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Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.
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Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

— It is known to two—loop order in perturbation theory and classically and at

one—loop in string theory.
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Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of
antiparallel lines.
e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

— It is known to two—loop order in perturbation theory and classically and at

one—loop in string theory.

e Can we do any better?
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Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

— It is known to two—loop order in perturbation theory and classically and at

one—loop in string theory.
e Can we do any better?

e Shouldn’t integrability allow us to calculate this for all values of the coupling (in the

planar approximation)?
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Wilson loops in N = 4 super Yang-Mills

~

e The usual Wilson loop is

W = Tr P exp [7{ 1A, xt ds]

[Maldaeena} [Rey, Yee}

e The most natural Wilson loops in N/ =4 SYM include a coupling to the scalar fields

W = TrPexp [jl{ (¢4, 3" + ]i]@l@f)ds]

61 do not have to be constant.

e For a smooth loop and |#?| = 1, these are finite observables.

e The scalar coupling is natural for calculating the potential between

W-bosons.
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[Maldaeena} [Rey, Yee}

Wilson loops in N = 4 super Yang-Mills

The usual Wilson loop is
W = Tr P exp [7{ 1A, xt ds]
The most natural Wilson loops in N/ = 4 SYM include a coupling to the scalar fields
W = TrPexp [jl{ (¢4, 3" + ]i]@l@f)ds]

61 do not have to be constant.

For a smooth loop and |#!| = 1, these are finite observables.

The scalar coupling is natural for calculating the potential between
W-bosons.

For a pair of antiparallel lines
(WYy=~exp | —TV(L,\)

In a conformal theory we expect

vz, = 10
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e Explicit calculations at weak and at strong coupling:

f— + A 1 o + A< 1
R n — o o o
AL  8m2L L

V(L,\) = <

1 A> 1
4
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e Explicit calculations at weak and at strong coupling:

D A1

/

_ In — c pY 1
inL " 8m2L Ux T <
V(L,\) = <
Am2\/\ (1 1.3359... ) s
\T(1)* L VA
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e LExplicit calculations at weak and at strong coupling:

[ + A ] ! + A< 1
—_ n_ e o o

AL~ 8m2L )\

472/ )\ (1 1'3359"'+ )
(D(3)* L VA

e Hard to guess how to connect these two regimes.

VI(L,A) = §
A>1

e Could go to O(A\3) and O(\*).
e We will add extra parameters and study a larger family of observables.

e Thus gather more information to help guess an exact interpolating function.
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e Introduction and motivation

Outline

e Generalized quark-antiquark potential

e Perturbation theory calculation
e (Classical string surfaces

e One loop string determinants

e Expansions in small angles

e Summary
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Generalized quark-antiquark potential

e The straight line and circular Wilson loop are 1/2 BPS.

e Their expectation value is known exactly.
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Generalized quark-antiquark potential

e The straight line and circular Wilson loop are 1/2 BPS.

e Their expectation value is known exactly.

e Can we somehow view the antiparallel lines as a deformation of the circle/line?
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e We take the following family of curves:
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e We take the following family of curves:

e These are pairs of arcs with opening angle
™ — .
e ¢ =0 is the 1/2 BPS circle.

e ¢ — m gives the antiparallel lines. L
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e We take the following family of curves:

e These are pairs of arcs with opening angle
™ — Q.
e ¢ =0 is the 1/2 BPS circle.

e ¢ — m gives the antiparallel lines. L

—4 —2
e Can have each line couple to a different scalar
field
0 0 0
®4 cos 54—(1)2 sin 3 and ®4 cos 5—@2 sin 3

e Gives another parameter: 6.
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We take the following family of curves:

These are pairs of arcs with opening angle
™ — Q.
¢ = 0 is the 1/2 BPS circle.

¢ — m gives the antiparallel lines. L

—4 —2
Can have each line couple to a different scalar
field
0 0 0
®4 cos 54—(1)2 sin 3 and ®4 cos 5—@2 sin 3

Gives another parameter: 6.

Crucial point: Calculations are no harder than
for the antiparallel case!
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e By a conformal transformation which maps one cusp to infinity:

/
\\ [y /
\ . 7/
\ % 7/
\ //
W 4d .
N ‘\ :' 4
. w2 S04
~ . v .
~ N ' ':' , -~ -
A )
~ N\ ¢ 7/ Y
S~ NN S -~
~ ~ ~ \‘ V4 -
—4 —2 2 4
—2
—4

e This is a cusp in Euclidean space.

e Taking ¢ = iu and u — oo gives the Lorenzian null cusp.
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e By the inverse exponential map we get the gauge theory on S? x R

e These are parallel lines on S? x R.
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e From this last picture we expect

(W) ~exp| —TV(,0,})

e The same is true for the cusp in R* with

T:logﬁ
€
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e From this last picture we expect

(W) ~exp| —TV(,0,})

e The same is true for the cusp in R* with

Tzlogﬁ
€

e This V (¢, 0, \) is the generalization of V (L, \) we study.

e For ¢ — m it has a pole and the residue is LV (L, \).
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e From this last picture we expect

(W) ~exp| —TV(,0,})

e The same is true for the cusp in R* with

Tzlogﬁ
€

This V (¢, 0, \) is the generalization of V (L, \) we study.

e For ¢ — m it has a pole and the residue is LV (L, \).

e Expanding at weak coupling

V(,0,) =

e And at strong coupling

V(,0,) =

N

2.

n=1
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Weak coupling

1-loop graphs

e Just the exchange of a gluon and scalar field

e This graph is given by the integral

8/\<W>‘>\:0 = /ds dt (—A(s) - A(t) + P(s) - (1))
A —i, (s)zH(t) + 01 (s)0! (¢)
=52 | BT ) —sr
A cosf) —cosp A cosb —cos¢ R
872 /ds s2 +12 4 2stcos¢p 8w sin ¢ ¢log €

e Therefore
cos  — cos ¢

sin @ ¢
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2—loop graphs

e Ladder graphs are quite easy.

~

[Makeenko, Olesen, Semenoﬁ}

V(2 —

03 [1og <W>}

B 1
x=0 2log &

e In (W) we include only planar graphs.

° Vlg?der is therefore minus the non-planar graphs.

N

(W) — (0A(W))?]

A=0
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2—loop graphs

N

e Ladder graphs are quite easy.

B 1
x=0  2log &

Ve = ~ 33 [ log ()] W) = (@a (7)Y

A=0

e In (W) we include only planar graphs.

° Vlgi)der is therefore minus the non-planar graphs.

e This graph is given by the integral

A2 (cos ¢ — cos 0)?
dsy ds dty dt
(4m)* /31<32 P /tl<t2 P (S% + t% + 251t cos qb)(s% + t% + 259t COS @)

X% (cos® —cos¢)?
6474 sin® ¢

. 2i¢ . . 21¢ 72 v 3 R
Liz (%) — ¢(3) — i¢  Liz (e HE + 397 | log —

e Dividing by —% log % we get ‘/lgl)der

~

[Makeenko, Olesen, Semenoff}
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/ e Interacting graphs are a bit more complicated. \

e There are bubble graphs and the single cubic vertex graphs.
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/ e Interacting graphs are a bit more complicated. \

e There are bubble graphs and the single cubic vertex graphs.

e One of the lines is always a gluon. It is a total derivative, giving two contributions
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/ e Interacting graphs are a bit more complicated.

e There are bubble graphs and the single cubic vertex graphs.

e One of the lines is always a gluon. It is a total derivative, giving two contributions
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e Remaining graph involves the triangle graph

e It is given by the integral

cos  — cos ¢

A2 ,
dtds [ d
6476 / ’ / Y 1z(s)

— w2 [z(t) — w|? |w|?
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e Remaining graph involves the triangle graph

e It is given by the integral
cos  — cos ¢
dtds | d*w
647T6 / S/ —wl () — w] [w]?

e The integration over w can be done exactly and gives a function (with dilogarithms) of

s/t and .

e Doing the integral over s and ¢ and dividing by — log 3 L gives

4 cosf — cos ¢
3 sin @

v (6,0) = < (7% — ¢%)¢
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e Remaining graph involves the triangle graph

e It is given by the integral
cos  — cos ¢
dtds | d*w
647T6 / S/ —wl () — w] [w]?

e The integration over w can be done exactly and gives a function (with dilogarithms) of

s/t and .

e Doing the integral over s and ¢ and dividing by — log 3 L gives

4 cosf — cos ¢

<¢7 )_3 Sln¢

(7% — ¢%)¢

e The result is simpler than the ladder graphs and closely related to 1-loop:

2

Vir (9,0) = =2 (x* = ")V (9,0)

\ First sign of simplification for this set of observables... /
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/ String theory calculation \

Classical string in AdSs x S*

e The boundary conditions are lines separated by m — ¢ on the boundary of AdS and 6
on S°.

o All the string solutions fit inside AdS3 x S*
ds® = VA (— cosh? p dt? + dp® + sinh? p dy? + dv?)

N
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String theory calculation

Classical string in AdSs x S*

N

The boundary conditions are lines separated by m — ¢ on the boundary of AdS and 6
on S°.

All the string solutions fit inside AdS3 x S*
ds® = VA (— cosh? p dt? + dp® + sinh? p dy? + dv?)

As world—sheet coordinates we can take ¢t and ¥ rescaled

VT e

bq bp

and then

The Nambu-Goto action is

A
Sng = \2/—; /dt dy Cosh,()\/simh2 p?+p?+1

Two conserved quantities are
¢ sinh? p cosh p
V/sinh? p 2 + p2 + 1

cosh p

Vsinh? p’? + p2 + 1 /

/5 4 =
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e The resulting equations are elliptic.

o b »  (b?sinh” p — 1)(b2 + p? sinh” p)
LY + p2)sinh* p’ P b* + p2) sinh® p
P
With
1 J 1 b2 (b — p?)
= —— = — b2 — ( _ _ 4 2) k2 —
p=-% 4=7 S (PP )+ "

e The solution is

1+0b?
h®p= ——
OS2 en2 (o)

7y p2 2 ’
— 4 (U ; H<b4+p2aam(0 +K)[E*) + H(b4+p2 L )>

AN

where am(x) is the Jacobi amplitude and K the complete elliptic integral.

e The initial value is then

¢ _m p? < bt 1.2
2 2 by/bt+p? (i) en |

e These are transcendental equations for p, ¢ in terms of 6, ¢

N /
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e The induced metric is

1 — k2
2 _ 2 2
dsi g = VA n2(0) [—dT +do ]

e The classical action can also be calculated

TV \/b* (b% +1)p
Se1 = \/_/dtdgopcosthsthp_ VA + P T K—E

T bp b4+p

e This determines Vf(l d)S as a function of p, ¢ and implicitly in term of ¢, 6.
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e The induced metric is

1 — k2
2 _ 2 2
dsi g = VA n2(0) [—dT +do ]

e The classical action can also be calculated

TV \/b* (b% +1)p
Se1 = \/_/dtdgppcosthsthp_ VA + P T K—]E

T bp b4+p

e This determines Vf(l d)S as a function of p, ¢ and implicitly in term of ¢, 6.

e We can also expand around ¢ = 60 = 0

1 1

Vids(#:6) =~ (6 = ¢*) — o5 (6" = *) (6% — 5¢°)
+ 641”5 (607 — ¢*) (6% — 146%¢* + 37¢%)
-5 4187T7 (0% — ¢*) (0° — 270 ¢ + 2916°¢* — 585¢°) + O((¢,6)"°)

N /
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/1—100p determinant \

e At one-loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.
e Such a calculation was done long ago for a confining string by Liischer.

e The “Liischer term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

e We have to repeat the calculation in the AdSs x S° sigma model.

N /
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/1—100p determinant

N

At one-loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.
Such a calculation was done long ago for a confining string by Liischer.

The “Lischer term” is proportional to the number of transverse dimensions and
always has a Coulomb behavior.

We have to repeat the calculation in the AdSs x S° sigma model.

We need the full metric
ds® = (cos.h2 pdt? + dp* + sinh” p (da? + cos® x1(dx3 + cos® v2 dp?))
+ dx3 + cos® 13 <d$i + cos” x4 (dxg + cos® x5 (dag + cos® zg dﬁz)))> :
We define the fluctuation modes
p=plo)+dp, w = p(a) + dp, v =Y(o) + 4V, r;, 1=1,---,6

After fixing the static gauge it results in the bosonic Lagrangean

£B:_\/§ gabaaCPabCP+MPQCPCQ ’ PaQ:17"'78

with a complicated mass—matrix Mpg.

~
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e Generically the mass matrix is nondiagonal.
o If we set either # = 0 or ¢ = 0, it is diagonal.

e We calculated the determinants in these cases.
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e Generically the mass matrix is nondiagonal.
o If we set either # = 0 or ¢ = 0, it is diagonal.

e We calculated the determinants in these cases.

The case of § = ()

e The resulting determinant is

det4(z"yi @z — ")/3)

Z_

e All derivatives are with the world—sheet metric.

—02 4+ w?

Oo = /9 (=V?)

Olz\/g(—v2+2):—a§_+w2+2

)
0= /g (-V?+R® +4) = —82 +w +

N

(1 — &%)

cn?(o)

(1 — &%)

cn?(o)

 det(=V2 +2) det'/?(=V2 + R®) + 4) det?/?(—V?2)

e This is formally the same for all ¢, except for the different world—sheet metrics.

e The bosonic fluctuation operators are (after Fourier transform 0, — iw)

— 2k? cn?(0)

/
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e All the differential operators can be written as Lamé operators

—02 + 2k*sn?(0|k?)
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e All the differential operators can be written as Lamé operators

e Explicitly

—02 + 2k*sn?(0|k?)

O, = (1-k?) [—agl +w? + 2k%sn2(oy + zK;\kf)}

Oy = (1 — K2)(1 + k1 )? [—832 + w2 4 2k2sn2(oy + z’Kg\kg)}

4k

k2 —
2 1+ k)2

01:’\/1—k20+K1
09 — <1+k1)<‘\/1—]€20+K1)

e A similar expression exists for the fermions.

2 w?
wl_
1 — k2
2
2 _ W 2
Wy 2

Nadav Drukker
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/1d determinants through the Gelfand-Yaglom method \

e The general solution to the Lamé eigenvalue problem
32 + 2% sn(el#2)] £ () = A f (@)

is explicitly known

H(r =« 1
y+(x) = %fﬁmzm) sn(a|k?) = E\/l + k%2 —A

e We can write down the solution satisfying

e Then

N /
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/1d determinants through the Gelfand-Yaglom method

e The general solution to the Lamé eigenvalue problem

82 + 2% sn’(alk?)] £(2) = A f(2)
is explicitly known
H(ZU + Cl{) T Z(a) 2
= " k) 1+ k2 —A
vel(o) = =g e sn(alk?) = V14
e We can write down the solution satisfying
u(—K) =0, v (-K) =1
e Then
det O = u(K)

e Actually need to worry about divergences from the boundary, so introduce a cutoff at
o==1(K-—e¢)

e The regularized u is

Yt (— K+f) _(0) —y-(-K+¢€)ys (o)

u(o) =

N

yi(— K—i—e)

L(-K+e6) =i (-K+e)y-

(—K+¢)

/
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/ e This gives the explicit answers like
(k%2 — 1) ns?(eq, k7) — 2k% +w? + 1

~

/

det O1 = sinh (2Z(a1)(K; —€1) + X
= T S (e — )+ 3)
with ( |
19 (a1 +e€ ’
>, =1In 4(W(Zﬂfle> 7 e =/1_K2e
194( 2K, DQ1>
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/ e This gives the explicit answers like \

k? — 1) ns?(e1, k?) — 2k* +w? + 1
1

det O; = sinh (2Z(a1)(Ky —€1) + X
L VR -3 1) — 2K — (W £ 1)° (22(ca) (s = 1)  2)
with ( |
19 (o1 +e€ ,
21 — In 4(7T((2)4K16) Q1) €1 = V 1— k‘2 €
194( 2]11§1 le)
e The determinant depends only on the leading term of the expansion in €
inh(2K
det OF = sinh(2K w)
w
det OF = — sinh(2K; Z (o))
e2y/(w? — k2)(w? — k2 +1)(w — 2k2 + 1)
inh (2K, Z
det O5 = sinh (2K Z{az))
e2(1 — k2)3/2(ky + 1)3/(w? + k2) (w2 + 1) (w2 + k2 + 1)
et O 8Kz /w2 + k2 sinh(Ky Z(ap)) 92(0, g2) V4 (55, q2)
€ F —

em(1 — k2) (k1 + 1)2y/(w? + 1) (w? + k3 + 1) 91(0, g2) 93 (55 ¢2)
e After removing a divergence we find (7 is a cutoff on 7)

T . T dw €202 det® 0%
2 20 )_o 2 det’ OF det” Of det Of

N /
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e This can be integrated numerically to high precision

10 - }

' i
/ !
/ ,' Blue: V1 (g,0)
i / : Green: V) (¢, 0)
i : :
-/ i Red: Vig(6,0)
: // A Purple: V/(Xd)s(ﬁba 0)
() ———mmre—————m e I L
I \71'/71\\ /2 Rz g, -
\ \\ .
AN \
_5 L \ “
\ |
\ !
—10 - \ ||

N /
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e This can be integrated numerically to high precision

10 : I
/ i
/. ,' Blue: V1 (g,0)
’ / : Green: V(Q)(gb,())
-/ i Red: Vigg(6,0)
I // A Purple: Vf(l d)s(ﬁba 0)
() ———mmre—————m e I L
7 \W/Z\\ 7T/2 %%7&'&'{ ...... T
7 \ \\ ~
N \
\ |
\ !
—10 7 \ ll

e The 1d determinants can also be expanded about ¢ = 0 and evaluated analytically

3 $2 4 223 15 6
Viis(0.0) =515+ (5 -3¢0 1o+ (5 - 540 - 3400 s

14645 229 55 315 ¢S
+ (g - 2260 - 2606) - 320 ) s +06)

Nadav Drukker 24-3,
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The case of ¢ =0

N

e Everything can be done in that case too.
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The case of ¢ =0

e Everything can be done in that case too.

e At the end the small 6 expansion gives

/

™ 0.0 =35 (5_ % (L 3p5_ 15 o
Viais(0,9) = SYr= (8 36(3) 167t " \8 " 2C<3) 2 <) 6476
11 5 25 315 63
- 2¢6) - =2 0(6™°
- ( 158 ~3¢@+ 70— 75 C(7)) 25678 T 00
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Our main result:

Explicit expressions for these families of Wilson loops at weak and strong coupling.

N
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e VO, v@ v ang v§

e In perturbation theory

1)
ds

b — 7 limit

all have poles at ¢ =7

/

A 1+ cosb A% (1 + cosf)? e .
V(p,0) — — log — + O(\
(9,6) 8T w— ¢ 3213w — ¢ e 2(m — @) + O
Nadav Drukker 27 generalized potential



b — 7 limit

o VI V(@) Vf(&g and fo?g all have poles at ¢ =
e In perturbation theory

A 1+ cosb A% (1 + cosf)? e
8T w— ¢ 3213w — ¢ 2(m — @)

Vi(,0) — +0(\%)

e In the case of 6 = 0 we get essentially the same as the antiparallel lines with

L—m—¢
D) X2 T
_ In — + ... A< 1
L Tseen T T <
V(L,\) = ¢
472/ \ (1 1'3359'-'+ ) s
(D(3)* L VA

e The strong coupling calculations also agree in the limit.

N /
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Small / and ¢ expansions

e Consider the expansion of V (¢, 0, \) at small ¢ or 6

1 92
Qwv(ﬁb,@,)\)

$p=6=0

( \ )\2

167 V(.6 A)| ) 1672 38472
2 02 T  p=0=0 v\ 3
472 872

+ - Ak

A>1

/
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Small / and ¢ expansions

e Consider the expansion of V (¢, 0, \) at small ¢ or 6

SOV o | =1L v

2 002 d=0=0 2 0> p=0=0

— What does this calculate?
— How do we calculate this?

— Can we find an exact interpolating function?

A A2
_ N < 1
1672 3847r2+ <
A 3
VA _ 3 . A1

472 872

/
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e In terms of the Wilson loop

0? 1 0?2 1 0?
. S ~——— 2 W),
002 qu In % 00?2 a5 {117 In % 002 )

e Write the Wilson loop as

0 o0
W =TrP [exp (/ (1A + <I>1)d5> exp (/ (1A1 + @1 cosf + Py sin 9)d$>]
0

— 00

N /
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e In terms of the Wilson loop

0? 1 0?2 1 0?
7 7 ~——— W),
002 qu In % 00?2 a5 {117 In % 002 )

e Write the Wilson loop as

0 o0
W =TrP [exp (/ (1A + Cbl)d5> exp (/ (1A1 + @1 cosf + Py sin 9)d3>]
0

— 00

e The variation gives

10* 1 I - [ (iA1+®1)ds
2002 = (Lo 2N/0 d51/0 dsa (TEP [@(s51)Ba(s2) e )
11 o
T @ f_oo(lAl—i—(Dl)dS )
T (L)) 2N/0 dsi (TrP |B1(s1) e )

e These are insertions of adjoint valued local operators into the loop.
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In terms of the Wilson loop
0? 1 0° 1 0°
— = ————1 ~—————(W).
002 V(0.0) In % 52 ° W) In % 892< )

Write the Wilson loop as

0 o0
W =TrP [exp (/ (1A + <I>1)d5> exp (/ (1A1 + @1 cosf + Py sin 9)d$>]
0

— 00

The variation gives
1 92 1 1 [ > e
5amV =~ d sy (Te P [Ba(s1)Ba(sp) e/ = A1 +o0] )
2862 1n<L/€) 2N/0 SlA 52 I'P 2(81) 2(52)6
1 1 [~ o
d <T |:@ f_oo(lA1+(P1)d8:|>.
T In(z/e) 2N/0 L \TrP | Balsr)e

These are insertions of adjoint valued local operators into the loop.

The double insertion is related to a BPS quantity. It gives no log divergence and is not

renormalized.
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e It is easy to see that some graphs will contribute and some not to this correlator

PA R yes
P ~
e & SN
Py A yes
AN RN
l/ ‘\ ll \\
L @ . no

e This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

~
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e [t is easy to see that some graphs will contribute and some not to this correlator

PA o\ yes
7 ~
e & SN
@ A yes
AN RN
l/ \\ ll \\
L @ . no

e This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.
e Indeed the 2-loop ladder graphs

@ 1 (cosf — cos ¢)?
ladder — 644 Sin2 ¢

2 o
Liz (€*%) — ¢(3) — i¢ (Liz (€*) + %) + %qﬁ?’]

contributes only from O((6, ¢)*).

e The connected 2-loop graphs were also simpler since they did not include polylogs...
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e [t is easy to see that some graphs will contribute and some not to this correlator

’ ~

, \

PA o\ yes
P ~

e & SN
Py A yes

/’—N‘ "_N\\

’ . ’ \

L @ . no

e This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

Indeed the 2—loop ladder graphs

1 (cosf — cos ¢)?
64 sin” ¢

V@
ladder 6

2 .
Lig (€**?) — ¢(3) —i¢ (Liz (e?) + W—) + %Cb?’]
contributes only from O((6, ¢)*).
e The connected 2-loop graphs were also simpler since they did not include polylogs...

e What is the sum of all these graphs?
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Summary

A two—parameter family of Wilson loop going between the circle and the antiparallel

lines.
The antiparallel lines is the residue at ¢ — .

They are no more complicated than the antiparallel lines.
— Explicit expression to order \2.

— C(lassical sting solution given by elliptic integrals.

— Differential operators for two one—parameter families, are of Lamé type.

— One loop determinant known in these examples.

New expansion parameters: ¢ and 6.

Natural separation of perturbative calculation into graphs with more and less

connected components.

The two—loop connected graphs give a simple result.

~
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Summary

A two—parameter family of Wilson loop going between the circle and the antiparallel

lines.
The antiparallel lines is the residue at ¢ — .

They are no more complicated than the antiparallel lines.
— Explicit expression to order \2.

— C(lassical sting solution given by elliptic integrals.

— Differential operators for two one—parameter families, are of Lamé type.

— One loop determinant known in these examples.

New expansion parameters: ¢ and 6.

Natural separation of perturbative calculation into graphs with more and less

connected components.
The two—loop connected graphs give a simple result.

Would be good to get the result at O(\?).

Can we guess an interpolating function for %g—;‘/(qb, 0, \)

$p=6=0

~
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Will there be a gauge theory derivation of the strong coupling potential:

A2/ X

V(L)) = L
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Will there be a gauge theory derivation of the strong coupling potential:

A2/ X

V(L)) = L

The end
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