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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

– It is known to two–loop order in perturbation theory and classically and at

one–loop in string theory.
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

– It is known to two–loop order in perturbation theory and classically and at

one–loop in string theory.

• Can we do any better?
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Introduction and motivation

• One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

• In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.

• Such an object exists also in N = 4 SYM.

– The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

– It is known to two–loop order in perturbation theory and classically and at

one–loop in string theory.

• Can we do any better?

• Shouldn’t integrability allow us to calculate this for all values of the coupling (in the

planar approximation)?
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Wilson loops in N = 4 super Yang-Mills
[

Maldacena

][

Rey, Yee

]

• The usual Wilson loop is

W = TrP exp

[
∮

iAµẋ
µ ds

]

• The most natural Wilson loops in N = 4 SYM include a coupling to the scalar fields

W = TrP exp

[
∮

(

iAµẋ
µ + |ẋ|θIΦI

)

ds

]

θI do not have to be constant.

• For a smooth loop and |θI | = 1, these are finite observables.

• The scalar coupling is natural for calculating the potential between

W-bosons.
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Wilson loops in N = 4 super Yang-Mills
[

Maldacena

][

Rey, Yee

]

• The usual Wilson loop is

W = TrP exp

[
∮

iAµẋ
µ ds

]

• The most natural Wilson loops in N = 4 SYM include a coupling to the scalar fields

W = TrP exp

[
∮

(

iAµẋ
µ + |ẋ|θIΦI

)

ds

]

θI do not have to be constant.

• For a smooth loop and |θI | = 1, these are finite observables.

• The scalar coupling is natural for calculating the potential between

W-bosons.

• For a pair of antiparallel lines

〈W 〉 ≈ exp
[

− T V (L, λ)
]

• In a conformal theory we expect

V (L, λ) =
f(λ)

L

Nadav Drukker 3-a generalized potential
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• Explicit calculations at weak and at strong coupling:

V (L, λ) =



















− λ

4πL
+

λ2

8π2L
ln

T

L
+ · · · λ ≪ 1

4π2
√
λ

Γ( 14 )
4 L

(

1− 1.3359 . . .√
λ

+ · · ·
)

λ ≫ 1

Nadav Drukker 4 generalized potential



'

&

$

%

• Explicit calculations at weak and at strong coupling:

V (L, λ) =



















− λ

4πL
+

λ2

8π2L
ln

1

λ
+ · · · λ ≪ 1

4π2
√
λ

Γ( 14 )
4 L

(

1− 1.3359 . . .√
λ

+ · · ·
)

λ ≫ 1
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• Explicit calculations at weak and at strong coupling:

V (L, λ) =



















− λ

4πL
+

λ2

8π2L
ln

1

λ
+ · · · λ ≪ 1

4π2
√
λ

Γ( 14 )
4 L

(

1− 1.3359 . . .√
λ

+ · · ·
)

λ ≫ 1

• Hard to guess how to connect these two regimes.

• Could go to O(λ3) and O(λ4).

• We will add extra parameters and study a larger family of observables.

• Thus gather more information to help guess an exact interpolating function.
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Outline

• Introduction and motivation

• Generalized quark-antiquark potential

• Perturbation theory calculation

• Classical string surfaces

• One loop string determinants

• Expansions in small angles

• Summary
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Generalized quark-antiquark potential

• The straight line and circular Wilson loop are 1/2 BPS.

• Their expectation value is known exactly.
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Generalized quark-antiquark potential

• The straight line and circular Wilson loop are 1/2 BPS.

• Their expectation value is known exactly.

• Can we somehow view the antiparallel lines as a deformation of the circle/line?

?→
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• We take the following family of curves:

−2

−2

−4

−4

2

2

4

4

Nadav Drukker 8 generalized potential



'

&

$

%

• We take the following family of curves:

• These are pairs of arcs with opening angle

π − φ.

• φ = 0 is the 1/2 BPS circle.

• φ → π gives the antiparallel lines.
−2

−2

−4

−4

2

2

4

4
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• We take the following family of curves:

• These are pairs of arcs with opening angle

π − φ.

• φ = 0 is the 1/2 BPS circle.

• φ → π gives the antiparallel lines.

• Can have each line couple to a different scalar

field

Φ1 cos
θ

2
+Φ2 sin

θ

2
and Φ1 cos

θ

2
−Φ2 sin

θ

2

• Gives another parameter: θ.

−2

−2

−4

−4

2

2

4

4
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• We take the following family of curves:

• These are pairs of arcs with opening angle

π − φ.

• φ = 0 is the 1/2 BPS circle.

• φ → π gives the antiparallel lines.

• Can have each line couple to a different scalar

field

Φ1 cos
θ

2
+Φ2 sin

θ

2
and Φ1 cos

θ

2
−Φ2 sin

θ

2

• Gives another parameter: θ.

• Crucial point: Calculations are no harder than

for the antiparallel case!

−2

−2

−4

−4

2

2

4

4
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• By a conformal transformation which maps one cusp to infinity:

−2

−2

−4

−4

2

2

4

4

• This is a cusp in Euclidean space.

• Taking φ = iu and u → ∞ gives the Lorenzian null cusp.
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• By the inverse exponential map we get the gauge theory on S
3 × R

• These are parallel lines on S
3 × R.

Nadav Drukker 10 generalized potential
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• From this last picture we expect

〈W 〉 ≈ exp
[

− T V (φ, θ, λ)
]

• The same is true for the cusp in R
4 with

T = log
R

ǫ

Nadav Drukker 11 generalized potential
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• From this last picture we expect

〈W 〉 ≈ exp
[

− T V (φ, θ, λ)
]

• The same is true for the cusp in R
4 with

T = log
R

ǫ

• This V (φ, θ, λ) is the generalization of V (L, λ) we study.

• For φ → π it has a pole and the residue is LV (L, λ).
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• From this last picture we expect

〈W 〉 ≈ exp
[

− T V (φ, θ, λ)
]

• The same is true for the cusp in R
4 with

T = log
R

ǫ

• This V (φ, θ, λ) is the generalization of V (L, λ) we study.

• For φ → π it has a pole and the residue is LV (L, λ).

• Expanding at weak coupling

V (φ, θ, λ) =
∞
∑

n=1

(

λ

16π2

)n

V (n)(φ, θ)

• And at strong coupling

V (φ, θ, λ) =

√
λ

4π

∞
∑

l=0

(

4π√
λ

)l

V
(l)
AdS(φ, θ)
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Weak coupling

1–loop graphs

• Just the exchange of a gluon and scalar field

• This graph is given by the integral

∂λ〈W 〉
∣

∣

∣

λ=0
=

∫

ds dt 〈−A(s) ·A(t) + Φ(s) · Φ(t)〉

=
λ

8π2

∫

ds dt
−ẋµ(s)ẋ

µ(t) + θI(s)θI(t)

|x(s)− x(t)|2

=
λ

8π2

∫

ds dt
cos θ − cosφ

s2 + t2 + 2st cosφ
=

λ

8π2

cos θ − cosφ

sinφ
φ log

R

ǫ

• Therefore

V (1)(φ, θ) = −2
cos θ − cosφ

sinφ
φ

Nadav Drukker 12 generalized potential
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2–loop graphs
[

Makeenko, Olesen, Semenoff

]

• Ladder graphs are quite easy.

V (2) =
1

2 log R
ǫ

∂2
λ

[

log 〈W 〉
]

λ=0
=

1

2 log R
ǫ

[

∂2
λ〈W 〉 − (∂λ〈W 〉)2

]

λ=0

• In 〈W 〉 we include only planar graphs.

• V
(2)
ladder is therefore minus the non-planar graphs.

Nadav Drukker 13 generalized potential
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2–loop graphs
[

Makeenko, Olesen, Semenoff

]

• Ladder graphs are quite easy.

V (2) =
1

2 log R
ǫ

∂2
λ

[

log 〈W 〉
]

λ=0
=

1

2 log R
ǫ

[

∂2
λ〈W 〉 − (∂λ〈W 〉)2

]

λ=0

• In 〈W 〉 we include only planar graphs.

• V
(2)
ladder is therefore minus the non-planar graphs.

• This graph is given by the integral

λ2

(4π)4

∫

s1<s2

ds1 ds2

∫

t1<t2

dt1 dt2
(cosφ− cos θ)2

(s21 + t22 + 2s1t2 cosφ)(s22 + t21 + 2s2t1 cosφ)

=
λ2

64π4

(cos θ − cosφ)2

sin2 φ

[

Li3
(

e2iφ
)

− ζ(3)− iφ

(

Li2
(

e2iφ
)

+
π2

6

)

+
i

3
φ3

]

log
R

ǫ

• Dividing by − λ2

(4π)4 log
R
ǫ we get V

(2)
ladder

Nadav Drukker 13-a generalized potential
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• Interacting graphs are a bit more complicated.

• There are bubble graphs and the single cubic vertex graphs.

Nadav Drukker 14 generalized potential
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• Interacting graphs are a bit more complicated.

• There are bubble graphs and the single cubic vertex graphs.

• One of the lines is always a gluon. It is a total derivative, giving two contributions

Nadav Drukker 14-a generalized potential
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• Interacting graphs are a bit more complicated.

• There are bubble graphs and the single cubic vertex graphs.

• One of the lines is always a gluon. It is a total derivative, giving two contributions

•• The second graph cancels exactly against the bubble graphs

Nadav Drukker 14-b generalized potential
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• Remaining graph involves the triangle graph

• It is given by the integral

λ2

64π6

∫

dt ds

∫

d4w
cos θ − cosφ

|x(s)− w|2 |x(t)− w|2 |w|2

Nadav Drukker 15 generalized potential
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• Remaining graph involves the triangle graph

• It is given by the integral

λ2

64π6

∫

dt ds

∫

d4w
cos θ − cosφ

|x(s)− w|2 |x(t)− w|2 |w|2

• The integration over w can be done exactly and gives a function (with dilogarithms) of

s/t and φ.

• Doing the integral over s and t and dividing by − log R
ǫ gives

V
(2)
int (φ, θ) =

4

3

cos θ − cosφ

sinφ
(π2 − φ2)φ

Nadav Drukker 15-a generalized potential
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• Remaining graph involves the triangle graph

• It is given by the integral

λ2

64π6

∫

dt ds

∫

d4w
cos θ − cosφ

|x(s)− w|2 |x(t)− w|2 |w|2

• The integration over w can be done exactly and gives a function (with dilogarithms) of

s/t and φ.

• Doing the integral over s and t and dividing by − log R
ǫ gives

V
(2)
int (φ, θ) =

4

3

cos θ − cosφ

sinφ
(π2 − φ2)φ

• The result is simpler than the ladder graphs and closely related to 1–loop:

V
(2)
int (φ, θ) = −2

3
(π2 − φ2)V (1)(φ, θ)

First sign of simplification for this set of observables...

Nadav Drukker 15-b generalized potential
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String theory calculation

Classical string in AdS3 × S
1

• The boundary conditions are lines separated by π − φ on the boundary of AdS and θ

on S
5.

• All the string solutions fit inside AdS3 × S
1

ds2 =
√
λ
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dϕ2 + dϑ2
)

Nadav Drukker 16 generalized potential
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String theory calculation

Classical string in AdS3 × S
1

• The boundary conditions are lines separated by π − φ on the boundary of AdS and θ

on S
5.

• All the string solutions fit inside AdS3 × S
1

ds2 =
√
λ
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dϕ2 + dϑ2
)

• As world–sheet coordinates we can take t and ϑ rescaled

σ =

√

b4 + p2

b q
ϑ τ =

√

b4 + p2

b p
t

and then

ρ = ρ(σ) , ϑ = ϑ(σ)

• The Nambu-Goto action is

SNG =

√
λ

2π

∫

dt dϕ coshρ

√

sinh2 ρϕ′2 + ρ′2 + 1

• Two conserved quantities are

E =
ϕ′ sinh2 ρ cosh ρ

√

sinh2 ρϕ′2 + ρ′2 + 1
J = − cosh ρ

√

sinh2 ρϕ′2 + ρ′2 + 1

Nadav Drukker 16-a generalized potential
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• The resulting equations are elliptic.

ϕ′2 =
b2

(b4 + p2) sinh4 ρ
, ρ′2 =

(b2 sinh2 ρ− 1)(b2 + p2 sinh2 ρ)

(b4 + p2) sinh2 ρ

With

p = − 1

E
q =

J

E
b2 =

1

2

(

p2 − q2 +
√

(p2 − q2)2 + 4p2
)

k2 =
b2(b2 − p2)

b4 + p2

• The solution is

cosh2 ρ =
1 + b2

b2 cn2(σ)

ϕ =
π

2
+

p2

b
√

b4 + p2

(

σ −Π
(

b4

b4+p2 , am(σ +K)|k2
)

+Π
(

b4

b4+p2 |k2
)

)

,

where am(x) is the Jacobi amplitude and K the complete elliptic integral.

• The initial value is then

φ

2
=

π

2
− p2

b
√

b4 + p2

(

K−Π
(

b4

b4+p2 |k2
)

)

and −K < σ < K

• These are transcendental equations for p, q in terms of θ, φ

Nadav Drukker 17 generalized potential
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• The induced metric is

ds2ind =
√
λ
1− k2

cn2(σ)

[

−dτ2 + dσ2
]

.

• The classical action can also be calculated

Scl =

√
λ

2π

∫

dt dϕ p cosh2 ρ sinh2 ρ =
T
√
λ

π

√

b4 + p2

b p

[

(b2 + 1)p2

b4 + p2
K− E

]

• This determines V
(0)
AdS as a function of p, q and implicitly in term of φ, θ.

Nadav Drukker 18 generalized potential
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• The induced metric is

ds2ind =
√
λ
1− k2

cn2(σ)

[

−dτ2 + dσ2
]

.

• The classical action can also be calculated

Scl =

√
λ

2π

∫

dt dϕ p cosh2 ρ sinh2 ρ =
T
√
λ

π

√

b4 + p2

b p

[

(b2 + 1)p2

b4 + p2
K− E

]

• This determines V
(0)
AdS as a function of p, q and implicitly in term of φ, θ.

• We can also expand around φ = θ = 0

V
(0)
AdS(φ, θ) =

1

π
(θ2 − φ2)− 1

8π3
(θ2 − φ2)

(

θ2 − 5φ2
)

+
1

64π5
(θ2 − φ2)

(

θ4 − 14θ2φ2 + 37φ4
)

− 1

2048π7
(θ2 − φ2)

(

θ6 − 27θ4φ2 + 291θ2φ4 − 585φ6
)

+O((φ, θ)10)

Nadav Drukker 18-a generalized potential
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1–loop determinant

• At one–loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.

• Such a calculation was done long ago for a confining string by Lüscher.

• The “Lüscher term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

• We have to repeat the calculation in the AdS5 × S
5 sigma model.

Nadav Drukker 19 generalized potential
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1–loop determinant

• At one–loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.

• Such a calculation was done long ago for a confining string by Lüscher.

• The “Lüscher term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

• We have to repeat the calculation in the AdS5 × S
5 sigma model.

• We need the full metric

ds2 =

(

cosh2 ρ dt2 + dρ2 + sinh2 ρ
(

dx2
1 + cos2 x1(dx

2
2 + cos2 x2 dϕ

2)
)

+ dx2
3 + cos2 x3

(

dx2
4 + cos2 x4

(

dx2
5 + cos2 x5(dx

2
6 + cos2 x6 dϑ

2)
)

)

)

.

• We define the fluctuation modes

ρ = ρ(σ) + δρ , ϕ = ϕ(σ) + δϕ , ϑ = ϑ(σ) + δϑ , xi , i = 1, · · · , 6

• After fixing the static gauge it results in the bosonic Lagrangean

LB =
1

2

√
g
[

gab ∂aζP ∂bζP +MPQζP ζQ

]

, P,Q = 1, · · · , 8

with a complicated mass–matrix MPQ.

Nadav Drukker 19-a generalized potential
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• Generically the mass matrix is nondiagonal.

• If we set either θ = 0 or φ = 0, it is diagonal.

• We calculated the determinants in these cases.

Nadav Drukker 20 generalized potential
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• Generically the mass matrix is nondiagonal.

• If we set either θ = 0 or φ = 0, it is diagonal.

• We calculated the determinants in these cases.

The case of θ = 0

• The resulting determinant is

Z =
det4(iγi ∇̂i − γ3)

det(−∇2 + 2) det1/2(−∇2 +R(2) + 4) det5/2(−∇2)

• All derivatives are with the world–sheet metric.

• This is formally the same for all φ, except for the different world–sheet metrics.

• The bosonic fluctuation operators are (after Fourier transform ∂τ → iω)

O0 ≡ √
g
(

−∇2
)

= −∂2
σ + ω2

O1 ≡ √
g
(

−∇2 + 2
)

= −∂2
σ + ω2 +

2(1− k2)

cn2(σ)

O2 ≡ √
g
(

−∇2 +R(2) + 4
)

= −∂2
σ + ω2 +

2(1− k2)

cn2(σ)
− 2k2 cn2(σ)

Nadav Drukker 20-a generalized potential
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• All the differential operators can be written as Lamé operators

−∂2
σ + 2k2 sn2(σ|k2)

Nadav Drukker 21 generalized potential



'

&

$

%

• All the differential operators can be written as Lamé operators

−∂2
σ + 2k2 sn2(σ|k2)

• Explicitly

O1 = (1− k2)
[

−∂2
σ1

+ ω2
1 + 2k21 sn

2(σ1 + iK′
1|k21)

]

O2 = (1− k2)(1 + k1)
2
[

−∂2
σ2

+ ω2
2 + 2k22 sn

2(σ2 + iK′
2|k22)

]

where

k21 =
k2

k2 − 1
σ1 =

√

1− k2 σ +K1 ω2
1 =

ω2

1− k2

k22 =
4k1

(1 + k1)2
σ2 = (1 + k1)(

√

1− k2 σ +K1) ω2
2 =

ω2

(1− k2)(1 + k1)2
− k22

• A similar expression exists for the fermions.

Nadav Drukker 21-a generalized potential
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1d determinants through the Gelfand-Yaglom method

• The general solution to the Lamé eigenvalue problem

[

−∂2
x + 2k2 sn2(x|k2)

]

f(x) = Λ f(x)

is explicitly known

y±(x) =
H(x± α)

Θ(x)
e∓xZ(α) sn(α|k2) = 1

k

√

1 + k2 − Λ

• We can write down the solution satisfying

u(−K) = 0 , u′(−K) = 1

• Then

detO = u(K)

Nadav Drukker 22 generalized potential
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1d determinants through the Gelfand-Yaglom method

• The general solution to the Lamé eigenvalue problem

[

−∂2
x + 2k2 sn2(x|k2)

]

f(x) = Λ f(x)

is explicitly known

y±(x) =
H(x± α)

Θ(x)
e∓xZ(α) sn(α|k2) = 1

k

√

1 + k2 − Λ

• We can write down the solution satisfying

u(−K) = 0 , u′(−K) = 1

• Then

detO = u(K)

• Actually need to worry about divergences from the boundary, so introduce a cutoff at

σ = ±(K− ǫ)

• The regularized u is

u(σ) =
y+(−K+ ǫ) y−(σ)− y−(−K+ ǫ) y+(σ)

y+(−K+ ǫ) y′−(−K+ ǫ)− y′+(−K+ ǫ) y−(−K+ ǫ)

Nadav Drukker 22-a generalized potential
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• This gives the explicit answers like

detO1 =
(k2 − 1) ns2(ǫ1, k

2
1)− 2k2 + ω2 + 1√

k2 − ω2
√

3k2(ω2 + 1)− 2k4 − (ω2 + 1)2
sinh

(

2Z(α1)(K1 − ǫ1) + Σ1

)

with

Σ1 = ln
ϑ4

(π(α1+ǫ)
2K1

, q1
)

ϑ4

(π(α1−ǫ)
2K1

, q1
)

ǫ1 =
√

1− k2 ǫ
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• This gives the explicit answers like

detO1 =
(k2 − 1) ns2(ǫ1, k

2
1)− 2k2 + ω2 + 1√

k2 − ω2
√

3k2(ω2 + 1)− 2k4 − (ω2 + 1)2
sinh

(

2Z(α1)(K1 − ǫ1) + Σ1

)

with

Σ1 = ln
ϑ4

(π(α1+ǫ)
2K1

, q1
)

ϑ4

(π(α1−ǫ)
2K1

, q1
)

ǫ1 =
√

1− k2 ǫ

• The determinant depends only on the leading term of the expansion in ǫ

detOǫ
0
∼= sinh(2Kω)

ω

detOǫ
1
∼= − sinh(2K1 Z(α1))

ǫ2
√

(ω2 − k2)(ω2 − k2 + 1)(ω − 2k2 + 1)

detOǫ
2
∼= sinh(2K2 Z(α2))

ǫ2(1− k2)3/2(k1 + 1)3
√

(ω2
2 + k22)(ω

2
2 + 1)(ω2

2 + k22 + 1)

detOǫ
F
∼= 8K2

√

ω2
3 + k22 sinh(K2 Z(αF ))

ǫπ(1− k2)(k1 + 1)2
√

(ω2
3 + 1)(ω2

3 + k22 + 1)

ϑ2(0, q2)ϑ4

(

παF

2K2

, q2
)

ϑ′
1(0, q2)ϑ3

(

παF

2K2

, q2
)

• After removing a divergence we find (T is a cutoff on τ)

Γreg = −T
2

lim
ǫ→0

∫ +∞

−∞

dω

2π
ln

ǫ2ω2 det8 Oǫ
F

det5 Oǫ
0 det

2 Oǫ
1 detOǫ

2
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• This can be integrated numerically to high precision

−10

−5

0

5

10

π/4 π/2 3π/4 π

Blue: V (1)(φ, 0)

Green: V (2)(φ, 0)

Red: V
(0)
AdS(φ, 0)

Purple: V
(1)
AdS(φ, 0)
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• This can be integrated numerically to high precision

−10

−5

0

5

10

π/4 π/2 3π/4 π

Blue: V (1)(φ, 0)

Green: V (2)(φ, 0)

Red: V
(0)
AdS(φ, 0)

Purple: V
(1)
AdS(φ, 0)

• The 1d determinants can also be expanded about φ = 0 and evaluated analytically

V
(1)
AdS(φ, 0) =

3

2

φ2

4π2
+

(

53

8
− 3 ζ(3)

)

φ4

16π4
+

(

223

8
− 15

2
ζ(3)− 15

2
ζ(5)

)

φ6

64π6

+

(

14645

128
− 229

8
ζ(3)− 55

4
ζ(5)− 315

16
ζ(7)

)

φ8

256π8
+O(φ10)
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The case of φ = 0

• Everything can be done in that case too.
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The case of φ = 0

• Everything can be done in that case too.

• At the end the small θ expansion gives

V
(1)
AdS(0, θ) =−3

2

θ2

4π2
+

(

5

8
− 3 ζ(3)

)

θ4

16π4
+

(

1

8
+

3

2
ζ(3)− 15

2
ζ(5)

)

θ6

64π6

+

(

− 11

128
− 5

8
ζ(3) +

25

4
ζ(5)− 315

16
ζ(7)

)

θ8

256π8
+O(θ10)
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Our main result:

Explicit expressions for these families of Wilson loops at weak and strong coupling.
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φ → π limit

• V (1), V (2), V
(0)
AdS and V

(1)
AdS all have poles at φ = π

• In perturbation theory

V (φ, θ) → − λ

8π

1 + cos θ

π − φ
+

λ2

32π3

(1 + cos θ)2

π − φ
log

e

2(π − φ)
+O(λ3)
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φ → π limit

• V (1), V (2), V
(0)
AdS and V

(1)
AdS all have poles at φ = π

• In perturbation theory

V (φ, θ) → − λ

8π

1 + cos θ

π − φ
+

λ2

32π3

(1 + cos θ)2

π − φ
log

e

2(π − φ)
+O(λ3)

• In the case of θ = 0 we get essentially the same as the antiparallel lines with

L → π − φ

V (L, λ) =



















− λ

4πL
+

λ2

8π2L
ln

T

L
+ · · · λ ≪ 1

4π2
√
λ

Γ( 14 )
4 L

(

1− 1.3359 . . .√
λ

+ · · ·
)

λ ≫ 1

• The strong coupling calculations also agree in the limit.
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Small θ and φ expansions

• Consider the expansion of V (φ, θ, λ) at small φ or θ

1

2

∂2

∂θ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
= −1

2

∂2

∂φ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
=



















λ

16π2
− λ2

384π2
+ · · · λ ≪ 1

√
λ

4π2
− 3

8π2
+ · · · λ ≫ 1
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Small θ and φ expansions

• Consider the expansion of V (φ, θ, λ) at small φ or θ

1

2

∂2

∂θ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
= −1

2

∂2

∂φ2
V (φ, θ, λ)

∣

∣

∣

φ=θ=0
=



















λ

16π2
− λ2

384π2
+ · · · λ ≪ 1

√
λ

4π2
− 3

8π2
+ · · · λ ≫ 1

– What does this calculate?

– How do we calculate this?

– Can we find an exact interpolating function?
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• In terms of the Wilson loop

∂2

∂θ2
V (0, 0) = − 1

ln R
ǫ

∂2

∂θ2
log 〈W 〉 ≈ − 1

ln R
ǫ

∂2

∂θ2
〈W 〉.

• Write the Wilson loop as

W = TrP
[

exp

(
∫ 0

−∞

(iA1 + Φ1)ds

)

exp

(
∫ ∞

0

(iA1 +Φ1 cos θ + Φ2 sin θ)ds

)]
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• In terms of the Wilson loop

∂2

∂θ2
V (0, 0) = − 1

ln R
ǫ

∂2

∂θ2
log 〈W 〉 ≈ − 1

ln R
ǫ

∂2

∂θ2
〈W 〉.

• Write the Wilson loop as

W = TrP
[

exp

(
∫ 0

−∞

(iA1 + Φ1)ds

)

exp

(
∫ ∞

0

(iA1 +Φ1 cos θ + Φ2 sin θ)ds

)]

• The variation gives

1

2

∂2

∂θ2
V = − 1

ln(L/ǫ)

1

2N

∫ ∞

0

ds1

∫ ∞

0

ds2

〈

TrP
[

Φ2(s1)Φ2(s2) e
∫

∞

−∞
(iA1+Φ1)ds

]〉

+
1

ln(L/ǫ)

1

2N

∫ ∞

0

ds1

〈

TrP
[

Φ1(s1) e
∫

∞

−∞
(iA1+Φ1)ds

]〉

.

• These are insertions of adjoint valued local operators into the loop.
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• In terms of the Wilson loop

∂2

∂θ2
V (0, 0) = − 1

ln R
ǫ

∂2

∂θ2
log 〈W 〉 ≈ − 1

ln R
ǫ

∂2

∂θ2
〈W 〉.

• Write the Wilson loop as

W = TrP
[

exp

(
∫ 0

−∞

(iA1 + Φ1)ds

)

exp

(
∫ ∞

0

(iA1 +Φ1 cos θ + Φ2 sin θ)ds

)]

• The variation gives

1

2

∂2

∂θ2
V = − 1

ln(L/ǫ)

1

2N

∫ ∞

0

ds1

∫ ∞

0

ds2

〈

TrP
[

Φ2(s1)Φ2(s2) e
∫

∞

−∞
(iA1+Φ1)ds

]〉

+
1

ln(L/ǫ)

1

2N

∫ ∞

0

ds1

〈

TrP
[

Φ1(s1) e
∫

∞

−∞
(iA1+Φ1)ds

]〉

.

• These are insertions of adjoint valued local operators into the loop.

• The double insertion is related to a BPS quantity. It gives no log divergence and is not

renormalized.
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• It is easy to see that some graphs will contribute and some not to this correlator

yes

yes

no

• This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.
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• It is easy to see that some graphs will contribute and some not to this correlator

yes

yes

no

• This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

• Indeed the 2–loop ladder graphs

V
(2)
ladder = − 1

64π4

(cos θ − cosφ)2

sin2 φ

[

Li3
(

e2iφ
)

− ζ(3)− iφ

(

Li2
(

e2iφ
)

+
π2

6

)

+
i

3
φ3

]

contributes only from O((θ, φ)4).

• The connected 2–loop graphs were also simpler since they did not include polylogs...
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• It is easy to see that some graphs will contribute and some not to this correlator

yes

yes

no

• This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

• Indeed the 2–loop ladder graphs

V
(2)
ladder = − 1

64π4

(cos θ − cosφ)2

sin2 φ

[

Li3
(

e2iφ
)

− ζ(3)− iφ

(

Li2
(

e2iφ
)

+
π2

6

)

+
i

3
φ3

]

contributes only from O((θ, φ)4).

• The connected 2–loop graphs were also simpler since they did not include polylogs...

• What is the sum of all these graphs?
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Summary

• A two–parameter family of Wilson loop going between the circle and the antiparallel

lines.

• The antiparallel lines is the residue at φ → π.

• They are no more complicated than the antiparallel lines.

– Explicit expression to order λ2.

– Classical sting solution given by elliptic integrals.

– Differential operators for two one–parameter families, are of Lamé type.

– One loop determinant known in these examples.

• New expansion parameters: φ and θ.

• Natural separation of perturbative calculation into graphs with more and less

connected components.

• The two–loop connected graphs give a simple result.
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Summary

• A two–parameter family of Wilson loop going between the circle and the antiparallel

lines.

• The antiparallel lines is the residue at φ → π.

• They are no more complicated than the antiparallel lines.

– Explicit expression to order λ2.

– Classical sting solution given by elliptic integrals.

– Differential operators for two one–parameter families, are of Lamé type.

– One loop determinant known in these examples.

• New expansion parameters: φ and θ.

• Natural separation of perturbative calculation into graphs with more and less

connected components.

• The two–loop connected graphs give a simple result.

• Would be good to get the result at O(λ3).

• Can we guess an interpolating function for 1
2

∂2

∂θ2 V (φ, θ, λ)
∣

∣

∣

φ=θ=0
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Will there be a gauge theory derivation of the strong coupling potential:

V (L, λ) =
4π2

√
λ

Γ( 14 )
4 L
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Will there be a gauge theory derivation of the strong coupling potential:

V (L, λ) =
4π2

√
λ

Γ( 14 )
4 L

The end
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