilaton is

eΦ = gs

(
L

2z

) 3
2

(31)

The parameter L is related to string coupling constant as

L3 = πgsNcl
3
s (32)

The relation between gs and field theory coupling constant can be established similarly to the

D3 case

gs =
2

3π

z0

ls
g2

Y M . (33)

Let us note here, that the metric (30) is not conformal from the very beginning, as the

rescaling of 4D coordinates can’t be absorbed now in the rescaling of z. It is not asymptotically

AdS and its curvature behaves as 1
z
, making the classical gravity approach inapplicable near the

boundary. Therefore the quantum gauge theory, dual to this geometry is not asymptotically

free. This is a significant obstacle for us, because now our method of the dilaton operator

normalization (11) is useless. Indeed, in the asymptotically non-free theory the consideration of

perturbation theory leading divergence (12) is not legitimate even in the limit of asymptotically

large momenta. Thus, if we consider the perturbation of dilaton profile by the dimensionfull

quantity q (as in the preceding section), we can not unambiguously fix its relation to the gluon

condensate.

Nevertheless, let us assume, that in QCD the similar to (15) simple relation between the

dilaton profile and gluon condensate holds at least parametricaly. In this case, we can proceed

in our calculations.

The Nambu-Goto action in the D4-brane background (30) is (from now we omit all numerical

factors, as we are interested on parametrical dependence only), see (29),

SNG|D4 ∼ (gsNc)ls

R∫

0

r

z3

√
1 + f(z)ż2 (34)

Note, that the scale of compactification z0, enters now the equation of motion for z(r) via the

warp factor f(z). We do not know the solution to the classical equation of motion, but we can
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analyze it from the dimensional considerations. The integral in (34) has a dimension (-1) in

the length units. There are two scales: R and z0, that can compose this dimension, but in the

limit R → 0 the integral must remain finite, to agree with the leading term of (4). Therefore

the value of the integral, computed on the classical solution must have the form 1
z0

g(R), where

g(R) has no negative powers of R. If we introduce now the parameter q/λ of dimension (-4) in

the dilaton profile, similarly to (20) it will enter this function as g(R) = const+ q
λ
R4 +O(q2R8).

At the end of the day we can find the parametric structure of the gluon condensate correction

to the small Wilson loop

δ〈W 〉 ∼ (gsNc)
ls
z0

(
q

λ
R4 + . . . ) ∼ 〈αstr(G

2)〉
Nc

S2, (35)

where we used the expressions for gs (33) and q (15). Interestingly, it is just the behavior,

presented in (4).

V. CONCLUSION

In this talk we showed, that the OPE coefficients of the small Wilson loop, computed in

holography, depend strongly on the basic features of the backround of the model under consider-

ation, namely the dimension of the underlying D-brane and are insensitive to the deformations

of the background, vanishing at the boundary. We calculated the strong coupling behaviour of

the coefficient in the case of supersymmetric field theory, dual to D3 background, and studied

its parametrical structure for the nonsupersymmetric, nonconformal theory, dual to D4 back-

ground. We found the interesting coincidence of the latter result with the QCD relation (4),

athough this result should be considered only as a hint for future model building, as the D4-

based holographic model does not have an asymptotic freedom behaviour and can not pretend

on describing the QCD coupling constant properly.
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