DARK MATTER STATUS OF DIRECT SEARCHES

NICOLAO FORNENGO

Department of Theoretical Physics, University of Torino and Istituto Nazionale di Fisica Nucleare (INFN) – Torino Italy

fornengo@to.infn.it nicolao.fornengo@unito.it

www.to.infn.it/~fornengo www.astroparticle.to.infn.it

Dark Workshop @ GGI Firenze (Italy) – 26.10.2011

Direct detection of galactic dark matter

Key elements of Direct Detection

• How DM is locally distributed

• How DM scatters with nuclei

- What kind of signal and signature we can target
- What kind of backgrounds we need to confront with

• How detectors respond to DM scattering

Dark matter phase space (for CDM)

From numerical simulations

Navarro et al., arXív:0810.1522

Vogelsberger et al., arXív:0812.0362

Subhalos

The Aquarius Project

Springel et al., MNRAS 391 (2008) 1685

Velocity streams

Vogelsberger et al., arXív:0812.0362

"Canonical" halo for direct detection

 $\rho(r) \longrightarrow \rho_0 = 0.3 \text{ GeV cm}^{-3}$

Some recent determinations [1-3]

$$\begin{array}{l} \rho_0 = 0.385 \pm 0.027 \ {\rm GeV} \ {\rm cm}^{-3} & \mbox{(Einasto)} \\ \rho_0 = 0.389 \pm 0.025 \ {\rm GeV} \ {\rm cm}^{-3} & \mbox{(NFW)} \end{array}$$

[2] $\rho_0 = 0.43(11)(10) \text{ GeV cm}^{-3}$ [4] $\rho_0 = (0.20 \div 0.55) \text{ GeV cm}^{-3} [1\sigma]$

$$f(\vec{v}) = N \exp(-v^2/v_0^2)|_{v_{\rm esc}}$$
$$v_0 = (220 \pm 50) \text{km s}^{-1}$$
$$v_{\rm esc} = (450 \div 650) \text{ km s}^{-1}$$

Anisotropies may be present Profile may not be gaussian Tails are relevant for DD

Streams may have (even relevant) impact

[1] Catena, Ullio, arXiv:0907.0018
 [2] Salucci et al. arXiv:1003.3101
 [3] Pato et al., arXiv:1006.1322
 [4] Iocco et al., arXiv:1107.5810

Interaction mechanisms - WIMPs

• Elastic scattering with nuclei $\chi \: \mathcal{N} \longrightarrow \chi \: \mathcal{N}$

- Ex.: Neutralíno, Sneutrínos, KK

$$E_R = \mu_N^2 v^2 (1 - \cos \theta) / m_N$$

$$E_R > few KeV$$

 Inelastic scattering with nuclei Tucker-Smith, Weiner, PRD 64 (2001) 043502

- Ex.: Sneutrinos

 $\chi \mathcal{N} \longrightarrow \chi' \mathcal{N}$

Scatter if: $\Delta m < \frac{\beta^2 m_1 m_N}{2(m_1 + m_N)}$

about 1-100 KeV

Interaction mechanisms - non WIMPs

• Inelastíc, scatter on electrons

- Ex.: Light (KeV) [pseudo]scalars

WIMPs - Scattering cross section

- Spin-independent
 - Cross section proportional to the (mass number)² of the nucleus, more generally:

$$[f_p Z + f_n (A - Z)]^2$$

- Nuclear form factors $F(E_R)$

- Spín-dependent
 - Cross section proportional to the $(spin)^2$ of the nucleus Spin form factors $S(E_R)$

Interaction rate (WIMP; scalar interaction)

$$\frac{dR}{dE_R} = N_T \frac{\rho_0}{m_\chi} \frac{m_N}{2\mu_1^2} A^2 \left[\xi \sigma_{\text{scalar}}^{(\text{nucleon})}\right] F^2(E_R) \mathcal{I}(v_{\text{min}})$$

$$\mathcal{I}(v_{\min}) = \int_{w \ge v_{\min}} d^3w \ \frac{f_{\mathrm{ES}}(\vec{w})}{w}$$

$$f_{\rm ES}(\vec{w}) = f(\vec{w} + \vec{v}_{\oplus})|_{[v_{\rm rot}; v_{\rm esc}]}$$
$$v_{\rm min} = [m_N E_R / (2\mu_A^2)]^{1/2}$$

Local motions

Interaction rate (WIMP; scalar interaction)

$$\frac{dR}{dE_R} = N_T \frac{\rho_0}{m_\chi} \frac{m_N}{2\mu_1^2} A^2 \left[\xi \sigma_{\text{scalar}}^{(\text{nucleon})}\right] F^2(E_R) \mathcal{I}(v_{\text{min}})$$

$$\mathcal{I}(v_{\min}) = \int_{w \ge v_{\min}} d^3w \ \frac{f_{\mathrm{ES}}(\vec{w})}{w}$$

$$f_{\rm ES}(\vec{w}) = f(\vec{w} + \vec{v}_{\oplus})|_{[v_{\rm rot}; v_{\rm esc}]}$$
$$v_{\rm min} = [m_N E_R / (2\mu_A^2)]^{1/2}$$

Response function

Differential Rate - Energy Dependence

Local motions

Typical signatures of direct detection

From the galactic RF to the Earth RF

$$\vec{v} \rightarrow \vec{w} = \vec{v} - \vec{v}^E(t),$$

 $f(\vec{v}) \rightarrow f_{\rm ES}(\vec{w}) = f(\vec{w} + \vec{v}^E(t))$

Earth's velocity wrt. galactic rest frame

$$v_x^E = v_x^G + v_x^S + u^E(\lambda) \cos \beta_x \cos[\omega(t - t_x)]$$

$$v_y^E = v_y^G + v_y^S + u^E(\lambda) \cos \beta_y \cos[\omega(t - t_y)]$$

$$v_z^E = v_z^G + v_z^S + u^E(\lambda) \cos \beta_z \cos[\omega(t - t_z)]$$

Galactic rotational velocity
$$\vec{v}^G = (0, v_0, 0) \text{ Km s}^{-1}$$
Sun's proper motion $\vec{v}^S = (-9, 12, 7) \text{ Km s}^{-1}$ Earth's orbital motion $u^E(\lambda) = \langle u^E \rangle [1 - e \sin(\lambda - \lambda_0)]$ $\langle u^E \rangle = 29.79 \text{ Km s}^{-1}$

$$v_E(t) \equiv |\vec{v}_E| = (233.5 + 14.4 \cos[\omega(t - t_0)]) \text{ Km s}^{-1}$$

 $t_0 = 152 \text{ days} = \text{June } 2^{\text{nd}}$
 $\omega = 2\pi/(365 \text{ days})$

Nicolao Fornengo, University of Torino and INFN-Torino (Italy)

Annual Modulation of the rate

$$\frac{dR}{dE_R}[\eta(t)] = \frac{dR}{dE_R}[\eta_0] + \frac{\partial}{\partial\eta} \left(\frac{dR}{dE_R}\right)_{\eta=\eta_0} \Delta\eta \,\cos[\omega(t-t_0)]$$

$$= S_0(E_R) + S_m(E_R) \cos[\omega(t-t_0)]$$

$$\eta(t) = v(t)/v_0$$

Annual modulation

NF, S. Scopel, PLB 576 (2003) 189

Modulation amplitude - energy dependence

Annual modulation

NF, S. Scopel, PLB 576 (2003) 189

Effect of DM streams

Summarizing

- Scattering of DM WIMPs on the detector induces a recoil spectrum for the nuclei dR/dE_R
- DM-nucleus interactions may couple to the nucleus mass (coherent scattering) or to the nucleus spin (spindependent scattering)
- Local motions in the Galaxy induce a time-dependence of the recoil, which (if experimentally accessible) can help to disentangle a true signal from radioactive backgrounds:
 - Annual modulation
 - Diurnal modulation
 - Directionality

Current experimental status

Current direct detection experiments

- Background-rejection experiments (CDMS, XENON, CRESST)
 - Do not exploit a specific signature of the signal
 - Rely on reduction/interpretation of background

- Annual modulation experiments (DAMA, CoGeNT)
 - Exploit a specific signature
 - Required to be highly stable over long periods

DAMA/Nal and DAMA/LIBRA

Target: Nal

Annual modulation observed Effect at 8.9 σ C.L.

Single-hit events in the signal energy-window Stability parameters do not modulate

Compatible to DM scatter off nuclei on electrons

Cumulative exposure: 1.17 ton x yr (13 annual cycles) (i.e. 427050 Kg x day)

$$S_m[2-6 \text{ KeV}] \approx (0.0116 \pm 0.0013) \text{ cpd/kg/keV}$$

Phase = (146 ± 7) days

 $Period = (0.999 \pm 0.002) years$

R. Bernabeí et al. (DAMA Collab.), Eur. Phys. J. C (2010) 67

Time (day)

DAMA annual modulation

R. Bernabei et al. (DAMA Collab.), Eur. Phys. J. C (2010) 67

Differential rate and modulation amplitude

Interaction rate (WIMP; scalar interaction)

$$\frac{dR}{dE_R} = N_T \frac{\rho_0}{m_\chi} \frac{m_N}{2\mu_1^2} A^2 \left[\xi \sigma_{\text{scalar}}^{(\text{nucleon})}\right] F^2(E_R) \mathcal{I}(v_{\text{min}})$$

$$\mathcal{I}(v_{\text{min}}) = \int_{w \ge v_{\text{min}}} d^3 w \frac{f_{\text{ES}}(\vec{w})}{w}$$

$$f_{\text{ES}}(\vec{w}) = f(\vec{w} + \vec{v}_{\oplus})|_{[v_{\text{rot}}; v_{\text{esc}}]}$$

$$v_{\text{min}} = [m_N E_R / (2\mu_A^2)]^{1/2}$$

$$E_R \to E_{\text{det}}$$

$$E_{\text{ee}} = q(E) E_R$$

Ion channeling in NaI crystals

Ion channeling in NaI crystals

See also: Borzorgnia, Gelmini, Gondolo, JCAP 1011 (2010) 019

See also: Matyukhin, Technical Physics 53 (2008) 1578 - predicts larger fraction of channeling

Nicolao Fornengo, University of Torino and INFN-Torino (Italy)

Dark Workshop at GGI ~ Firenze ~ 26.10.2011

CoGeNT annual modulation

Target: Ge

COGENT 2010 Aalseth et al. (COGENT Collab.), PRL 106 (2011) 131301

Irreducíble excess of bulk-líke events Cumulatíve exposure: 18.48 Kg x day

 $\frac{\text{COGeNT 2011}}{\text{Aalseth et al. (COGeNT Collab.), PRL 107 (2011) 141301}}$ Annual modulation of the recoil rate Effect at 2.8 σ C.L.

Cumulatíve exposure: 145.89 Kg x day (1 annual cycle)

 $S_{m}[0.5-3 \text{ KeV}] \approx (16.6 \pm 3.8) \%$

Phase = (106 ± 12) days

Period = (0.951 ± 0.079) years

Aalseth et al. (COGeNT Collab.), PRL 107 (2011) 141301

Changing galactic halo properties

Dark Workshop at GGI ~ Firenze ~ 26.10.2011

Changing galactic halo properties

Dark Workshop at GGI ~ Firenze ~ 26.10.2011

Changing galactic halo properties

CRESST

Light Yield 20

0

Target: CaWO₄

Irreducíble excess over background Effect at > 4 σ C.L.

Cumulative exposure: 730 Kg x day

67 events in the acceptance region

Max likelihood analysis: bakgrounds unable to account for all the events

leakage from e/gamma band leakage from alpha band neutrons ²⁰⁶Pb recoils from ²¹⁰Po decay

Angloher et al. (CRESST Collab.), arXív:1109.0702 [astro-ph.CO]

module	$E_{\rm acc}^{\rm mm}$ [keV]	acc. events
Ch05	12.3	11
Ch20	12.9	6
Ch29	12.1	17
Ch33	15.0	6
Ch43	15.5	9
Ch45	16.2	4
Ch47	19.0	5
Ch51	10.2	9
total	_	67

Nicolao Fornengo, University of Torino and INFN-Torino (Italy)

Dark Workshop at GGI ~ Firenze ~ 26.10.2011

CDMS II

Z. Ahmed (CDMS Collab.), arXiv:0912.3592 [astro-ph.CO]

CDMS II

2 signal events

 (0.04 ± 0.04) : cosmogenic background (0.03 ± 0.06) : neutrons from contaminants $(0.8 \pm 0.1_{stat} \pm 0.2_{syst})$: misidentified surface events

"No significant evidence of a signal, but cannot be rejected" [*]

XENON 100

3 candidate events (1.8 \pm 0.6) expected background

Cumulative exposure: 4843.2 Kg x day

Aprile et al. (XENON 100 Collab.), arXiv:1104.2549 [astro-ph.CO]

Nicolao Fornengo, University of Torino and INFN-Torino (Italy)

Dark Workshop at GGI ~ Firenze ~ 26.10.2011

Scintillation efficiency

Horn et al., arXiv:1106.0694 [physics.ins-det]

Light DM range

For light WIMPs, knowledge of $\rm L_{eff}$ at low energies is crucial

Extrapolation down to E = 0 necessary Statistical tail of low number of PE has impact

Dashed: Leff from Manzur et al. Dotted: Leff from Plante et al.

Collar, 1005.0838; 1005.2615; 1006.2031; 1010.5187; 1106.0653

XENON 100 Collab. 1005.2615

Savage et al. 1006.0972

For light WIMPs, see also:

- Kopp, Schwetz, Zupan, JCAP 1002:014,2010
- Fairbairn, Schwetz, JCAP 0901:037,2009
- Savage, Gelmíní, Gondolo, Freeze, JCAP 0904:010 (2009)
- Gondolo, Gelmíní, PRD 71:123520,2005
- Andreas, Arina, Hambye, Ling, Tytgat, arXiv:1003.2595 [hep-ph]
- Fítzpatríck, Hooper, Zurek, arXív:1003.0014 [hep-ph]
- Petriello, Zurek, JHEP 0809:047,2008
- Foot, arXív:1004.1424 [hep-ph]
- Schwetz et al., arXiv:1011.5432
- Farina et al. ,arXiv:1107.0715
- Fox et al., arXiv:1107.0717
- (...)

Comparison with theoretical models

Coherent (scalar) cross sections

On nucleon:

$$\sigma_0^{SI} = \frac{8G_F^2}{\pi} M_Z^2 \mu_1^2 \left[F_h I_h P_h^t + F_H I_H P_H^t + F_{\tilde{q}} I_{\tilde{q}} (P_{\tilde{q}}^s + P_{\tilde{q}}^u) \right]^2$$

$$F_{h,H} : \text{coupling } (h, H)\chi\chi$$

$$I_{h,H} = \sum_q k_q^{h,H} m_q < N |\bar{q}q| N > \qquad k_q^{(h,H)} : \text{ coupling } (h, H)qq$$

$$I_{\tilde{q}} = \sum_q C_q^2 m_q < N |\bar{q}q| N > \qquad C_q : \text{ coupling } \tilde{q}q\chi$$

$$\sigma_{\mathcal{N}}^{SI} = \frac{\mu_{\mathcal{N}}^2}{\mu_1^2} \; \sigma_0^{SI} \; A_N^2$$

Hadronic matrix elements

Light quarks

$$\sigma_{\pi N} = \frac{1}{2}(m_u + m_d) < N |(\bar{u}u + \bar{d}d)|N >$$

$$\Sigma_0 = \frac{1}{2}(m_u + m_d) < N |(\bar{u}u + \bar{d}d - 2\bar{s}s)|N >$$

$$R = 2m_s/(m_u + m_d)$$

Pion-nucleon sigma term

Octet baryon masses Chíral perturb. Theory Lattice

$$\begin{split} \text{Heavy quarks} \\ m_N &= \sum_q m_q < N |\bar{q}q|N > + \frac{\beta(\alpha_S)}{4\alpha_S} < N |G^a_{\mu\nu}G^{\mu\nu}_a|N > \\ m_h < N |\bar{h}h|N > = -\frac{\alpha_S}{12\pi} < N |G^a_{\mu\nu}G^{\mu\nu}_a|N > + \mathcal{O}(\Lambda^3/m_h^3) \\ m_h < N |\bar{h}h|N > = \frac{2}{27} [m_N - \sum_{q=u,d,s} m_q < N |\bar{q}q|N >] \end{split}$$

(in MeV)	$m_l < N \bar{q}_l q_l N >$	$m_s < N \bar{s}s N >$	$m_h < N \bar{h}h N >$	g_u	g_d
Set A	27	131	56	139	214
Set B	28	186	52	132	266
Set C	37	456	30	97	523

Nicolao Fornengo, University of Torino and INFN-Torino (Italy)

Dark Workshop at GGI ~ Firenze ~ 26.10.2011

Effect of hadronic uncertainties

Light neutralinos in the MSSM

A. Bottino et al., PRD 67 (2003) 063519; PRD 78 (2008) 083520; PRD 83 (2011) 015001; PRD 84 (2011) 055014

COSMOLOGY

Líght neutralinos Líght A híggs

 $\begin{array}{cccc} \chi\chi & \longrightarrow & \overline{b}b \end{array}$

$$\Omega_{\chi}h^2 \simeq \frac{4.8 \cdot 10^{-6}}{\text{GeV}^2} \frac{x_f}{g_{\star}(x_f)^{1/2}} \frac{1}{a_1^2 a_3^2 \tan^2 \beta} m_A^4 \frac{[1 - (2m_{\chi})^2 / m_A^2]^2}{m_{\chi}^2 [1 - m_b^2 / m_{\chi}^2]^{1/2}} \frac{1}{(1 + \epsilon_b)^2}$$

$$m_{\chi} \frac{[1 - m_b^2/m_{\chi}^2]^{1/4}}{[1 - (2m_{\chi})^2/m_A^2]} \gtrsim 7.4 \text{ GeV} \left(\frac{m_A}{90 \text{ GeV}}\right)^2 \left(\frac{35}{\tan\beta}\right) \left(\frac{0.12}{a_1^2 a_3^2}\right)^{\frac{1}{2}} \left(\frac{0.12}{(\Omega_{CDM} h^2)_{\max}}\right)^{\frac{1}{2}}$$

$$m_{\chi} \gtrsim 7 - 8 \text{ GeV} \quad \text{Mass lower bound from Cosmology}$$

Higgs A needs to be light
$$m_A \sim (90 - 200) \text{ GeV}$$
 $\tan \beta$ nees to be relatively large $\tan \beta \sim 20 - 45$ Bino-higgsino mixing needs to be "sizeable" $|\mu| \simeq (100 - 200) \text{ GeV}$ [*]

LIGHT_X DM SIGNALS - DIRECT DETECTION

From the relic abundance bound:

Light neutralinos in the MSSM

A. Bottino et al., PRD 67 (2003) 063519; PRD 78 (2008) 083520; PRD 83 (2011) 015001; PRD 84 (2011) 055014

Next-to-Minimal MSSM (NMSSM)

Cerdeno, Gabrielli, Lopez-Fogliani, Munoz, Teixeira, JCAP0706:008,2007

Sneutrinos

MSSM + right-handed neutrino superfields Addresses DM + neutrino mass in the same sector

C. Arína, NF, JHEP 0711 (2007) 029

Sneutrinos in the NMSSM

NMSSM + right-handed neutrino superfield Light sneutrinos and psedoscalar higgs

Cerdeno, Seto, JCAP 0908 (2009) 032

Non-minimal Supergravity

Non-universality in the Higgs sector

Universal extra-dimensions

Cheng, Feng, Matchev, PRL 89(2002) 211301

Spin dependent

Aprile et al. RD84 (2011) 061101
Additional mechanism

• Isospin violation: $f_p \neq f_n$

Kurylov, Kamionkowski, PRD 69 (2004) 063503 Giuliani, PRL 95 (2005) 101301 Cotta, Gainer, Hewett, Rízzo, New J. Phys. 11 (2009) 105026 Chang, Liu, Pierce, Weiner, Yavin, JCAP 1008 (2010) 018 Kang, Li, Liu, Tong, Yang, JCAP 1101 (2011) 028 Feng, Kumar, Marfatia, Sanford arXiv:1102.4331 Farina, Pappadopulo, Strumia, Volansky, arXiv:1107.0715 (...)

• Long-range interactions NF, Panci, Regis, arXiv:1108.4461 (...)

• Energy or momentum dependent interactions

Feldstein, Fitzpatrick, Katz, JCAP 1001 (2010) 020 Chang, Pierce, Weiner, JCAP 1001 (2010) 006 Farina, Pappadopulo, Strumia, Volansky, arXiv:1107.0715 (...)

(...)

Inelastic + isospin violation

Farina et al., arXiv:1107.0715

Isospin violating + v dependence

Farina et al., arXiv:1107.0715

Conclusions

- Experimentally, a preference toward light DM (few GeV few tens of GeV) is growing: DAMA, CRESST, CoGeNT
- The impact of bounds from null-experiments (CDMS, XENON) is debated. It might not be easy to improve much on Leff at low energies (critical for light DM)
- If tension between null/positive results stated, it may point toward:
 - Alternative interaction mechanisms
 - Alternative galactic halo modeling

Conclusions

- Some worthwhile developments:
 - Reduce energy threshold in DAMA: recently achieved
 - Address diurnal modulation with DAMA: 1 ton?
 - Increase mass and exposure in COGeNT: (?)
 - Reduce background sources in CRESST: under development
 - Other modulation experiments? ANAIS, DM-ICE, KIMS (?)
 - Directionality

Conclusions

- Theoretically, well motivated models (MSSM, NMSSM, ...) are able to account for light DM (+ many models studied ad hoc)
- The request to explain light DM (correct relic abundance + DD results) singles out specific sectors of parameter space (worthwhile a data-driven model-building approach?)
- Keep open eyes on alternative modelling (inelastic, isospin violation, long-ranges, ...)