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(ii) these theories have many parameters, 
       DM phenomenology is unclear (scatter plots)

(iii) DM stability is imposed by hand
	    (R-parity, T-parity, KK parity) 

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). 
As a  byproduct,  they can provide DM candidates at the EW scale.
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L = LSM + X̄ (iD/ + M)X if       is a fermion

if       is a scalar

X

X

gauge interactions the only parameter, 
and will be fixed by         .ΩDM

(other terms in the 
scalar potential)

(one loop mass splitting)

L = LSM + |DµX|2 − M
2|X |2

X

X

W±, Z, γ

[g2, g1, Y ]

keynote:/Users/mcirelli/Documents/talks%20and%20seminars/29.MDMastro/7.MDMastro.CERN.key?id=BGSlide-23
keynote:/Users/mcirelli/Documents/talks%20and%20seminars/29.MDMastro/7.MDMastro.CERN.key?id=BGSlide-23
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by the relic abundance:

M (TeV)
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M

(- include co-annihilations)
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X

X
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〈σAv〉 #
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2 (3 − 4n2 + n4) + 16 Y 4g4
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+ 8g2
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Y 2(n2 − 1)

64π M2 gX

〈σAv〉 #
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2 (2n4 + 17n2 − 19) + 4Y 2g4

Y
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Non-perturbative corrections
(and other smaller corrections)
induce modifications: 

(more later)

〈σannv〉 ! R · 〈σannv〉 + 〈σannv〉p−wave

with R ∼ O(few) → O(102)

w/o Non-Pert corr

full computation
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Non-Minimal terms in the scalar case
λH(X ∗

T
a
XX ) (H∗

T
a
HH) + λ

′

H |X |2|H|2 +
λX

2
(X ∗

T
a
XX )2 +

λ′
X

2
|X |4

Quadratic and quartic terms in      and      :X H

- do not induce decays (even number of     , and              )〈X 〉 = 0X

- [3] and [4] do not give mass terms

[1] [2] [3] [4]

- after EWSB, [2] gives a common mass
  to all       components;
  negligible for 

√

λ′

H
v ≈ O(! 100 GeV)

Xi

M = O(TeV)

- after EWSB, [1] gives mass splitting 
  between       components; 
  assume                    so that    

Xi

∆Mtree =
λHv2|∆T 3

X
|

4M
= λH · 7.6 GeV

TeV

M

λH ! 0.01 ∆Mtree ! ∆M

(Anyway, scalar MDM is less interesting.) [back to Lagrangian]

- [1] (and [2]) gives annihilations 
  assume                      so that these are subdominant   |λ′

H | ! g2

Y , g2

2

X̄X → H̄H

[back to table]
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e.g. mixing with an extra singlet splits the 2 components 
of     ; if splitting is large enough, NC scattering is 
kinematically forbidden... 

If you want to cure ill candidates...
: introduce some mechanism to forbid coupling with
  anyway

Y != 0

impose some symmetry to forbid decays (e.g. R-parity)...stability:

X

Z
0

Y

Z
0

X

NN

X
′

...the case of SuSy higgsino



A fermionic                quintuplet with            ,
provides a DM candidate with                       ,

which is fully successful:
- neutral

- automatically  stable
and

not yet  discovered by DM searches.     

Recap:
SU(2)L Y = 0

A scalar               eptaplet with               also does.SU(2)L Y = 0

(Other candidates can be cured via non-minimalities.)

like proton 
stability in SM!

M = 10 TeV
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Main motivation
ΩDM

ΩB
� 5 Just coincidence? Or: signal of a link?

Possibly a common production mechanism:

Baryogenesis: ‘Darko’genesis:

ηB =
nB − nB̄

nγ
= 6 · 10−10 ηDM =

nDM − nDM

nγ
= ηB
?

BBN, CMB...

A variety of specific models/ideas:

cfr J. March-Russell
transferring or co-genesis

DM stores the anti-B number
via leptogenesis

connection to neutrino masses
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
Sec. 3.3) and in the case which includes elastic
scatterings (bottom left panel, Sec. 3.4). The
blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum.
The arrow points to the value of the primordial
asymmetry, the green band is the correct relic
abundance (± 1σ).

neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry ηB: it sets the asymptotic number density 4 and thus,
in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number
densities

Σ(x) = Y
+(x) + Y

−(x), ∆(x) = Y
+(x)− Y

−(x), (15)

In terms of these quantities, the Boltzmann equations read





Σ �(x) = −2
�σv� s(x)

x H(x)

�
1

4

�
Σ2(x)−∆2(x)

�
− Y

2
eq(x)

�
,

∆�(x) = 0,

(16)

which clearly shows that the difference ∆ between the populations remains constant and
equal to the initial condition η0; on the other hand, the total population of + and − particles
decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards
∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM ↔ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.

7

A completely different relic
from the Early Universe

χχ̄ � ff̄ χ ? � . . .χχ̄→ ff̄

ΩX �
mX s

ρcrit
η0

The relic abundance is determined by       and        .

Provided:
- an initial asymmetry
- strong enough annihilations

η0 mX
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neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry ηB: it sets the asymptotic number density 4 and thus,
in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number
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equal to the initial condition η0; on the other hand, the total population of + and − particles
decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards
∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM ↔ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.
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neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry ηB: it sets the asymptotic number density 4 and thus,
in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number
densities
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+(x) + Y
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which clearly shows that the difference ∆ between the populations remains constant and
equal to the initial condition η0; on the other hand, the total population of + and − particles
decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards
∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM ↔ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.
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neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry ηB: it sets the asymptotic number density 4 and thus,
in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number
densities
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+(x) + Y
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which clearly shows that the difference ∆ between the populations remains constant and
equal to the initial condition η0; on the other hand, the total population of + and − particles
decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted towards
∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM ↔ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case

4Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (� 10 TeV), for which freeze-out happens early.
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The “Theory of DM”
Arkani-Hamed, Weiner, Finkbeiner et al. 0810.0713

0811.3641

Basic ingredients:
Dark Matter particle, decoupled from SM, mass             
new gauge boson (“Dark photon”), 

couples only to DM, with typical gauge strength, 
- mediates Sommerfeld enhancement of         annihilation:

        fulfilled

- decays only into            or              
for kinematical limit

χ
φ

χχ̄

e+e− µ+µ−

M ∼ 700+ GeV
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Extras:
χ       is a multiplet of states and        is non-abelian gauge boson:

    splitting                                (via loops of non-abelian bosons)
- inelastic scattering explains DAMA
- eXcited state decay                     explains INTEGRAL
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The “Theory of DM”
Phenomenology:

MDM
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Figure 6: Bounds on DM annihilations into leptonic channels. The Fermi bounds are
denoted as FSRγ (continuous blue line) and ICγ (red curves, for L = 1, 2, 4 kpc from upper to
lower). Other bounds are described in the text; their labels appear along the corresponding lines
only when these bounds are significant enough to appear within the plots. Cosmological freeze-
out predicts σv ≈ 3 10

−26
cm

3/ sec (lower horizontal band) and connections with the hierarchy
problem suggest M ∼ (10 ÷ 1000)GeV. The region that can fit the e± excesses survives only
if DM annihilates into e’s or µ’s and DM has an isothermal profile. All bounds are at 3σ;
the green bands are favored by PAMELA (at 3σ for 1 dof) and the red ellipses by PAMELA,
FERMI and HESS (at 3 and 5σ, 2 dof, as in [9]).

time [22]; c) more realistic boundary conditions as described above; and presumably d) the fact

that Fermi observes 100GeV γ rays also away from the GC suggests that L is not small.

Fig.s 6 and 7 show again the Fermi bounds at 3σ (the ICγ bounds is plotted for a few values

of the height of the diffusion volume, L = 1, 2, 4 kpc), together with the regions favored by the

e± excesses and with various other 3σ bounds already considered in previous papers [15, 23, 9]:

- The GC-γ (blue continuous curves) and GR-γ (dot-dashed blue curves) bounds refer to the

HESS observations [24, 25] of the photon spectrum above ≈ 200GeV (so that it constrains

FSRγ and heavier DM, rather than ICγ and lighter DM) in the ‘Galactic Center’ region

(
√
�2 + b2 < 0.1◦) and in the ‘Galactic Ridge’ region (|�| < 0.8◦ and |b| < 0.3◦). In these
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Variations
(selected)

Axion Portal:       is pseudoscalar axion-like
Nomura, Thaler 0810.5397

φ

pioneering: Secluded DM, U(1) Stückelberg extension of SM
Pospelov, Ritz et al 0711.4866 P.Nath et al 0810.5762

singlet-extended UED:      is KK RNnu,      is an extra bulk singlet
Bai, Han 0811.0387

χ φ

DM carrying lepton number:      charged under                    ,      gauge bosonU(1)Lµ−Lτ
χ φ

Cirelli, Kadastik, Raidal, Strumia 0809.2409 Fox, Poppitz 0811.0399 (mφ ∼ tens GeV)

split UED:     annihilates only to leptons because quarks are on another braneχ
Park, Shu 0901.0720

New Heavy Lepton:     annihilates into       that carries lepton number and 
decays weakly

χ Ξ

Phalen, Pierce, Weiner 0901.3165

(∼ TeV) (∼ 100s GeV)

...... [jump to conclusions]

keynote:/Users/mcirelli/Documents/talks%20and%20seminars/34.DM%20id%20overview/07.DMid.Copenhagen.key?id=BGSlide-177
keynote:/Users/mcirelli/Documents/talks%20and%20seminars/34.DM%20id%20overview/07.DMid.Copenhagen.key?id=BGSlide-177


Sommerfeld Enhancement
NP QM effect that can enhance the annihilation cross section by orders of 
magnitude in the regime of small velocity and relatively long range force.

Sommerfeld, Ann.Phys. 403, 257 (1931)

Hisano et al., 2003-2006:
in part. hep-ph/0307216, 0412403, 0610249 

Cirelli, Tamburini, Strumia 0706.4071

Arkani-Hamed et al., 0810.0713
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A classical analogy: Arkani-Hamed et al. 0810.0713

NP QM effect that can enhance the annihilation cross section by orders of 
magnitude in the regime of small velocity and relatively long range force.
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bmax

R

v

σ = πR2

�
1 +

2GNM/R

v2

�
σ0 = πR2

v2
esc = 2GNM/Rwith

v � vesc σ → σ0

v � vesc

For then

For then σ � σ0

i.e. Ekin < Upot (i.e. the deforming potential 
is not negligible)
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+ V · ψ = Mν2ψ

Sommerfeld Enhancement
NP QM effect that can enhance the annihilation cross section by orders of 
magnitude in the regime of small velocity and relatively long range force.

Cirelli, Strumia, Tamburini 0706.4071

        wave function of two DM particles (                ) 
obeys (reduced) Schrödinger equation:

At           : annihilation

(V does not depend on time)

σann ∝ ψΓψ Γ �DM DM|Γ|final�

ψ(�r) �r = �r1 − �r2

r = 0
with such that

R =
σann

σ0
ann

=
����
ψ(∞)
ψ(0)

����
2

Sommerfeld enhancement:

unperturbed cross section

potential due to exchange of force carriers
velocity
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NP QM effect that can enhance the annihilation cross section by orders of 
magnitude in the regime of small velocity and relatively long range force.
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for 1 TeV DM: need mV → GeV

Cirelli, Franceschini, Strumia 0802.3378

case of MDM fermion 3-plet: 
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Sommerfeld Enhancement
NP QM effect that can enhance the annihilation cross section by orders of 
magnitude in the regime of small velocity and relatively long range force.

Hisano et al. hep-ph/0412403In terms of Feynman diagrams:
First order cross section:

Adding a rung to the ladder: ×
�

αM

mW

�

αM/mV � 1For                             the perturbative expansion breaks down, 
 need to resum all orders
 i.e.: keep the full interaction potential.
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‘Conclusions’
Non-SuSy DM is alive and

* It’s fair to say that, 
like any newborn, 
it builds on the expertise 
of giants, 
i.e. ‘old’ SuSy DM.

Mostly data-driven, but not only

- PAMELA, FERMI, HESS
- DAMA, CoGeNT, CRESST
- DM simulations ?

I selected 3 ideas:
1. Minimal DM: the simplest, so-far-overlooked possibility?
2. Asymmetric DM: a paradigm of a ‘new’ production mechanism?
3. Secluded DM: the harbinger of a rich dark sector?

but the list of new interesting directions is bottomless.


