Supersymmetry searches with the ATLAS detector

T. Lari INFN Milano On behalf of the ATLAS collaboration

- We don't know the symmetry breaking mechanism with unproven assumptions on symmetry breaking
- Naturalness: stop "light" as it must cancel the top generations squarks much looser unless flavour ur
- Dark Matter: lightest particle neutral and weakly

Supersym

New spin-based symmetry relating fermions and bosons

 LEP: slepton, squarks, charginos heavier than about 100 GeV. Tevatron: first generation squarks and gluinos heavier than roughly 400 GeV (unless nearly degenerate with LSP)

March 8, 2011

Monica D'Onofrio, CERN

What we are looking for

For ATLAS, first priority is to discover any signal we are sensitive to

- Look into all final states where there might be something.
- Do not tune cuts on any particular simulated signal, but try to have complementary signal selections which are sensitive to the various possibilities (short or long decay chains, small or large mass splittings, etc.)
- We are always open to suggestions for promising signatures we are overlooking! (but be patient, it might take a while before we come back with results)

In case of negative results, we place exclusion limits in various forms

- * On cross section times acceptance times selection efficiency ($\sigma A \epsilon$). Model independent but need a detector simulation for comparison with model predictions
- On constrained models, like mSUGRA
- On particles masses for toy models with the most relevant particles and decays for that channel, and on production cross section as a function of the particle masses

* Analysis of the full 2011 dataset (~5 fb⁻¹) in progress - stay tuned!

Jets+E_T^{Miss}+X searches

The first searches have been focused on the strong production of first generation squarks and gluinos: highest cross section process at LHC, sensitivity well beyond Tevatron limits already with 35 pb⁻¹

- If R-parity conservation, signature is jets+E_T^{Miss}+"X", where X depends on the mass spectrum and available decays
- Each X defines a search channel

Shown here:

EtMiss+jets+0 leptons EtMiss+jets+1 lepton EtMiss+jets+2leptons EtMiss+bjets+0lepton EtMiss+bjets+llepton EtMiss+2 photons

General strategy

- Choose sets of selection cuts (signal regions, SR) optimizing the expected discovery significance for different possible signals
- Choose control regions (CR) to control the main backgrounds, derive a solid prediction of the backround rate in the SRs

Typical background estimate strategy Transfer factor (TF) TF = N(SR,proc)/N(CR,proc) Output Output Output TF = N(SR,proc)/N(CR,proc) Output Output Output Transfer factor (TF) SR TF = N(SR,proc)/N(CR,proc) Output Output Output Output Output Output Transfer factor (TF) SR TF = N(SR,proc)/N(CR,proc) Output Output Output Output Output Transfer factor (TF) SR Transfer factor (TF) SR Output Output Output Output Output Output Output SR Output Output

- Look in the SRs, compare observed and expected rates
- All the limits I will show are obtained with CLs.

		/ 150 / 150	> 150		
	eading jet <i>p</i> _T [GeV]	► 130 > 130	> 130		1.04.0.1
v_{ν} v_{μ} v_{τ} Z v_{τ} q Se	cond jet $p_{\rm T}$ [GeV]	Staba		ons ser	
	nird jet $p_{\rm T}$ [GeV]	- 9 > 40	> 40		arXiv:1109.6572
rs SQuarks SLeptons SUSY Force Carriers FO	burth jet $p_{\rm T}$ [GeV]		> 40	S	submitted to PLB
$\sim\sim$	$b(\text{jet}_{in} E_{T}^{\text{miss}})_{\min} (i = 1, 2, 3)$	> 0.4 > 0.4	> 0.4		- 4/~
dg production dom		> 0.3 > 0.25	> 0.25		q Exp x
> 2 jets expectant		> 1000 > 1000	>1000.	and a start of the	
Targeting the strong produ	iction	creasing jet m	ulti <mark>ph</mark> city	J. J.	The average of the second seco
Table 1: Criteria for admiss	sion to each of the three over	erlapping signal reg	gions. All variabl	es are defined	° q
OI Squark sand Angluthanseff	is defined with a variable n	umber of jets, appr	copriate to each si	ignal region,	$M_{\tilde{q}} \sim M_{\tilde{g}}$
decaying into SM particles	and a ~	$\int_{\alpha} \chi^{\alpha} - q \tilde{g}$	χ ² Ε		~~'
neutralino.	ction in the semileptonic de	cay of heavy quar	s. Extensive vali	dation of MC	dg production domin
100 against data has been perto	rived for each of these pack	kground sources an χ^2	$\frac{10}{2}$ for a wide vari	ety of control	\geq 3 jets expected, h
A/B ¹⁰ regions. N In cr d k to estimate the l	backgrounds in a consistent	Tashion five contro	regions (CRs)/	are defined for	
103 each of the three signal regi	ions (SRs), giving fifteen C	Rs in total. The CI	R event selections	s are designed	ď
104 to provide data samples en	riched in particular backgr	ound sources Eacl	n ensemble of on	e SR and five	
00 105 CRs constitutes an independent	Hent Channel' of the Angly	sis. The CR select	ions are optimise	ed to maintain	
adequate statistical weight,	while minimising as far as	possible the system	natic uncertaintie	s affsing from D	Mar Mar g
V] 107 extrapolation from each QR	to the SR. 55 product			and in the CD	4 8 0 ~~
108 DIM eagn on anne we for 01 M Selection 100 through the use of Transf	r Functions' (TEST Party)	Expected 15 derive back	f Oxpected evaluation	ounts itago	\rightarrow qq production dom
109 CRs and SR /m essence 2	TE for each SRhandfER	aintiderived indepe	endently from the	CR_and-SRJ	\geq 2 jets expected
¹¹¹ provides a conversion factor	or of 'SR events per CR events	ent'. Multiplication	n of the conversion	Siulino) [GeV]	m_{eff} or $m_{T_{a}}$ selection
Define text with the period of	wents Min the CR yields an a	estimate of the bac	kground in a SR	. The TFs for	\rightarrow for high (B)/low (A) mas
113 QCD multi-jet processes a	e estimated using a data-dr	iven technique base	ed upon the smea	ring of jets in	
st independent on mot	jet response functions der	ived from QCD m	ulti-jet dominated	d data control	\rightarrow exploit dependence in
111SUI UH Integruas. Drackey 12-jeisuw	Fjels and top quark proces		gnal region	samostinde	pendent on mode
(multi-jet) rejection	five CRs, taking into acco	unt correlations in	the systematic u	ncertainties in	
eminar 118 the TEs. Some uncertaintie	s, such as those arisinghin 1	MC expectations fr	om jet entengisa bo	nefrical (GRAtSominar	
119 and modelling systematics,	are reduced in the TFS. The	ie combined fit acr	oss all regions en	sures that the 2 Pet	S'EXPECTED Stons chour
120 bac		definitio	n		otent
$121 \text{Sig} \mathbf{m_{eff}} = \mathbf{scalar sur}$	m of E_T^{Miss} and the p_T	of 2/3/4 high	est p _T jets dep	pending on the Sl	R. For the high
122 123 CDT	mass SR, all jets	with $p_T > 40$ Ge	eV and $ \eta < 2.5$	8 are used.	l jet
124 regions denoted CR. Potair	The reconstructed moment	noted (CR1,). The	s reconstructed #	pomentum of the pho	At the jerideled to Ather a This
Thursday, Nevember ain 1an esting Stor Cher	$E_{\rm T}^{\rm miss}$ observed in Z $\rightarrow VV$	estimate of the Entry	trol regions enri	ched $in Z \xrightarrow{\text{vents.}}$	Control regions enriched

- Five control regions (CR) are defined for each SR, each targeting a specific background source.
- The SR backgrounds are obtained from a likelihood fit to CR data, extrapolating to the SR using MonteCarlo for W+jets, Z+jets, and top pair production.
 - For multijet, the expected ratio between SR and CR is obtained entirely from data, smearing a low ETMiss sample with jet response functions obtained with measurements on multi-jet data.
- For limits, signal contamination in the CR is taken into account

E_T^{Miss}+(≥2-4)jets+0 leptons interpretation

For limits, the SR with the best *expected* sensitivity is used for each signal point

Simplified model with a gluino, first two generation squarks, and massless neutralino $m(\tilde{g}) > 700 \text{ GeV} \quad m(\tilde{q}) > 875 \text{ GeV}$ $m(\tilde{g}) = m(\tilde{q}) > 1075 \text{ GeV}$

mSUGRA/CMSSM with $\tan\beta = 0, A=0, m>0$ **m(\tilde{g}) = m(\tilde{q}) > 950 GeV**

E_T^{Miss}+(≥6-8)jets+0 leptons results

Signal region	7j55	8j55	6j80	7j80
Multi-jets	26 ± 5.2	2.3 ± 0.7	19 ± 4	1.3 ± 0.4
$t\bar{t} \rightarrow q\ell, \ell\ell$	10.8 ± 6.7	0+4.3	6.0 ± 4.6	0+0.13
W + jets	0.95 ± 0.45	0+0.13	0.34 ± 0.24	0+0.13
Z + jets	$1.5^{+1.8}_{-1.5} 0^{+0.75} 0^{+0.75}$		0+0.75	
Total Standard Model	39 ± 9	$2.3^{+4.4}_{-0.7}$	26 ± 6	$1.3^{+0.9}_{-0.4}$
Data	45	4	26	3
N ^{95%} _{BSM,max}	26.0	11.2	16.3	6.0
$\sigma_{\rm BSM,max}^{95\%} \times \epsilon/{\rm fb}$	19.4	8.4	12.2	4.5
PSM	0.30	0.36	0.49	0.16

Limit on signal event rate in SRs Limit on signal cross section times efficiency in SRs SM hypothesis p-value

In mSUGRA gluino dominated regions, results competitive with those of 2-4 jet search. $m(\tilde{g}) > 520$ GeV at 95% C.L.

1.04 fb⁻¹ ET Miss+jets+1 lepton arXiv:1109.6606 submitted to PRD

Looking for gluino and squark decays to LSP, but with one lepton in decay chains.

* example:
$$\tilde{g} \to q\bar{q}\tilde{\chi}^{\pm} \to q\bar{q}W^{(*)}\tilde{\chi}^{0}$$

Signal selection:

~

- * Single electron or muon trigger, 1 electron (muon), with $p_T > 25$ (20) GeV, $M_T > 100$ GeV
- ✤ E_T^{Miss} cut between 125 and 240 GeV depending on the signal region.
- Four signal regions (3 jet loose, 3 jet tight, 4 jet loose, 4 jet tight). 3/4-jet cuts more sensitive to squark/gluinos. Tight/loose cuts more sensitive to light LSP/compressed mass spectrum scenarios.

definitions

$$m_{\text{eff}} = p_{\text{T}}^{\ell} + \sum_{i=1}^{3(4)} p_{\text{T}}^{\text{jet}_{i}} + E_{\text{T}}^{\text{miss}},$$

$$m_{\text{T}} = \sqrt{2 \cdot p_{\text{T}}^{\ell} \cdot E_{\text{T}}^{\text{miss}} \cdot (1 - \cos(\Delta \phi(\vec{\ell}, \vec{E}_{\text{T}}^{\text{miss}})))}$$

Background estimate:

- multi-jet from data, using a control sample with looser lepton selection.
- W(*ttbar*) control region: $40 < M_T < 80$ GeV, $30 < E_T^{Miss} < 80$ GeV, b-tag veto (*one b-tag jet*), all other cuts same as SR. CR \Rightarrow SR extrapolation with MC.

E_T^{Miss}+jets+1 lepton results

Electron channel	3JL Signal region	3JT Signal region	4JL Signal region	4JT Signal region
Observed events	71	14	41	9
Fitted top events Fitted W/Z events Fitted multijet events	$56 \pm 20 (51) \\ 35 \pm 20 (34) \\ 6.0^{+2.3}_{-1.4}$	$7.6 \pm 3.0 (6.8) \\10.5 \pm 6.5 (10.1) \\0.46^{+0.37}_{-0.22}$	$38 \pm 15 (34)$ $9.5 \pm 7.5 (9.2)$ $0.90^{+0.54}_{-0.37}$	$\begin{array}{c} 4.5 \pm 2.6 \ (4.1) \\ 3.5 \pm 2.2 \ (3.4) \\ 0.00 {}^{+0.02}_{-0.00} \end{array}$
Fitted sum of background events	97 ± 30	18.5 ± 7.4	48 ± 18	8.0 ± 3.7
Muon channel	3JL Signal region	3JT Signal region	4JL Signal region	4JT Signal region
Observed events	58	11	50	7
Fitted top events Fitted W/Z events Fitted multijet events	$47 \pm 16 (38)$ $16.6 \pm 9.4 (20.1)$ $0.0^{+0.0}_{-0.0}$	$\begin{array}{c} 8.9 \pm 3.2 \ (7.3) \\ 5.0 \pm 3.2 \ (6.1) \\ 0.0 \substack{+0.6 \\ -0.0} \end{array}$	$\begin{array}{c} 39 \pm 13 \hspace{0.1cm} (36) \\ 14.1 \pm 8.5 \hspace{0.1cm} (14.2) \\ 0.0 \substack{+0.0 \\ -0.0} \end{array}$	$\begin{array}{c} 4.7 \pm 2.2 \ (4.3) \\ 1.4 \pm 1.1 \ (1.4) \\ 0.0 \substack{+0.6 \\ -0.0} \end{array}$
Fitted sum of background events	64 ± 19	13.9 ± 4.3	53 ± 16	6.0 ± 2.7

Data consistent with SM expectation for all selections

Cross section limits as a function of gluino and LSP mass, for the decay mode:

$$\tilde{g} \to q\bar{q}\tilde{\chi}^{\pm} \to q\bar{q}W^{(*)}\tilde{\chi}^{0}$$
$$x = (m_{\tilde{\chi}^{\pm}} - m_{\tilde{\chi}^{0}})/(m_{\tilde{q}} - m_{\tilde{\chi}^{0}}) = 1/2$$

Full line is the limit assuming the MSSM NLO cross section and 100% branching ratio for the decay above

E_T^{Miss}+jets+2 lepton

(a) \$\tilde{\chi}_i^0 → l^{\pm} \nu \tilde{\chi}_j^{\mp}\$, (b) \$\tilde{\chi}_i^{\pm} → l^{\pm} \nu \tilde{\chi}_j^0\$ (c) \$\tilde{\chi}_i^0 → l^{\pm} l^{\mp} \tilde{\chi}_j^0\$ (d) \$\tilde{\chi}_i^{\pm} → l^{\pm} l^{\mp} \tilde{\chi}_j^{\pm}\$ Supersymmetric events can have two leptons if (c) or (d) happen in one decay chain (leptons have same flavour and opposite sign) or if (a) or (b) occur in both chain (leptons might have different flavour and/or same sign).

Signal Region $\overline{E_{T}^{\text{miss}} [\text{GeV}]}$

Leading jet $p_{\rm T}$ [GeV]

Second jet $p_{\rm T}$ [GeV]

Third jet $p_{\rm T}$ [GeV]

Analysis 1: Opposite sign inclusive search

- Three signal selections (see table)
- Main background is dileptonic top pairs.

Analysis 2: Same sign inclusive search

- Two signal selection (see table)
- SM rate very small, from dibosons or opposite sign events with mismeasured charge

Analysis 3: Flavour subtraction search

* Look for an excess of $e^{\pm}e^{\mp}+\mu^{\pm}\mu^{\mp}$ over $e^{\pm}\mu^{\mp}$. Sensitive to (c) or (d). Main background (top) cancels in the subtraction on average.

1	Fourth jet $p_{\rm T}$ [GeV]	-	-	70	-	-	Đ
	Number of jets	-	≥ 3	≥ 4	-	≥ 2	
earch							
							-
							1
							-

OS-SR1

250

OS-SR2

220

80

40

40

arXiv:1110.6189 submitted to PLB

SS-SR1

100

SS-SR2

80

50

50

OS-SR3

100

100

70

70

1.04 fb⁻¹

E_T^{Miss}+jets+2 lepton results

 Data are in good agreement with SM expectation for all signal regions

E_T^{Miss}+jets+2 lepton results

3

2

	Background	Obs.	95% CL
OS-SR1	15.5 ± 4.0	13	9.9 fb
OS-SR2	13.0 ± 4.0	17	14.4 fb
OS-SR3	5.7 ± 3.6	2	6.4 fb
SS-SR1	32.6 ± 7.9	25	14.8 fb
SS-SR2	24.9 ± 5.9	28	$17.7 \ \mathrm{fb}$

 $\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow |v||, |\widetilde{v}|| \rightarrow |v| \widetilde{\chi}_{1}^{0} || \widetilde{\chi}_{1}^{0}$

Observed 95% CL

-- Expected

150

ATLAS

···· Expected ± 1 c

 $350 \begin{bmatrix} m_{\tilde{\chi}_{1}^{\pm}} = m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{l}\tilde{v}} = m_{LSP} + 1/2 (m_{\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}}) \\ \int L dt = 1.04 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV} \end{bmatrix}$

200

250

300

350

 $m_{\chi^{\pm},\chi^{0}}\left[\text{GeV}\right]$

Model independent limits on $\sigma A\epsilon$, *

The SS selection without jets is also sensitive to electroweak production Cross Section Excluded at 95% CL [pb] of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, if they decay to slepton: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow (\nu \tilde{l}^{\pm}) (l^{\pm} \tilde{l}^{\mp}) \rightarrow (\nu l^{\pm} \tilde{\chi}_1^0) (l^{\pm} l^{\mp} \tilde{\chi}_1^0)$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow (\tilde{l}^{\pm} \tilde{\nu}) (l^{\pm} \tilde{l}^{\mp}) \rightarrow (l^{\pm} \nu \tilde{\chi}_1^0) (l^{\pm} l^{\mp} \tilde{\chi}_1^0)$ (with one lepton undetected or out of acceptance) Plot: cross section limit as a function of the mass of $\tilde{\chi}_1^0$ and $m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0)$ Limits assuming 100% BR in sleptons 0.2 $\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow \widetilde{h} \widetilde{H}, \ \widetilde{h} \widetilde{H} \rightarrow h \widetilde{\chi}_{1}^{0} \parallel \widetilde{\chi}_{1}^{0} \qquad L^{\text{int}} = 1.04 \text{ fb}^{-1}, \sqrt{s} = 1.04 \text{ fb}^{-1}$ $350 = m_{\widetilde{\chi}^{\pm}_{1}} = m_{\widetilde{\chi}^{0}_{2}}, m_{\widetilde{L}\widetilde{\chi}} = m_{LSP} + 1/2 (m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^{0}_{2}})$ [Ge

CLs observed limit

Thursday, November 10, 11

m_{,2} [GeV]

300

250

200

150

100

50

0

0.83 fb⁻¹ E_T^{Miss}+*b*-jets+0 lepton ATL-CONF-2011-098 selections and backgrounds

- * Targeting gluino pair production followed by either $\tilde{g} \rightarrow \tilde{b}b \rightarrow bb \tilde{\chi}_1^0$ or $\tilde{g} \rightarrow bb \tilde{\chi}_1^0$
 - In many models, the third squark generation is the lightest and these decay modes might have branching ratios close to 100%
- ≪ Cuts: E_T^{Miss} > 130 GeV, leading jet p_T > 130 GeV, >= 3 jets with p_T > 50 GeV, no lepton, $\Delta \phi$ (E_T^{Miss}, jets) > 0.4, E_T^{Miss}/M_{eff} > 0.25
- Number of b-jets and m_{eff} cut define 4 signal regions
- * Dominant background is ttbar for all SR; normalized with data in a CR with one lepton and $40 < M_T(lep, E_T^{Miss}) < 80 \text{ GeV}$; TF from MC

E_T^{Miss}+*b*-jets+0 lepton results

Sig. Reg.	Data (0.83 fb ⁻¹)	Тор	W/Z	QCD	Total
$3JA (1 btag m_{eff} > 500 GeV)$	361	221^{+82}_{-68}	121 ± 61	15 ± 7	356^{+103}_{-92}
3JB (1 btag m _{eff} >700 GeV)	63	37^{+15}_{-12}	31±19	1.9 ± 0.9	70^{+24}_{-22}
$3JC (2 btag m_{eff} > 500 GeV)$	76	55^{+25}_{-22}	20 ± 12	3.6 ± 1.8	79^{+28}_{-25}
$3JD (2 btag m_{eff} > 700 GeV)$	12	$7.8^{+3.5}_{-2.9}$	5 ± 4	0.5 ± 0.3	$13.0^{+5.6}_{-5.2}$

Sig. Reg.	95% C.L. N events	95% C.L. $\sigma_{eff}(pb)$		
	CL _s (PCL)	CL _s (PCL)		
3JA (1 btag m _{eff} >500 GeV)	240 (206)	0.288 (0.247)		
3JB (1 btag m _{eff} >700 GeV)	51 (40)	0.061 (0.048)		
$3JC (2 btag m_{eff} > 500 GeV)$	65 (53)	0.078 (0.064)		
3JD (2 btag m _{eff} >700 GeV)	14 (11)	0.017 (0.014)		

Limits on new physics rate and $\sigma A \epsilon$,

The state of the state

Thursday, November 10, 11

E_T^{Miss}+*b*-jets+1 lepton

- * Targeting gluino pair production followed by either $\tilde{g} \rightarrow \tilde{t}t \rightarrow t b \tilde{\chi}^{\pm} \text{ or } \tilde{g} \rightarrow tt \tilde{\chi}_{1}^{0}$
 - If allowed, $g \rightarrow tt \rightarrow tt \tilde{\chi}_1^0$ has larger acceptance = limits will be conservative.
- * Cuts: One electron or muon with $p_T > 25/20$ GeV, $E_T^{Miss} > 80$ GeV, >= 4 jets with $p_T > 50$ GeV, $m_{eff} > 600$ GeV
- * CR for dominant top pair background: same as CR but $40 < M_T(lep, E_T^{Miss}) < 100 \text{ GeV}$.

Results:

 54.9 ± 13.6 events expected in signal region

74 events observed

1.03 fb⁻¹

ATL-CONF-2011-130

★ Limits on gluino and stop masses, assuming $m(\tilde{\chi}_{\perp}^{0}) = 60 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 2m(\tilde{\chi}_{\perp}^{0}),$ $BR(g \rightarrow \tilde{\tau}t) = BR(\tilde{t} \rightarrow b \tilde{\chi}^{\pm}) = 100\%, \text{ and}$ $BR(\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}_{\perp}^{0} \ln u) = 11\%$

Limits on gluino and neutralino masses, three body decay $\tilde{g} \rightarrow t t \tilde{\chi}_1^0$

E_T^{Miss}+2 photons

- Targeting the direct or gluino mediated production of a pair of bino-like NLSP decaying into gravitino and photon
- * Selection: two photons of $p_T > 25$ GeV, $E_T^{Miss} > 125$ GeV.
- Three categories of backgrounds:
 - * **QCD** (di-jet, jet-gamma, gamma gamma) with fake E_T^{Miss} . Estimated with a loose photon selection, normalized to gamma gamma data with $E_T^{Miss} < 20 \text{ GeV}$
 - e gamma (W or semileptonic top pairs) with real E_T^{Miss}, with the electron misidentified as photon. Estimated from an egamma sample, to which the electron -> gamma misidentification probability (measured from a Z ee sample) is applied.
 - Irreducible: Zgg, Wgg. From MonteCarlo.

E_T^{Miss}+2 photons limits

General Gauge Mediation

m(g) > 806 GeV for bino masses larger than 50 GeV

Thursday, November 10, 11

Long lived particles and R-parity violation searches

- Long lived particles are predicted in many scenarios: weak R-partity violating (RPV) couplings, long-lived NLSP due to small NLSP-LSP mass splitting or weak coupling to gravitino LSP, split susy with heavy scalars, ...
- * If coloured, they would hadronize with quarks (R-hadrons).
- I will present four searches for long lived particles
 - For particles decaying in the Inner Detector: a search for secondary decay vertices and one for disappearing tracks
 - Two searches for non relativistic heavy particles (R-hadrons or sleptons)
- Also I will show the search for an eµ resonance, which is relevant for some RPV scenarios

Displaced vertices search

- Target: heavy particle decaying in charged particles with ct between ~1 mm to tens of cm, and produced with (or decaying into) an high-p_T muon
- Ask one muon with p_T > 45 GeV and at least one 4-track vertex with fit chi square < 5, radius between 40 and 180 mm, z coordinate less than 300 mm, distance from primary vertex at least 4 mm, veto position matching high density detector material (to reject conversions and hadronic interactions), vertex mass larger than 10 GeV.
- Estimate background as the product of the probability of having an high p_T muon and one such vertex, from MC. Tracking and vertex description in MC validated on data.

Control plots done with all requirements except material veto, and number of tracks, and with vertex mass cut reversed.

Displaced vertices analysis results

 No events are observed in the signal region, with an expected background of less than 0.03

 Limits derived for various squark and neutralino masses.

1.02 fb⁻¹

Disappearing track search

- In anomaly mediated models the lightest chargino decays into a soft pion and the neutralino, with a lifetime of order of ns.
- Selection:
 - * $E_T^{Miss} > 130 \text{ GeV}, \ge 1 \text{ jet with } p_T > 130$ GeV, $\ge 2 \text{ other jets with } p_T > 60 \text{ GeV}$ (from gluino decay), no electron or muon with $p_T > 10 \text{ GeV}$
 - The highest p_T track is isolated, well reconstructed in Pixel and SCT, points to barrel TRT fiducial volume, has no hit in outer TRT ring (*chargino track*)
- Background pT spectrum obtained from data:
 - Hadrons interacting in the TRT: control sample of non-interacting hadrons
 - Badly reconstructed tracks: low ETMiss, no Pixel hit tracks

Disappearing track search results

The pT spectrum of selected track candidates (above) is fitted with the background template from control samples plus the signal template from MC. Fit is consistent with no signal.

10-1

Limits in chargino mass and lifetime plane. First limits beyond LEP!

τ_{σt} [ns

10

Muon spectrometer based search for slow particles

Signature is speed v/c < 1. Mass reconstructed from momentum and velocity.

 Muon-triggered events, time of flight is measured from muon and hadron calorimeters. Search for long lived scalar leptons and R-hadrons (the latter are allowed to be neutral before interacting the calorimeters, i.e. an Inner Detector track is not required)

Background estimate based on measured velocity resolution function

Limits:

• slepton, GMSB: 136 GeV

37 pb⁻¹

PLB 703,428

slepton, electroweak
production: 110 GeV
R-hadron gluino: 530-544
GeV

Muon agnostic search for slow particles

Using the pixel dE/dx and the tile time of flight to measure particle velocity

 Background is from instrumental resolution tails in these variables. Since they are uncorrelated, resolution function can be measured from data.

Limits derived on the mass of long-lived scalar bottom (294 GeV), top (309 GeV) and gluino (562-584 GeV).

34 pb⁻¹

PLB 701,1

1.07 fb⁻¹

eµ resonance search

arXiv:1109.3089 submitted to EPJCL

- Possible signals: Z' with lepton flavour violations, RPV SUSY with scalar tau decay

 $d\bar{d} \rightarrow \tilde{\nu}_{\tau} \rightarrow e\mu$ Production and decay
 $\frac{1}{2}\lambda_{ijk}\hat{L}_{i}\hat{L}_{j}\hat{E}_{k} + \lambda'_{ijk}\hat{L}_{i}\hat{Q}_{j}\hat{D}_{k}$ Relevant RPV Lagrangian
- * Two relevant RPV couplings: λ'_{311} for production, λ_{312} for decay
- * Selection is exactly one electron and one muon with $p_T > 25 \text{ GeV}$
- Data-driven multi-jet estimate from loose lepton control samples; other processes from MonteCarlo.

Process	Number of events	-	5 GeV	10 ³	ATLAS \s = 7 TeV	Data 201 Total Bkg Top	1 Fake Bkg.
$\overline{t\bar{t}}$	1580 ± 170		s / 2	10 ²	$\int Ldt = 1.07 \text{ fb}^{-1}$	Ζ/γ →ττ	
Jet fake	1180 ± 120		vent			<u> </u>	=
$Z/\gamma^* \to \tau \tau$	750 ± 60		ш	10			
WW	380 ± 31			1		<u>–</u> –	
Single top	154 ± 16			10-1	ad the second se	L L	-
$W/Z + \gamma$	82 ± 13			15			
WZ	22.4 ± 2.3		-	10 ⁻²	·····		
	2.48 ± 0.26		a/SN	2	++†1		
Total background	4150 ± 250		Data	1 **********	· [▼] • ^{\$} ¥ŧŧ		
Data	4053			0 200	400 600	800 100	0 1200 1400
							m _{eμ} [GeV]

eµ resonance search interpretation

* Most stringent limits on the couplings for sneutrino masses > 270 GeV

* For
$$\lambda'_{311} = 0.10, \lambda_{312} = 0.05$$
, limit is 1.32 TeV

Conclusions?

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: BSM-LHC 2011) MSUGRA/CMSSM : 0-lep + j's + E7 mins q = q mass ATLAS Preliminary MSUGRAVCMSSM : 1-lep + j's + ET miss man g = g mass MSUGRA/CMSSM : multijets + E T mins see over \tilde{g} mass (for $m(\tilde{q}) = 2m(\tilde{g})$) Lot = (0.034 - 1.34) fb⁻¹ √s = 7 TeV Simpl. mod. (light $\tilde{\chi}_{s}^{0}$) : 0-lep + j's + $E_{T,miss}$ Lana two g = g mass +1.04 To⁺ (2011) (Predestrand ** Simpl. mod. (light 20): 0-lep + j's + E T miss. g mass Simpl. mod. (light $\tilde{\chi}_{*}^{0}$) : 0-lep + j's + $E_{T miss}$ 800 Gr ran dev g mass (for m(b) < 600 GeV) Simpl. mod. (light 2): 0-lep + b-jets + j's + E r min. 40.83 % (2011) JATLAS-CONF-2011-09 Simpl. mod. (g->tī 2) : 1-lep + b-jets + j's + E r mins 140 GeV g mass (for m(2,0) < 80 GeV) -1.83 %* (2011) (ATLAS.CONF.2011-138) Pheno-MSSM (light 2): 2-lep SS + E r min 15 and 1 (1991) (and a 1992) (and 1997) en ov g mass Pheno-MSSM (light 2): 2-lep OS + E r miss ssecure a mass $\frac{1}{\chi^0} \max(for m(\tilde{g}) < 600 \text{ GeV}, (m(\tilde{\chi}^1) - m(\tilde{\chi}^0)) / (m(\tilde{g}) - m(\tilde{\chi}^0)) > 1/2)$ Simpl. mod. $(\overline{g} \rightarrow q\overline{q}\overline{\chi}^{\dagger})$: 1-lep + j's + $E_{T,miss}$ GMSB (GGM) + Simpl. model : yy + E mean g mass (for m(bino) > 50 GeV) * GMSB : stable ₹ 37 pb (2010 (xXx-1106 4496) T mass Stable massive particles : R-hadrons Ma Gev g mass Stable massive particles : R-hadrons Stable massive particles : R-hadrons Hypercolour scalar gluons : 4 jets, m = m sgluon mass (excl: mag < 100 GeV, mag = 140 ± 3 GeV) RPV (λ;...=0.10, λ,...=0.05) : high-mass eµ v, mass Bilinear RPV (ct_{15P} < 15 mm) : 1-lep + j's + E_{T mins} 10-1 10 Mass scale [TeV] *Only a selection of the available results leading to mass limits shown Unfortunately, there is no According to this theory, there is So SUSY is probably wrong and compelling evidence to a partner out there for each and you're all SOL. support this theory yet. every one of you.

- No evidence of non-SM contributions has been found in 1 fb⁻¹ of collision data and a large variety of final states
- SUSY limits on squarks and gluinos are now approaching the TeV scale

00

Thursday, November 10, 11

Outlook

- These results rule out the easy scenario of sub-TeV squark (first generations) or gluino with a light LSP.
- ✤ With 5 fb⁻¹ now on disk, we are looking at many other possibilities:
 - Direct production of scalar bottom, top, slepton, and gaugino
 - Compressed mass spectrum
 - Refining consolidate searches, like moving from cut-and-count in one bin to shape analysis, work on systematics etc., to further push up sensitivity
 - We haven't given up, and we are still optimizing our searches for discovery, not exclusion... stay tuned for more results with full 2011 data set!

Backup slides

water - later

AMSB search backup plots

