

Exotic Searches in ATLAS

Stefano Giagu

Sapienza Università di Roma and INFN on behalf of the ATLAS Collaboration

Interpreting LHC Discoveries - GGI, Firenze - Nov 8-11, 2011

Introduction

One of the primary aim of the LHC physics program is to search for experimental answers to many open questions in the Standard Model:

 EWSB mechanism, fundamental particle spectrum, real nature of space-time, unification of forces ...

The ability to reconstruct with accuracy physics signals with energies and momenta from few hundreds of MeV to multi-TeV, place ATLAS in a privileged position to fulfill such a goal

I'll review here the current status of the ATLAS experiment searches for signals from Exotic BSM physics, trying to focus on most recent ones ...

Note: no enough time to cover everything here. A full and daily updated list of all the ATLAS results, with details on each analysis is available here:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Topological or Topic-based?

- Same final state probing very different models or topics
- Experimentally a topological signature-based approach is more natural:
 - practical
 - less model dependent
 - allows to cover every possible signature

- 1 jet + MET Many extensions of the SM have been jets + MET developed over the past decades: 1 lepton + MET Supersymmetry Same-sign di-lepton **Extra-Dimensions** Dilepton resonance Diphoton resonance Technicolor(s) Diphoton + MET Little Higgs Multileptons Lepton-jet resonance No Higgs Lepton-photon resonance GUT Gamma-jet resonance Diboson resonance Hidden Valley Z+MET Leptoquarks W/Z+Gamma resonance Top-antitop resonance Compositeness Slow-moving particles 4th generation (t', b') Long-lived particles Top-antitop production LRSM, heavy neutrino Lepton-Jets etc... Microscopic blackholes Dijet resonance etc... stolen from Henri Bachacou@LP2011
- Henri Bachacou, Irfu CEA-Saclay Lepton-Photon 2011
 A topic-based approach is more convenient in presenting the analysis results:
 - no jumps between different types of physics being addressed
 - easier to combine constraints on models from different signatures
 - in some cases same topology do not imply a simple re-interpretation: different optimizations/analysis strategies

in this talk I'll try to follow a topic-based approach ...

Outline

- The ATLAS experiment
 - status and performances

- EXOTIC searches with ATLAS

- Search for new gauge bosons, excited quarks, new color resonances ...
- Doubly charged Higgs
- Extra Dimensions
- Techni-hadrons
- 4th generation fermions
- Lepto-Quarks
- Summary and future perspectives

ATLAS@CERN

Muon

Data sample

results presented here are based on the first 1-2 fb⁻¹...

ATLAS Performances: physics objects

ATLAS performances close to or exceeding design specs in all compartments

taggers

Jets: energy scale uncertainty 2-4% for $p_T > 20$ GeV

ATLAS Precision Measurements

ATLAS has already managed to measure most of the known SM processes

- very precise measurements with detailed understanding of the systematic uncertainties
- surprisingly good data/MC agreement

ATLAS Preliminary

. = 0.70 fb⁻¹

Events

1200

1000

800

600

400

200

ideal conditions to search for new physics effects ...

> tī MC W+jets

QCD

Z+jets MC Diboson MC

/// Uncertainty

Single top MC

2

 $|\mathbf{Y}_{t}| - |\mathbf{Y}_{\bar{t}}|$

Precision measurements provide also a probe for BSM by themselves ...

Example: Charge Asymmetry in tt production

 $A_{C} = \frac{N(\Delta|Y| > 0) - N(\Delta|Y| < 0)}{N(\Delta|Y| > 0) + N(\Delta|Y| < 0)}$

- -tt production in SM symmetric under charge conjugation
- asymmetry may arise in BSM processes, via vector/axial couplings or by interference with the SM

 $A_C = -0.024 \pm 0.016(stat) \pm 0.023(syst)$

SM(MC@NLO): $A_C = 0.006$

also studied tt/single top production, tt spin correlations,

W polarization in top decays, FCNC: in all cases good agreement with SM expectation found ...

New Gauge Bosons: II and I+MET channels

New Gauge Bosons present in the particle spectrum of many extensions of the Standard Model:

- Sequential SM: Z'/W' with same couplings as in SM
- GUT-inspired theories E6, SO(10): heavy gauge bosons
- Randall-Sundrum Kaluza-Klein gravitons, Little/Littlest Higgs heavy gauge bosons, narrow techni-hadrons
- No precise prediction for mass scale of such resonances
- di-lepton and lepton+MET spectrum: a very clean place to look
- Experimental signature: bumps or Jacobian peaks in the invariant mass distributions

- Experimental challenges:
 - detector resolution and efficiency at very high momentum (with almost no control samples)
- Backgrounds:
 - tails of SM processes

no significative deviations observed from SM expectations ... 9

New Gauge Bosons: II and I+MET channels

Mass Limits

95% CL Limits	Excluded Mass	
SSM Z'	1.83 TeV	
E ₆ Ζ'χ	1.64	
E ₆ Ζ'ψ	1.49	

 $M_{W'} > 2.15 \text{ TeV/c}^2@95\% \text{ CL}$

Z'as tt resonance

Search for narrow ttbar resonances in the leptons+jets sample

- Sensitive to effects from new strong dynamics: Technicolor, Topcolor, ...
- Benchmark models:
- Leptophobic model IV Topcolor: extra Z' boson with O(TeV) mass with coupling only to quarks (width = 1.2% M(Z'))
- Kaluza-Klein gluon resonance in Randal-Sundrum models

stat. fluctuation in low-mass region \rightarrow no observed exclusion

search in the dilepton channel: 2 leptonic top
 use H_T+MET as discriminating observable

	Mass Limit (TeV)		
$g_{qqg_{KK}}/g_s$	Expected	Observed	
-0.20	0.80	0.84	
-0.25	0.88	0.88	
-0.30	0.95	0.92	
-0.35	1.02	0.96	

Excited quarks/Axigluons/new Colour Resonances

Check the di-jet invariant mass distribution against expectations from QCD

resonances predicted in numerous models (excited quarks, strong gravity, contact interactions ...)

Model

Axigluon

Excited quark

Colour Octet Scalar

- probed jets with transverse momenta up to multi-TeV
- search for "bumps" in m_{ii}, describing QCD shape via a smooth functional form

- assuming m_{jj} gaussian distributed

- mean $m_G \in [0.9, 4]$ TeV/c², $\sigma_G/m_G \in [5\%, 15\%]$

also search in the y+Jet sample

Resonant production of X \rightarrow y+Jet

- Complementary with di-jet, di-γ searches
- Benchmark model: $q^* \rightarrow q\gamma$: BR~2%, much lower than $q^* \rightarrow qg$ ~85% but with lower background
- Similar strategy as di-jet: search for "bumps" in $m_{\gamma j}$, describing BG shape via a smooth functional form

 $M_{q^*} > 2.46 \text{ TeV/c}^2 @ 95\% \text{ CL}$

Doubly-charged Higgs: SS di-leptons

Doubly-charged Higgs particles present in many NP scenarios: L-R symmetric models, Little Higgs, Higgs triplets models ...

- dominant production: pair production
- search for signals in the same-sign di-muon invariant mass spectrum
- clean signature: SS leptons production in SM very rare, main background from non prompt b/c semi-leptonic leptonic decays and K/π decay in flight
- BG estimated via data-driven methods

Dimuon pairs / 10 GeV

Data / bkg

assuming 100% BR(µµ), and Drell-Yan production

 Z/γ^*

 H^{-}

Doubly-charged Higgs: 4-leptons

Search $H^{\mp\mp}$ directly in 4 leptons events that contains no identified $Z \rightarrow I^+I^-$ decays

- very low expected background outside the ZZ kinematic region

efficiency dominated by lepton reconstruction → results can be applied in other NP processes within the same fiducial region

Search for Randal-Sundrum Gravitons

- Graviton excitations expected in the di-photon and di-lepton spectra in R-S warped extra dimension models
- \bar{q} G γ \bar{q} G G γ \bar{q} G G γ \bar{q} γ \bar{q} G γ \bar{q} \bar{q} γ \bar{q} γ \bar{q} \bar{q} γ \bar{q} γ \bar{q} γ \bar{q} γ \bar{q} \bar{q} γ \bar{q} \bar{q}

Di-lepton analysis: same as for $Z' \rightarrow II$,

only different interpretation

Early γγ analysis with 2010 data:

... and in $ZZ \rightarrow 4$ -leptons

Analyze events with two identified $Z \rightarrow II$ in the 4-leptons dataset

- search for RS Graviton decaying in two Z bosons
- also sensitive to other di-boson resonances as in GUT theories, TC models
- 4-events excess at mzz~327 GeV seen by CDF recently, but no excess seen in IIjj or II+MET

Expected Signal k/MPI=0.1

 $71 \pm 3 \pm 4$

 $12\pm0.5\pm0.6$ $1.5 \pm 0.08 \pm 0.07$

 $(2.7 \pm 0.2 \pm 0.1) \times 10^{-1}$

 $(6.6 \pm 0.4 \pm 0.3) \times 10^{-2}$

 $(1.9 \pm 0.1 \pm 0.1) \times 10^{-2}$

G(350 GeV)

G(500 GeV)

G(750 GeV)

 $G(1000 \, \text{GeV})$

G(1250 GeV)

G(1500 GeV)

Process	Total
ZZ	$1.85 \pm 0.11 \pm 0.09$
Fakes	$0.02^{+1.03}_{-0.01}$ $^{+0.75}_{-0.02}$
Total Bkg.	$1.87^{+1.04}_{-0.11}$ $^{+0.75}_{-0.09}$
Data	3

$\sigma(pp \rightarrow G) \times BR(G \rightarrow ZZ) [pb]$ Expected limit $\pm 2 \sigma$ ----- RS Graviton 800 1200 1400 400 600 1000 M_G [GeV]

ATLAS Preliminary

L dt = 1.02 fb⁻¹ vs=7TeV

10

 $M_G > 575 \text{ GeV} (k/M_{PL} = 0.1)$

Expected limit at 95% CL

Observed limit

Expected limit $\pm 1\sigma$

Search for Large ED in monoie

Large Extra Dimension (ADD)

- large flat ED
- bring the Plank scale down to the TeV scale
- only Gravitons propagate in the bulk reanies providing a missing energy signature
- Look for a high-p_T jet, MET and no other activity
- Experimentally challenging:
 - Understanding $Z(\rightarrow vv)$ +Jets SM production
 - Instrumental background

The following sections detail the analysis strategy for data and the method developed for a

Search Black Holes/String Balls with leptons & jets

Microscopic black-holes decaying through Hawking radiation predicted in low-scale gravity models

- also String Balls in the context of weakly-coupled string theory
- General assumption: at LHC if produced then will decay isotropically and democratically in all particle species...
 - high multiplicity final states \rightarrow look for many leptons and jets at high mass/p_T

... and in same-sign di-muon pairs

Background to BH search can be further reduced searching in like-sign di-muon decays

Strategy:

- high p_T track multiplicity discriminates signal and background effectively
- counting experiment in a pre-defined signal region
 - muon+fake background from data (W+jets, QCD)
 - other backgrounds (tt, bb) from MC

Model independent limit: $\sigma \cdot B \cdot A < 0.018 \text{ pb } @95\% \text{ CL}$

Set limits in two dimensions of M_D and the mass of the black hole M_{TH} for different number (n) of extra dimensions in the ADD low gravity scale model

Search for signals from Technicolor

TC: new strong dynamics to provide alternate mechanism of EWSB

- no fundamental Higgs boson
- new strong gauge interactions (like SU(N_{TC}))
- new fermions sensitive to TC (techni-quarks)
- In ATLAS searches in the context of the Low-Scale TC model
 - QCD-like particle spectrum with scale O(Λ_{TC})~100 GeV: π_T , ρ_T , ω_T ~mass degenerate, a_T at higher mass
 - with Walking TC: $V \rightarrow n\pi_T$ forbidden \Rightarrow narrow resonances
- Main decay modes:
 - ρ_T , $\omega_T \rightarrow II$, Z/W γ , WZ, Z/W π_T ($\pi_T \rightarrow jj$)
- Since techni-mesons are narrow, spin 1, resonances, the same analysis methodology used for the Z' searches in di-leptons can be used w/o modifications

Search for tchni-mesons in dileptons

4th generation quarks

Simple and natural extension of the Standard Model

- provides a source of CP Violation in B_s decays, accommodate a heavy Higgs boson
- a benchmark model for more general new scenarios with heavy fermions (Little Higgs, strong EWSB: Composite Higgs, TC etc...)
- Multiple searches performed in ATLAS, exclusive and inclusive ...
- Final states with leptons and jets produced by 4th generation chiral quarks
- signature: 2I + 2jets + MET
- $\, \bullet \,$ dominant background: ttbar decays, controlled using $M_{\text{coll}} \, VS \, H_T$
 - H_T = scalar sum of E_T from leptons, jets and MET
 - $M_{coll} = Q_4$ reconstructed mass in collinear approximation for neutrinos

Sabababa ecococococo

Search for heavy vector-like quarks coupling to light quark

Single production of vector-like heavy quarks (GUT, ED, ...) decaying to a jet and a vector boson

- signature: a high- p_T W or Z + 2jets
- signals peak in the invariant mass of W/Z and one jet

 $\begin{array}{l} \mbox{Limits 95\% CL} \\ \mbox{M}_{Q} > 900 \ \mbox{GeV} \ \mbox{(W channel)} \\ \mbox{M}_{Q} > 760 \ \mbox{GeV} \ \mbox{(Z channel)} \end{array}$

assuming VLQ-light quark coupling $\kappa_{qQ} = v/m_Q$

Inclusive Model-independent search

Search for inclusive non SM production of two prompt, isolated muons with the same electric charge:

- sensitivity to a variety of NP models: 4th generation quarks/doubly-charged Higgs/heavy Majorana neutrinos/ SUSY/UED ...
- very inclusive analysis: no requirements on the activity of the event, broad range for muon kinematics
- upper limits on contributions from NP expressed as fiducial cross-sections limits

Same analysis set also best limits on anomalous production of top pairs with the same electrical charge via a flavor-changing Z' boson:

	$\sigma_{95}(tt)$ (pb)							
Mass range [GeV]	m(Z') = 100 GeV		m(Z') = 150 GeV		m(Z') = 200 GeV		$m(Z') \gg 1 \text{ TeV}$	
	exp.	obs.	exp.	obs.	exp.	obs.	exp.	obs.
$m(\mu^+\mu^+) > 200 \text{ GeV}$	4.1	4.1	3.3	3.3	3.0	3.0	2.9	2.9

$T \rightarrow t + A_0$

Search for a pair-produced exotic top partner T, which always decays to a top quark and a stable, neutral weakly-interacting scalar particle A₀

- T has quark-like quantum numbers, produced as tt through qq annihilation and gluon fusion.
- Signature: same as ttbar, but with large missing transverse energy from the undetected A_0 's.

M_T excluded up to 420 GeV/c² and A₀ up to 140 GeV/c²

600

420

440

T Mass [GeV]

ATLAS

∖s=7 TeV

550

LeptoQuarks (LQ)

LQ are new particles that arise in various extensions of SM (GUT, ETC, compositeness ...) and couple to both lepton and quarks and carry color

- Produced in pair at LHC \rightarrow search for final states with jjll or jjlv
- Low background expected due to the high mass of the LQ

Grand Summary

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: BSM-LHC 2011)
	Large ED (ADD) : monojet	L=1.00 fb ⁻¹ (2011) [ATLAS-CONF-2011-096] 3.2 TeV M _D (δ=2)
SU	UED : $\gamma\gamma + E_{T,miss}$	L=1.07 fb ⁻¹ (2011) [Preliminary] 1.22 TeV Compact. scale 1/R Preliminary
	RS with $k/M_{Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	L=36 pb ⁻¹ (2010) [ATLAS-CONF-2011-044] 920 GeV Graviton mass
nsio	RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm ee/\mu\mu}$	L=1.08-1.21 fb ⁻¹ (2011) [arXiv:1108.1582] 1.63 TeV Graviton mass Ldt = (0.031 - 1.60) fb ⁻¹
lime	RS with $g_{qqgKK}/g_s = -0.20 : H_T + E_{T,miss}$	L=1.04 fb ⁻¹ (2011) [ATLAS-CONF-2011-123] 840 GeV KK gluon mass √s = 7 TeV
tra c	Quantum black hole (QBH) : m_{dijet} , $F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864] 3.67 TeV M _D (δ=6)
Ĕ	QBH : High-mass σ_{t+X}	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070] 2.35 TeV M _D
	ADD BH $(M_{th}/M_D=3)$: multijet $\Sigma p_{\tau}, N_{jets}$	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068] 1.37 TeV M _D (δ=6)
	ADD BH ($M_{th}/M_D=3$) : SS dimuon $N_{ch. part.}$	L=31 pb ⁻¹ (2010) [ATLAS-CONF-2011-065] 1.20 TeV M _D (δ=6)
	qqqq contact interaction : $F_{\chi}(m_{dijet})$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesian limit)] 6.7 TeV
0	qq $\mu\mu$ contact interaction : $m_{\mu\mu}$	L=42 pb ⁻¹ (2010) [arXiv:1104.4398] 4.9 TeV
E	SSM : m _{ee/µµ}	L=1.08-1.21 fb ⁻¹ (2011) [arXiv:1108.1582] 1.83 TeV Z' mass
2	SSM : <i>m</i> _{T,e/µ}	L=1.04 fb ⁻¹ (2011) [arXiv:1108.1316] 2.15 TeV W mass
α	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=35 pb ⁻¹ (2010) (arXiv:1104.4481) 376 GeV 1 st gen. LQ mass
L(Scalar LQ pairs (β =1) : kin. vars. in µµjj, µvjj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV 2 nd gen. LQ mass
	4 th generation : coll. mass in $Q_1 \overline{Q}_4 \rightarrow WqWq$	L=37 pb ⁻¹ (2010) [ATLAS-CONF-2011-022] Q ₄ mass
	4 th generation : $d_{4}\overline{d}_{4} \rightarrow WtWt$ (2-lep SS)	L=34 pb ⁻¹ (2010) [arXiv:1108.0366] 290 GeV d ₄ mass
	$TT_{4th pen} \rightarrow t\bar{t} + A_0A_0$: 1-lep + jets + $E_{T miss}$	L=1.04 fb ⁻¹ (2011) [Preliminary] 420 GeV T mass
	Techni-hadrons : dilepton, mee/uu	L=1.08-1.21 fb ⁻¹ (2011) [ACONF-2011-125] 470 GeV p_{\perp}/ω_{\perp} mass (for $m(p_{\perp}/\omega_{\perp}) - m(\pi_{\perp}) = 100 \text{ GeV}$)
ler	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 780 GeV N mass (for m(W _e) = 1 TeV)
Oth	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 1.350 TeV W _R mass (for 230 < m(N) < 700 GeV)
	$H_{L}^{\pm\pm}$ (DY prod., BR($H_{L}^{\pm\pm} \rightarrow \mu\mu$)=1): $m_{\mu\nu}$ (like-sign)	L=1.6 fb ⁻¹ (2011) [ATLAS-CONF-2011-127] 375 GeV H ^{±±} mass
	Excited quarks : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 2.99 TeV q* mass
	Axigluons : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 3.32 TeV Axigluon mass
	Color octet scalar : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 1.92 TeV Scalar resonance mass
		10^{-1} 1 10 10^{2}
		Mass scale [TeV]

*Only a selection of the available results leading to mass limits shown

+ many new/updated analyses on track to be approved for HCP! check the daily updated list in: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Outlook and future perspectives

With less than 2 fb⁻¹ of integrated luminosity ATLAS has been able to produce world class quality results, extending the parameter space explored at previous facilities with just 1 year of data taking ...

- heavy resonances excluded past 2 TeV
- 4th generation/techni-hadrons excluded up to ~0.4 TeV
- gravitions up to ~1.6 TeV
- excited quarks/axigluons excluded past 3 TeV
- ... but so far only exclusion limits, no hint of new physics yet
- Additional 3 fb⁻¹ already under analysis, O(10) expected in 2012 \rightarrow access to the multi-TeV scale
 - higher center-of-mass energy perhaps a better option than a x10 data at 7 TeV

... the discovering journey has just begun!

√ŝ [TeV]

arXiv:1101.3201

BKUP SLIDES

Search for UED in yy+MET

In UED models (but also GMSB) sizable yields of yy+MET events compared to SM

- in UED the lightest KK particle γ^* can decay gravitationally to $\gamma+G$
- the graviton G is one of a tower of eV-spaced graviton states, leading to a distribution of graviton mass between 0 and 1/R (compactification radius)
- Two decay chains per event $\rightarrow \gamma\gamma$ +MET, with MET due to the escaping graviton in the ED

Analysis strategy:

- two photons (E_T>30 GeV) + large MET (>125 GeV)
- looks for excess on the MET spectrum
- main backgrounds estimated using control samples
 - QCD: γγ, γ+j, jj
 - W+jets, tt

exclude 1/R < 961 GeV @95% CL

Search techni-mesons in W+jets

Repeat CDF study of W+2jets production

- sensitive to $\rho_T \rightarrow W + \pi_T (\rightarrow jj)$
- keep selection as close as possible to CDF
- harder than at Tevatron: worst S/B (signal x4, W+jets BG x20)

no significative discrepancy seen between data and simulation p-value in "CDF region" [120,160] GeV = 0.3 (0.5 σ)

d4→Wt and Heavy Neutrinos in same-sign di-leptons

Search for 4th generation d-quark decaying to Wt

- d4d4 \rightarrow Wt Wt \rightarrow bWW bWW \rightarrow II + 6j + MET
- analysis sensitive to many NP models: SUSY/UED/Majorana neutrinos/... done in the context of a generic same-sign di-lepton search
- strong BG reduction by requiring same-sign leptons and high MET

Same analysis set limits on heavy neutrinos as 4th generation particles:

- $N_2N_2 \rightarrow N_1Z N_1Z \rightarrow || + 2j + MET$
- model: 4-fermions effective vector operator

 $M_{N1} > 460 \text{ GeV/c}^2 @95\% \text{ CL}$ assuming NP scale Λ =1 TeV

Heavy Neutrinos and W_R in 2I+2jets

Benchmark: heavy neutrinos in L-R symmetric extension of Standard Model

- $W_R \rightarrow N_1 I \rightarrow II' W_R^* \rightarrow II'_{jj}$: search for resonances in the 2I+2j system
- both same sign (Majorana type neutrinos) and opposite sign (Majorana and non Majorana) lepton pairs considered

Physics Processes	SS	OS		
	Preselection			
Diboson	$0.18 \pm 0.01 \pm 0.01$	$4.0 \pm 0.1 \pm 0.4$		
$t\bar{t} + single top$	$0.39 \pm 0.01 \pm 0.06$	$56.3 \pm 0.6 \pm 8.0$		
$Z \rightarrow ll$	$0.81 \pm 0.06 \pm 0.15$	$106.6 \pm 3.2 \pm 14.0$		
Fake lepton(s)	$5.81 \pm 1.27 \pm 2.06$	$6.9 \pm 2.3 \pm 2.7$		
Total background	7.2 ±1.3 ±2.1	$173.8 \pm 3.9 \pm 16.7$		
Observed in data	5	177		
	Final selection			
Total background	$1.9 \pm 0.4 \pm 0.5$	$13.3 \pm 1.2 \pm 2.1$		
Observed in data	2	10		

 W_R

 $\sum W_R^*$

Significant extension of previous limits from LEP/Tevatron 34

Searches for LLP: displaced vertices

Inclusive search for vertices outside the beam-pipe, in association with a high p_T muon

Benchmark

SUSY RPV

 $\widetilde{\chi}^{_0}$

 λ_{2ii}

arXiv:1109.2242

μ

Crucial: good understanding of tracking, detector passive material

Background:

- vertices from BG from hadronic interactions with detector material
- typically low-mass, but coinciding tracks at large angle can result in high mass vertex
- veto vertex position with material map from 2010 data

Hidden Valley: prompt lepton-jets

Search for new light (m~GeV scale) Hidden Valley bosons (dark photons γ_d) decaying to muons

- predicted in many Hidden Valley models, with SUSY (used as benchmark) and w/o SUSY
- Proposed to explain anomalies in astrophysical observations related to abundance of cosmic electron/positrons and dark matter searches
- highly boosted final state muons \rightarrow collimated jets of leptons (lepton-jets)
- dark photons γ_d may have long lifetimes or decay promptly, first pilot analysis focused on prompt objects

36

Highly Ionizing Particles

Predicted by Q-balls, stable µ-BH, monopoles, dyons, ...

- Large mass → slowly moving through the detector volume
- |q| >> electron charge \rightarrow high specific ionization
- Generic signature: very high ionization track and narrow EM cluster → very low Background
- First and so far only search at LHC energies (2010 data, 3.1 pb^{-1}): sensitive to |q| in the range 6e-17e
- Second generation analyses in progress: larger statistic, sensitive to larger intervals of HIP charge and to magnetic monopoles

 w_1 = lateral extent of EM energy deposition in second layer

 f_{HT} = fraction of track TRT hits that pass high threshold

<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e
200	1.4	1.2	2.1
500	1.2	1.2	1.6
1000	2.2	1.2	1.5

Pair production cross section (pb) upper limits 95% CL, in fiducial ranges (η , E_{kin})

<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e
200	11.5	5.9	9.1
500	7.2	4.3	5.3
1000	9.3	3.4	4.3

Pair production cross section (pb) upper limits 95% CL, assuming Drell-Yan kinematics