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• Collaborations with Leo Almeida, Werner Vogelsang, Ilmo Sung, Alex Mitov and Ozan
Erdogan.

• Something of a review, but slanted towards NNLL developments and the special role of
the “cusp”.

I. Threshold resummation: NLL and beyond

II. Soft anomalous dimension matrices: toward a dipole formula?

III. Graphical exponentiation: from webs to surfaces for the cusp
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I. Threshold resummation: NLL and beyond

• A center of attention at the Tevatron & LHC: factorized cross
section at fixed final-state ‘signal’ mass M , rapidity y, and
relative rapidity η̂ in pair c.m.

M4dσh1h2→QQ̄
dM2dydη̂

=
∑

f

∫ 1
τ dz

∫ dxa

xa

dxb

xb
φf/h1

(xa, µ
2)φf̄/h2

(xb, µ
2)

× δ


z −

τ

xaxb


 δ


y −

1

2
ln
xa

xb




× ωff̄→QQ̄



z, η̂,

M2

µ2
,
m2

µ2
, αs(µ

2)




+ . . .

• Variable z measures how much partonic energy is used to
produce the pair

z =
M2

xaxbS
=

τ

xaxb
> τ ≡

M2

S

• The limit z → 1 is the subject of threshold resummation.
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• Short-distance ωab is a generalized function.

• Example: at one loop for Drell-Yan (M2 = Q2):

ω
(1)
qq̄→γ∗g(z,Q

2, µ2)

= σ0(Q2) CF




αs(µ)

π


 {2(1 + z2)




ln(1− z)

1− z



+

−
(1 + z2) ln z

(1− z)
+




π2

3
− 4



δ(1− z)}

+ σ0(Q2) CF
αs

π




1 + z2

1− z



+

ln




Q2

µ2




• The ‘+’ distributions tend to increase the cross section and

at nth order we get (CFαs/π)n

n!



ln2n−1(1−z)

1−z



+

.

• Why 1
n!? Because the cross section factorizes near z = 1 . . .
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• We compute ωab(z) from a regularized, partonic cross sec-
tion. When τ → 1, it forces z → 1.

• In this limit, we find factorization into x → 1 (partonic)
distributions, soft radiation and nearly lightlike outgoing jets
and/or non-recoiling heavy quarks (squarks, gluinos).

H H*

cI c

S

J

J

K

I K

• Color tensor cI describes color exchange in HI.
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• An example of color tensor cI: qq̄ tensors (cL){ri}:• Example of cI: qq̄ tensors (cL){ri}:

c2 ≡

1 3

2 4

1

2

3

4

c1 ≡

– Jet/soft factorization for amplitude. :

M[f]
L

(
pi,

Q2

µ2
,αs(µ

2), ε

)
=

∏

i=A,B,1,2

J
[virt]
i

(
Q2

µ2
,αs(µ

2), ε

)

×S
[f]
LI

(
pi,

Q2

µ2
,αs(µ

2), ε

)
h

[f]
I

(
℘i,

Q2

µ2
,αs(µ

2)

)

• To leading power in 1 − z, the coupling of soft radiation to
scattered partons is through ordered exponentials,

P exp
[

−ig
∫∞
0 dλβ ·A(λβ)

]

In SCET, summarized by appropriate field redefinitions. For
final-state heavy quarks, this may be in HQET, or even NRQCD
at low relative velocity.

• As factorization scales change, color exchange at the hard
scattering evolves.

• Independence of factorization scales ⇒ evolution equations.
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• Hard/jet/soft radiation ⇒ double-logarithmic (Sudakov) ex-
ponentiation. A number of approaches can be used, includ-
ing SCET, with other applications to less inclusive quantities
(Collins, Soper (1981) . . . Stewart, Tackmann, Waalewijn (2009))

• Threshold resummation kinematics: in c.m., z is ∝ energy of
soft radiation:

1− z =
∑

i soft

2E∗i√
ŝ
∼

2ksoft ·Qobs

ŝ

• The partonic cross section then becomes a convolution in soft
gluon energy, factorizes under moments of z: 1− z ∼ − ln z
and zN ∼ exp[−N(1− z)].

σ(N) =
∫ 1
0 dzz

N−1σ(z)

=
∫ 1
0 dze

−(N−1)(1−z)σ(z) +O(1/N)

• This allows us to compute . . .
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• a rather general form for threshold resummation, with leading,
“universal” N -dependence in jets J (Catani, Mangano, Nason, Grazzini,

de Florian, Kidonakis, Oderda, GS, Vogelsang; circa 1997 – pres.)

ωab→cd



N, η̂,

M2

µ2
,
m2

µ2
, αs(µ

2)




=
∏

i=a,b;c,d
∆i(N,M/µ,m/µ, αs(µ

2))

× ∑

IK
[Hab→cd
IK




M2

µ2
,
m2

µ2
, η̂, αs(µ

2)




× Sab→cdKI




N2µ2

M2
,
M2

m2
, η̂, αs(µ

2)



] +O(1/N)

• Different processes differ in list of (leading-logarithmic) jets
and in the (single-logarithmic) “soft matrices” S. Matrix
indices label color exchange cI at the hard scattering: singlet,
octet . . . in amplitude and complex conjugate.
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• Incoming jet functions in moment space (parton a), with full
leading-power N dependence (NnLL):
(Almeida, Sung, GS, Vogelsang, forthcoming)

ln ∆a
in(N,Q)

=
∫Q2

0
du2

u2
2Aa (αs(u))


K0




2Nu

Q


− ln




Q

N̄u







+
∫Q2

0 du2D(ψ)
a (αs(u))

∂

∂u2


K0




2Nu

Q


− ln




Q

N̄u







=
1

2

∫ 1
0 dx

xN−1 − 1

1− x
{

∫Q2

(1−x)2

dq2

q2
2Aa


αs


q2






+ Da

αs


(1− x)2Q2




 }

•Aa the cusp anomalous dimension: Aa lnN in DGLAP evo-
lution kernel. Daand D(ψ)

a begin at NNLL, and include infor-
mation on threshold phase space.
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• The soft function mixes color exchange. It is generated from
a matrix of anomalous dimensions.

• Effective theory approach (Becher, Neubert, Schwartz, 2007–): mo-
ments are used on jet functions separately; inverted to derive
an evolution equation in x. Soft anomalous dimension matrix
is the same as here . . .
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• In terms of the anomalous dimension matrix:

S




N2µ2

M2
, βi · βj, αs(µ2)



|µ=M

= P exp {
∫ 1
0 dx

xN−1 − 1

1− x
Γ
†
S


βi · βj, αs


(1− x)2M2




}

×S

1, βi · βj, αs


M2/N2






×P exp {
∫ 1
0 dx

xN−1 − 1

1− x
ΓS


βi · βj, αs


(1− x)2M2




}

• Γ
(1)
S → NLL resummation (αsn lnnN)

• Boundary condition, S
(

1, βi · βj, αs
(

M2/N2
))

starts at αs0,
and is a constant up to NNLL. Computed for inclusive heavy
quark production (Czakon, Mitov, GS, 2009), and also for light parton
2→ 2 processes (Almeida, Sung, GS, Vogelsang, forthcoming).
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II. Soft anomalous dimension matrices. IR structure
of amplitudes.

• Multiloop scattering amplitudes in dimensional regularization
(Catani (1998) Tejeda-Yeomans & GS (2002) Kosower (2003) Aybat, Dixon & GS

(2006); Becher, Neubert (2008), Gardi, Magnea (2008), Dixon, Gardi, Magnea (2009),

Del Duca et al (2011))

• Amplitude for partonic process

f : fA(pA, rA) + fB(pB, rB)→ f1(p1, r1) + f2(p2, r2)

M[f ]
{ri}



pj,

Q2

µ2
, αs(µ

2), ε




=M[f ]
L



pj,

Q2

µ2
, αs(µ

2), ε




(cL){ri}

• Need to control poles in ε for factorized calculations at
fixed order and for resummation.
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• Source of double logs and poles in dimensional reg.:• Source of double logs and poles in dimensional reg.:

p
1

p
3

p
4

p
2

p
1

p
3

p
2 p

4

=

`jets

`soft

`hard

`Leading Regions :

• The same cast of characters as for QT .• The same cast of characters as for cross section.
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• Same separation, from Ward identities (Sen (1983)):

• Same separation (Sen (1983)):

=

4
( )J

! I
Ic

s s

Factorization of soft gluons:

H

H

x

x

• ε = 2 − d/2 plays the role of b !
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• Jet/soft factorization for amplitude. :

M[f ]
L



pi,

Q2

µ2
, αs(µ

2), ε




=
∏

i=A,B,1,2
J

[virt]
i




Q2

µ2
, αs(µ

2), ε




× s
[f ]
LI



pi,

Q2

µ2
, αs(µ

2), ε



h

[f ]
I



pi,

Q2

µ2
, αs(µ

2)




• Jet function: J =
√√√√Γsinglet(Q

2) (Tejeda-Yeomans & GS (1982))

• Soft function labelled by color exchange (singlet, octet . . . )

• Factors require dimensional regularization

• Same factorization → resummation

• Relation to supersymmetric Yang-Mills theories
(Bern, Czakon, Dixon, Kosower & Smirnov (2006) N=4 crosscheck to 4 loops. )
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• Dimensionally-regularized soft matrix
(Tejeda-Yeomans & GS (2002))

s[f ]




Q2

µ2
, αs(µ

2), ε




= P exp



−

1

2

∫−Q2

0
dµ̃2

µ̃2
Γ[f ]



ᾱs




µ2

µ̃2
, αs(µ

2), ε










• Γ[f ]: anomalous dimension; color mixing

• Same anomalous dimension as in the cross section!

• For all massless 2→ n processes (Aybat, Dixon, GS (2006))

ΓS =
αs

π


1 +

αs

π
K


 Γ

(1)
S′ + · · ·
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Γ(2) = (K/2)Γ(1) with same K as in the DGLAP splitting.

The diagrams with 3g vertices vanish!

To NNLO, “single-web” exchange generalizes single gluon.

(C.F. Berger, 2002)

• Essential result: three-line fabcT
I
aT

J
b T

K
c terms vanish.

(diagrams (g), (h))
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• To NNLO, “single-web” exchange generalizes single gluon.
(C.F. Berger, 2002). A ‘radiation scheme’ for the running coupling
(Catani, Dokshitzer, Marchesini)

• Hints of unexpected simplicity for IR gluons, at least with
massless Wilson lines. Web exchange↔ “sum over dipoles”.
(Becher, Neubert (2008), Gardi, Magnea (2008), Dixon (2008) and Dixon, Gardi, Mag-

nea (2009)).

• Much can be understood in terms of scale-independence of
Wilson lines: β → ζβµ. This is quite restrictive for massless
lines. Scale invariance eliminates almost all non-jet velocity
dependence up to three loops, where “conformal cross ratios”

βi · βj βk · βl
βi · βl βk · βj

can appear. What really happens beyond three loops isn’t yet
known.
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• As a practical matter, the IR structure of two-loop single-pole
are now understood as

1

ε




∑

i∈f
E

[i] (2)
1 +

1

4
Γ

[f ] (2)
S


 × LO

where E
[i] (2)
1 is residue of the 2 loop single pole in the Su-

dakov form factor. (Ravindran, Smith, van Neerven (2005); Jantzen, Kuhn,

Penin, Smirnov (2005, 2006) EW logs.)
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• For the massless case, the ‘radical’ simplicity of a dipole form
to all orders explored in 1108.5947, 1109.3581 (Del Duca, Duhr, Gardi,

Magnea, White):

M[f ]
L



pi,

Q2

µ2
, αs(µ

2), ε




= J
[virt]
i




Q2

µ2
, αs(µ

2), ε




× exp [−
1

2

∫ µ2

0
dλ2

λ2

A(αs(λ
2))

4

∑

{i,j}
ln



sij

λ2


 Ti · Tj

+
∑

i
γJ,i(αs(λ

2))] H


pi,

Q2

µ2
, αs(µ

2)




• A sum of two-eikonal ‘cusps’ in the exponent.

• Whether or not this holds beyond NNLpole, the simple two-
eikonal, singlet ‘cusp’ becomes even more interesting.
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III. The graphical interpretation of exponentiation: the ‘cusp’
(Erdogan, Mitov, GS, Sung)

• An graphical interpretation of exponentiation. An alterna-
tive/interpretation of anomalous dimensions. (It’s more gen-
eral, but we’ll consider just the cusp.)

• Will find an interesting ‘geometrical’ interpretation.

• The 2-line eikonal form factor is the exponential of a sum of
two-eikonal irreducible diagrams, the “webs” with modified
color factors:
(Gatheral, Frenkel Taylor, GS)

A = exp


∞∑
i=1

w(i)
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• ‘‘Webs” in the exponent, w(i). are 2-eikonal irreducible dia-
grams. At 2 loops:

• All have color factor (fundamental representation)
CFCA (only – no C2

F ).
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• How it works. Say we know the exponent w(i) to order N .
Expand to N + 1st order, as a sum of diagrams and in terms
of the exponential

A(N+1) =


 exp




N+1∑

i=1
w(i)







(N+1)

A(N+1) =
∑

D(N+1)
D(N+1) .

• This gives a formula for the highest order in the exponent:

w(N+1) =
∑

D(N+1)
D(N+1) − [

N+1∑

m=2

1

m!

× N∑

im=1
. . .

N∑

i1=1
w(im)w(im−1) . . . w(i1)](N+1)
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• To the relation

w(N+1) =
∑

D(N+1)
D(N+1) − [

N+1∑

m=2

1

m!

× N∑

im=1
. . .

N∑

i1=1
w(im)w(im−1) . . . w(i1)](N+1)

• Now apply the ‘abelian’ graphical identity, which holds for any
number, length or shape of Wilson lines, simply an expression
of the path ordering of exp[∫ dλβ ·A(βλ)]:

W1

W2
W2W1

Figure 2: Illustration of the coordinate identity, Eq. (13), where each line attaching W1 and

W2 to a Wilson line stands for an arbitrary number of gluons (e
(a)
i in the text.) The sum

on the right represents the sum over all mutual orderings of the external gluons of W1 and
W2, preserving the orderings internal to each W along the Wilson line. The color-dependent
product of the web internal factors, W1 and W2 are the same on both sides of the figure.

where in the first equality we define τ
(a)
0 ≡ 0. The second form represents the integrals as

a functional IE , acting on the “internal web function” W(i)
E corresponding to w

(i)
E . W(i)

E is

a function of all the τ
(a)
j s, and includes all color and velocity dependence associated with

the gluons, including the vectors ξµ(τ
(a)
j ) that are contracted with the gluon propagators.

Notice that IE depends only on the assignment of gluon connections, E, and is otherwise
independent of the internal function W(i)

E , including its order, i. We now use this property
of the I’s to derive an identity that will serve as a lemma for our main result.

Let us consider the product of functionals, IEs, s = 1 . . .m, with each factor defined by
(12). For a given choice of Wilson line a, the integrals within each factor of the product
are ordered as in (12) above, but they are not otherwise mutually ordered between different
products. We can, however, write the product as a sum of terms, in which all the integration
parameters τ

(a)
js

from every factor IEs, s = 1 . . .m are ordered with respect to the integrals
along every line from every other factor, while maintaining the original ordering within each
factor. The sum is effectively over all possible interleaving of the integrals with each other.
We label each such ordering by Eπ(∪sEs), with π an element of the set Π({Es}) of the

permutations of all the parameters τ
(a)
js

, which preserve the original ordering internal to each
IEs

m∏

s=1

IEs =
∑

π∈Π({Es})

IEπ(∪m
s=1Es) , (13)

This identity holds for any sets of Wilson lines, which need not be straight, or of infinite
length. We note that at this stage, every term on the right-hand side of (13) is different,
because the integrals within each IEs will act on different functions. We will come back
to this point shortly. Figure 2 illustrates Eq. (13), where the sum in the figure represents
the sum over all interleavings of gluons connecting the two w’s to the lines. As the figure

6

• The identity allows us to interpret the products of lower-order
w’s in terms of N + 1st order diagrams, so that the effect of
all the lower orders is to modify color factors, since these are
unaffected by the identity.
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• Important: Consistency with the exponential in terms of anoma-
lous dimensions requires that the webs automatically subtract
all divergences where there is more than one ‘subjet’ in the
web. The entire web is either hard, soft, or collinear to one
line or the other.

• The web acts like a single gluon (consistent with the dipole
exponentiation).
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• As ordered exponentials, the webs can be constructed in co-
ordinate space. Care must be taken to preserve gauge invari-
ance, or double-logarithmic exponentiation fails in general.
With this in mind, the result, with an IR cutoff L, is:
(Erdogan, GS, forthcoming)

E(L, ε) =
∫L
0

dλ

λ

dσ

σ
w (αs (1/λσ))

• Here σ and λ are distances along the eikonal lines. The
invariant size of the web fixes the running coupling.

• n.b. Systematic subtractions are necessary to construct this
“web function” w. When this is done,

w = −
1

4
A(αs) +O(ε)
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• Again,

E(L, ε) =
∫L
0

dλ

λ

dσ

σ
w (αs (1/λσ))

• A “surface” interpretation is tempting. Indeed this is the
same formula found from gauge/gravity duality for strongly
coupled conformal gauge theory by minimizing a 5-dimensional
surface (Alday, Maldacena (2007)). But here it’s QCD with a cou-
pling the runs with the size of the web. In a sense, it is just
the invariances of the theory driving the result.
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• Another interesting correspondence: polygonal Wilson lines
(Korchemskaya, Korchemsky (1993), Drummond et al (2008). . . ). Webs appear
in “corners, and when defined in a gauge-invariant fashion
give the leading singularities:

• Again, an interesting correspondence to gauge/gravity duality,
and neglecting the running of the coupling, derive formulas
based on minimal surfaces in 5 dimensions, like:

4∑

a=1
Wa(βa, β

′
a) =

∫ 1
−1 dy1

∫ 1
−1 dy2

4wconformal

(1− y2
1)(1− y2

2)
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Conclusions

• Many applications have been left out, especially transverse
momentum and related resummations, low-x and BFKL, and
power corrections.

• Where is this going? A most optimistic conjecture: the graph-
ical interpretation of anomalous dimensions may offer another
window to non-partonic degrees of freedom.
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Extra:

• An equivalent form for the soft function:

S




N2µ2

M2
, βi · βj, αs(µ2)



|µ=M

= P exp { −
∫M
M/N

dµ

µ
Γ
†
S


βi · βj, αs


µ2




}

×S

1, βi · βj, αs


M2/N2






×P exp { −
∫M
M/N

dµ

µ
ΓS


βi · βj, αs


µ2




}

1



• Massive lines, for heavy quark and new physics production
. . . ?

• Could

vanish with massive outgoing lines?
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• Antisymmetric color combinations with massive Wilson lines
(Mitov, GS, Sung (2009), Becher, Neubert (2009))

• Explicit forms of form-factor like diagrams (Kidonakis (2009))

• Coordinate-space representation can be useful, and give the
same results as momentum space. Integrals over Wilson line
vertices are trivial.

• Nonzero result in Euclidean space (sufficient).

F
(2)
3g (βI, ε) = −

∫
dDx

3∑

i,j,k=1
εijk ζkζi

βi · βj


√
x2



4−6ε

× g(ζj, ε)g(ζk, ε)
∂g(ζi, ε)

∂ζi
.

with ζi = βi/
√

β2x2 and

g(ζi, ε) =
∫∞
0 dλ′

1
(

1− 2λ′ζi + λ′2
)1−ε
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• Subsequently,elegant explicit results for Γ
(2)
S (mi). (Ferrogli, Neu-

bert, Yang (2009)), which check numerically against position space
calculations but can be continued to Miknowski space.

• The “3g” diagram, with coshβIJ = (pI+pJ)2

mImJ
:

∑

IJK
εIJK β

2
IJ βJK cothβJK

Amazingly simple! The full result not much more compli-
cated.

• Has a puzzling feature: nonuniform limit from
β = 1− 4m2/M2→ 0:

Γ
(2)
S (m,β) ∼

1

β
ln




1− β cos θ∗

1 + β cos θ∗


 ∼ cos θ∗

But not to worry: threshold factorization with recoil-less Wil-
son lines for outgoing quarks holds only for radiation whose
energy is much smaller than quark relative four-momenta.
Thus as β → 0, the range of applicability of this result shrinks
toward zero.
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