

On behalf of ATLAS collaboration

Interpreting LHC Discoveries — Workshop Oct 31 - 25 Nov 2011

Outlook

- Higgs cross-sections, branching ratio and background
- ATLAS detector and data taking in 2011

Higgs searches status

- Analysis strategy
- Intermediate and high mass channels (highest sensitivity)
- Low mass channels (low sensitivity but favorite by EW fit)
- Combined channels
- Prospective

Conclusions

Higgs cross-sections

G. Chiodini: Status Higgs search in ATLAS

QCD BG:

- Di-jet cross-section = 10^{10} pb for P_T>8 GeV (vs few pb Higgs cross-section)
- Multi jets background estimate from data and MC turn out negligible after cuts

Fighting QCD multi-jet background

8 jets events:

- leading jet: pT = 290
 GeV, η = -0.9, φ = 2.7
- sub-leading jet: pT = 220 GeV, η = 0.3, φ = -0.7
- Missing ET = 21 GeV,
 φ = -1.9
- Sum ET = 890 GeV

Jets can fake :

- leptons from Heavy Flavor decay \rightarrow Isolation
- E_T^{miss} from mis-measure $\rightarrow \Delta \phi$ (MET,leading jet)>0.3
- γ 's \rightarrow Isolation and π_{o} rejection

Cuts not explicitly mentioned here

ATLAS detector

Detector performance and simulation

ENTIRE DETECTOR MUST WORK AND BE WELL SIMULATED

Higgs search strategy

"Cut-and-Count" or (unbinned) binned Log Likelihood analysis. Other MultiVariateAnalysis (MVA) in progress

- Signal selection
 - **Trigger**
 - single and di-lepton, single and di-photon with
 - THRESHOLDS changed in time with increasing luminosity
 - Green data quality flag
 - □ Select collision events
 - □ Select **final state** physics objects
 - **Cuts**
 - **Acceptance**
- Background evaluation
 - □ MC (well measured or very rare EW processes).
 - Data Driven (QCD backgrounds such as multijets and V+jets)
 - Measure "enhanced BG" in control region (defined by removed or reversed cuts)
 - Extrapolate "enhanced BG" to signal region by MC or data shape.
 - Validate with MC

Trigger and reconstruction efficiency from Tag&Probe method using JPSI and Z

Intermediate and high mass search with WW

 $\blacksquare H \rightarrow WW^{(*)} \rightarrow lvlv \text{ (highest sensitivity)}$

 $\blacksquare H \rightarrow WW^{(*)} \rightarrow l\nu qq$

$H {\rightarrow} WW^{(*)} {\rightarrow} l\nu l\nu$

Most sensitive process for $130 < m_H < 200$ GeV but challenging because reconstruction of the invariant mass not possible due to the two neutrinos.

Selection:

- High P_T opposite sign leptons. 3 channels: ee, μμ, eμ
- Large E_{Tmiss,rel}

$$E_{\mathrm{T,rel}}^{\mathrm{miss}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} & \mathrm{if}\,\Delta\phi \geq \pi/2\\ E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin\Delta\phi & \mathrm{if}\,\Delta\phi < \pi/2\\ & \Delta\phi = \min(\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},\ell),\;\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},j)) \end{cases}$$

Topological cuts on di-lepton (M,P_T,Δφ)
 Cut on transverse mass 0.75xM_H<M_T<M_H

$$m_{\mathrm{T}} = \sqrt{(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}})^2 - (\mathbf{P}_{\mathrm{T}}^{\ell\ell} + \mathbf{P}_{\mathrm{T}}^{\mathrm{miss}})^2}$$

Background:

Irriducible WW. For one additional jet: Drell-Yan and ttbar.

Fighting ttbar→WbWb BG

Veto on b-jets or jets multiplicity
Veto on leptons multiplicity
Use MET cuts

Cuts not explicitly mentioned here

$H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$ Phase Space Slicing

Njets samples have different degrees of purity:

- No jets bin is the most pure
- Optimization of Njets samples independently increase the sensitivity

$H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$ Background

Background estimate from data in counting experiment is essential

- The two largest backgrounds (WW and top) estimate from data:
 - Control regions in data rich in WW or top backgrounds
 - Extrapolate this measurement to data signal regions using MC shapes and normalization

$$N_{data}^{S.R.} = \alpha \times N_{data}^{C.R.}, \qquad \alpha = \frac{N_{MC}^{S.R.}}{N_{MC}^{C.R.}}$$

W+ jets entirely determined from data

Control regions:

- Inverted topological cuts
- Inverted veto ttbar cuts
- Leptons looser or anti-identification

Validated with MC \downarrow

Control Region	MC expectation	Observed
WW 0-jet	250±50	237
WW 1-jet	139±18	144
Top 1-jet	350±100	316

Remaining small backgrounds are taken from MC
 Apply scale factor to Drell-Yan for potential E_T^{miss} mis-modelling

$H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$ Event Yield vs M_T

8/11/2011

G. Chiodini: Status Higgs search in ATLAS

Statistical test

Likelihood fit to the data in one or more variable for each $M_{\rm H}$ hypothesis.

Test statistics is the **Profile Likelihood Ratio** q_μ= -2ln[L(data | μs+b_μ)/L(data | μs+b)]

- Test signal strength $\mu = \sigma / \sigma_{SM}$
- s=signal. b_{μ} is the MLE of the BG given μ
- μ and b maximize the likelihood with $0 <= \mu <= \mu$

Exclusion limits: modified frequentist confidence interval = 1-CL_s

- \Box CL_s=CL_{b+s}/CL_b (protect against downward background fluctuations) **Confidence Intervals:**
 - CL_{s+b} = $P(q_{\mu} > q^{data} | \mu s + b_{\mu})$ where s+b=expected signal+background CL_b = $P(q_{\mu} > q^{data} | 0s + b_{0})$ background only hypothesis

Significance of an excess of events and p-value based on the statistical variable **Z**=sqrt(q_0^{obs}) (=0 for μ <0) (1dof chi2-like distribution)

$H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$ Exclusion limits

Upper limit on μ = σ/σ_{SM} at 95% CL based on CL_s

Observed is the measured limit. **Expected** is the median limit obtained with:

- •MC pseudo-experiments with non signal
- •Likelihood asymptotic formula

Obs. > Exp. \rightarrow data "over fluctuate" . Obs. < Exp. \rightarrow data "under fluctuate"

Obs. < 1 \rightarrow SM Higgs excluded at more than 95% CL

$H \rightarrow WW^{(*)} \rightarrow lvlv$ Event excess

Statistical significance of the Higgs signal as a function of the mass

 $Z=sqrt(-2ln[L(data | b_0)/L(data | \mu s+\underline{b})])$

p-value Probability of upward background fluctuation above the observed significance (excess in data)

P-value=[1 -erf(Z/sqrt(2))]

"Look-Elsewhere" Effect needed for correct interpretation. SEVERAL MASS hypothesis tested not just ONE MASS but. The statistical significance is diluted by the number of threshold crossing.

G. Chiodini: Status Higgs search in ATLAS

$H \rightarrow WW^{(*)} \rightarrow l\nu qq$

Acceptable S/B ratio at large values of $M_{\rm H}$. Search in 240< $M_{\rm H}$ <600 GeV

8/11/2011

$H \rightarrow WW^{(*)} \rightarrow lvqq$ Phase Space Slicing

MET cut remove QCD multi-jets and leave W/Z+jets

Intermediate and high mass search with ZZ

$\blacksquare H \rightarrow ZZ^{(*)} \rightarrow IIII \text{ (golden channel)}$

$\blacksquare H \rightarrow ZZ^{(*)} \rightarrow ll\nu\nu$

$\blacksquare H \rightarrow ZZ^{(*)} \rightarrow llqq$

$H \rightarrow ZZ^{(*)} \rightarrow 41$

The "golden mode" is very clean but low rates

Selection:

- Two isolated same-flavour opposite charge di-lepton pairs: 2e2e,2μ2μ,2e2μ
- One di-lepton from Z
- Veto low invariant mass pairs (remove Drell-Yan pairs)
- For m₄₁<2m₂ small lepton impact parameter (from same primary vertex)

8/11/2011

G. Chiodini: Status Higgs search in ATLAS

Mass resolution with charged leptons

FI FCTRON

- ECAL clusters matched to ID track.

UNCONVERTED PHOTON:

- ECAL clusters not matched to ID tracks. **CONVERTED PHOTON:**
- ECAL clusters matched to ID tracks from conversion vertex or scattering.

MUON COMBINED:

- global refit of all hits after statistical matching of ID and MS tracks. MUON SEGMENT TAGGED:

- global refit of all hits after statistical matching of ID tracks and MS segments.

$H \rightarrow ZZ^{(*)} \rightarrow 41$ Background

- □ Irriducible ZZ^(*) is dominant
 - MC prediction (qq/qg→ZZ NLO and gg→ZZ LO)
 - Theory uncertainty 15%
 - Scaled by σ_{ZZ}/σ_Z from measured Z yield

□ Top from MC prediction small (theory uncertainty 10%)

- Yield validated in control region by opposite-charge and oppostive flavor e⁺⁽⁻⁾µ⁻⁽⁺⁾ plus 1 or 2 leptons.
- □ Z+jets, Z+bb normalized to data using control regions
 - Control region: clean Z + 2nd lepton pair with inverted isolation and impact parameter requirements
 - Uncertainty: 20-40% (dominated by statistics in control regions and extrapolation to signal region)

$H \rightarrow ZZ^{(*)} \rightarrow 41$ Exclusion limits

Search of peak in \mathbf{M}_{41}

$H \rightarrow ZZ^{(*)} \rightarrow ll\nu\nu$

Final state characterized by di-lepton from Z with large transverse missing energy. Significant signal/background ratio at large mass from 200 to 600 GeV.

Selection (NB. Same final state as $WW^{(*)} \rightarrow lvlv$):

- Select Z
- Very large ETMiss > 66 (82) GeV low (high) mass analysis
- Topological cuts to suppress W/Z+jet and QCD multi-jet background
 - Low H mass: $1 < \Delta \phi(ll) < 2.64$ (slow Z)
 - High H mass: $\Delta \phi(ll) < 2.25$ and $\Delta \phi(MET, ll) > 1$ (boosted Z)

Background

- Irreducible di-bosons. Normalization from MC
- QCD multi-jet, W/Z+jets, top. Normalization from data

$H \rightarrow ZZ^{(*)} \rightarrow ll\nu\nu$ Exclusion limits

The discriminant is the transverse mass \boldsymbol{M}_{T} where the missing \boldsymbol{P}_{T} assumed from a \boldsymbol{Z}

$$m_T^2 \equiv \left[\sqrt{m_Z^2 + |\vec{p}_T^{\ \ell\ell}|^2} + \sqrt{m_Z^2 + |\vec{p}_T^{\ \mathrm{miss}}|^2}\right]^2 - \left[\vec{p}_T^{\ \ell\ell} + \vec{p}_T^{\ \mathrm{miss}}\right]^2$$

- SM Higgs boson in the range 350 GeV < M_H < 450 GeV, can be excluded at the 95% confidence level.
- The expected limit is lowest around a M_H =360 GeV where it is 1.3 x σ_{MS} and the data "under fluctuate".

$H \rightarrow ZZ \rightarrow llqq$

Acceptable signal-to-background for mass range $m_H > 2m_Z$.

Selection:

- \blacksquare Z selection with $P_T > 20$ GeV
- Third lepton veto and E_T^{miss}<50 GeV
- At least 2 jets with a pair caming from Z
- 4 channels: (ee. μμ) x (b-untagged, btagged)

Background:

QCD Z+jets from di-jet side-bandOthers from MC

$H \rightarrow ZZ \rightarrow llqq$ Exclusion limits

b-jet identification

Most efficient b-tag algs based on Secondary Vertex (SVT) in jet.

SV0: SVT signed decay length
TrackCount: SVT number of tracks
JetProb: Probability all tracks from PVT
IP3D+JetFitter: imp. par. signif. + b and c weak decay topology

Eff ~ 50% mistag<1% measured with muon tagging in s.l. decay.

We need many guns to fight Pile-Up

Low mass search

 $\blacksquare H \rightarrow \gamma \gamma \text{ (most sensitive)}$

\square W/Z+H \rightarrow ll/lv+bb

\blacksquare H \rightarrow $\tau\tau$ (very reach and H MSSM search)

Н→үү

- Rare decay throws W/t loops: BR=0.2%
- Clear signature
- Best for low mass

γ identification from lateral and longitudinal shower shape in ECAL.

$\gamma \gamma$ Selection:

- HighP_T, high quality, isolated photons
- $|\eta_{1,2}| < 1.37$ and $1.52 < |\eta_{1,2}| < 2.37$ where first sampling has high granularity.
- 5 channels: (γ direction) x (conversion status).
 Fully correlated systematic.

Resolution:

- δE=1.3 GeV from Z(ee) calibration
- δz=1.5 cm from constrained vertex [$\delta m(\theta) = 1.4$ GeV from beam spread dz = 5.6 cm]
 - $m^2 = 2E_1E_2(1-\cos\vartheta) \cong E_1E_2\vartheta^2$
 - $\delta m/m = (\sqrt{2}\delta E/E) \oplus \delta \vartheta / \vartheta \sim 1.7 GeV/120 GeV$ † negligible

$H \rightarrow \gamma \gamma$ prompt background

loose-tight identification criteria.

$SM H {\rightarrow} \tau \tau$

Promising channel searches in the mass range m_H =110-150 GeV. Small background for VBF production but lower signal production rate.

Several channels: 114v and $1\tau_{had}3v$ (τ_{had} larger BR)

Selection for leptonic-leptonic decay ll4v :

- **\Box** High-P_T opposite sign lepton pair: $\mu\mu$, ee, μ e.
- □ High- P_T jet (> 40 GeV) improve S/B in VBF due to H boost
- $\Box Moderate E_T^{miss}$
- Several topological cuts to increase S/B

Background: Z/W+jets, di-bosons, ttbar, t, QCD jets.

- □ The main BG is the irriducible $Z \rightarrow \tau \tau$. Estimated from $Z \rightarrow \mu \mu$ data replacing muons with simulated τ 's
- □ QCD jets and W+jets also estimated from data.
- □ All other contributions estimated from MC.

SM $H \rightarrow \tau \tau$ Collinear approximation

Collinear approximation: $l \| \nu$

$$x_{1,2} = \frac{p_{vis1,2}}{(p_{vis1,2} + p_{mis1,2})}$$

x = neutrino momentum fraction in the decay

$$m_{\tau\tau} = \frac{m_{vis}}{\sqrt{x_1 x_2}}$$
 invariant mass two leptons

The closure of the kinematics sometime fails

G. Chiodini: Status Higgs search in ATLAS

8/11/2011

ATLAS SM Higgs search

ATLAS SM Higgs combination

The Likelihood is the product of individual likelihood $L(Data | \mu, \theta) = [Poisson(Ni | \mu s_i(\theta) + b_i(\theta))]pdf(\theta)$ N=Observed, s+b= Expected, pdf = distribution nuisance parameters Data= real data or pseudo-data

8/11/2011

G. Chiodini: Status Higgs search in ATLAS

ATLAS projection Higgs search

- 2011 exclusion from LEP limit up to 500 GeV.
- 2012 3σ evidence from LEP limit up to 500 GeV.
- 14 TeV necessary for 5σ discovery from LEP limit up to TeV scale.

Systematic uncertainties

Instrumental uncertainties

- Luminosity 3.7%
- Trigger and Reco efficiency

 μ -0.5+1.2%
 e -1+3.4%
 γ 11%
 τ_{had} 8.3%
 b-tag 0.6-16%

 PT resolution 0.1-2.2%
 - E scale
 e -0.1+1.2%
 MET/Jets -1.3+8%

Theoretical uncertainties

- Cross-section
 - **QCD** fact. and renorm. scale:
 - GF= -7%+12%
 - VBF, associate V = +/-1%
 - associated ttbar = -10+5%
 - □ PDF+alpha_s:
 - GF, associated ttbar = +/-8%
 - VBF, associate V = +/-4%
- Branching Fraction uncertainties are small with respect to cross-section ones
- For large M_H (not BW line-shape, off-shell terms, and interference with EW BG) introduce (150%)xM_H(TeV)³
- Background uncertainties estimated by changing QCD scales and pdf+α_s

Conclusions

- Proton-proton collisions at 7 TeV and corresponding to an integrated luminosity between 1-2 fb-1 has been analyzed by ATLAS for extensive Higgs boson search
- No significant excess (< 2.1o) is found in the mass range 110-600 GeV and exclusion limits at 95% C.L. are placed in the mass regions:
 - $146 < M_{\rm H} < 232 \, {\rm GeV}$
 - $256 < M_{\rm H} < 282 \, {\rm GeV}$
 - 296 < $M_{\rm H}$ < 466 GeV

A big jump in Higgs search is going to happen in few months with the integrated luminosity already available on tape (> 5 fb-1)

New ideas and analysis techniques are welcome in low mass regime to fight background (could be the breakthrough)

Back-up slides

ATLAS detector

- <mark>σ/Ε~10%Ε^{-1/2}⊕0.7%</mark> Cat
- HCAL:Fe-Sci σ/E~50%E^{-1/2} ⊕3%
- FCAL:road-tube W-Cu/LAr

((3.2<|η|<5)

- Cathode Strip Chamber ($2 < |\eta| < 2.7$)
- 4-5 Tm air core toroids $\sigma/P_T \sim 10\%$ at 1TeV
- Trigger: Resistive Plate Chambert + Thin Gap Chamber $\sigma_t \sim 1ns$

• 2T solenoid

• $\sigma(d_0)$ ~10um at high P_T

Tracking: Strips + TRT

• $\sigma(1/P_{T}) \sim 1.5\%$ (low P_{T})

b-jet identification with SV0

SV050 efficiency

$H \rightarrow \gamma \gamma$ Resolution

- Energy resolution $\delta p \approx 1.3 \text{ GeV}$ (Energy scale calibration from $Z \rightarrow e^+e^-$)
- Interaction point spread: $\sigma(z) \approx 5.6$ cm $\rightarrow \delta m(\theta) \approx 1.4 \text{ GeV}$
- Resolution with pointing: $\sigma(z) \approx 1.5$ cm;
 - Use of recoil tracks less effective with large number of pile-up collisions
 - Use conversion tracks as well
 - $m^2 = 2E_1E_2(1-\cos\vartheta) \cong E_1E_2\vartheta^2$
 - $\delta m/m = (1/\sqrt{2})(\delta E/E) \oplus \delta \vartheta/\vartheta \sim 1.7 \text{ GeV}/120 \text{ GeV}$

 $\sigma \sim 1.4 \text{ GeV}$

$W(Z)+H \rightarrow lv(l)+bb$ Boosted Higgs

Improve sensitivity to H \rightarrow bbbar by looking to events with boosted jet pairs For $p_T^H > 200$ GeV are only 5% of total yield but BG is strongly suppressed

Reconstruct "fat" jets, using algorithms with cone sizes as large as R=1.2
 Analyze the structure of this jet, and reconstruct sub-jets with smaller R sizes

Reconstruct jet system invariant mass from re-clustered sub-jets

Other not SM Higgs search

- $t \rightarrow H^{+/-}+b \rightarrow \tau v+b$, cs+b MSSM charged Higgs from top decay
- A $\rightarrow \mu\mu$: not MSSM Higgs at very low mass near Y.
- Fermiophobic Higgs
- Light Higgs to Long-Lived Neutral particles

Higgs limits assuming a 4th generation heavy fermions

