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What Defines QCD?

• Approximately scale-invariant non-Abelian 
gauge theory at high energies
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What Defines QCD?

• Approximately scale-invariant non-Abelian 
gauge theory at high energies

• Consequences:

• Soft & Collinear singularities
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What Defines QCD?

• Approximately scale-invariant non-Abelian 
gauge theory at high energies

• Consequences:

• Collimated, high energy jets
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Jet



What Defines QCD?

• Approximately scale-invariant non-Abelian 
gauge theory at high energies

• Consequences:

• Anomalous dimensions

• “Textbook”:

• “Fractal Phase Space”
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Fig. 1. (a) The phase space available for a gluon emitted by a high energy Cl~ system is a triangular 

region in the (y, K)-plane (K = in k ~//12; L = In s/A 2). (b) If one gluon is emitted at (y  i, K~) the phase 

space for a second (softer) gluon is represented by the area of this folded surface. (c) Each emitted 

gluon increases the phase space for the softer gluons. The total gluonic phase space can be described by 

this multi-faceted surface. The length of the baseline corresponds to the quantity A(L), the length of 

the dashed line to A(L, K). 

To study the hard perturbative phase we use two important tools, which we 

shortly describe below: 

(i) The dipole formulation of QCD cascades [3]; 

(ii) An infrared stable measure on parton states related to the hadronic 

multiplicity [4]. 

(i) Dipole formulation. A high-energy q~-system radiates gluons according to 

the dipole formula 

3a~ dk 2 

dn = 4rr2 k2 dyd~,.  (1) 
..k 

Here the phase space available is given by the relation 

lln(s/k~) [Yl-<3 (2) 

which corresponds to the triangular region in a y - In k 2 diagram as shown in fig. 

la. The rapidity range available, Ay, is given by ln(s/k~). 
if two gluons are emitted, then the distribution of the hardest gluon is described 

by eq. (1), while the distribution of the second, softer, gluon corresponds to two 

dipoles, one stretched between the quark and the first gluon, and the second 

between this gluon and the antiquark [5]. 

Gustafson, Nilsson 1991; Bjorken 1992



What Defines QCD?

• Our Goal: Define an observable that can 
distinguish between approximately scale 
invariant objects and objects that have an 
intrinsic, high energy scale

• This observable will be a function which 
quantifies the scaling properties of the 
system

• The argument of the function is a 
resolution parameter
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Defining an Observable

• Requirements from theory:

• Infrared and Collinear safety

• Want to compute in pert. theory
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Defining an Observable

• Requirements from theory:

• Scale invariant ~ constant

• Want to extract a dimension

• Can do this by defining an angular 
correlation between constituents
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Increasing resolution



Defining an Observable

• Requirements from theory:

• Correlation should be z-boost invariant

• Jet mass!

• Angular Correlation Function (ACF)
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Angular Correlation Function

• Expectations

• ACF in QCD ~ R2
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• Expectations

• ACF in QCD ~ R2
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Angular Correlation Function

• Expectations

• ACF in QCD ~ R2
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Angular Correlation Function

• Expectations

• ACF for heavy particle jet will have “cliffs” 
at characteristic values of R
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Angular Correlation Function

• Expectations

• ACF for heavy particle jet will have “cliffs” 
at characteristic values of R
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Angular Correlation Function

• Expectations

• ACF for heavy particle jet will have “cliffs” 
at characteristic values of R
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Angular Structure Function

• How to extract a dimension:

• “Standard way”:

• Problems: limiting procedure, only 
defined in unphysical/unreachable limit

• No simple way to see structure
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Angular Structure Function

• How to extract a dimension:

• Better: take a derivative

• Benefits: Defined for all R, cliffs in ACF 
manifest themselves as peaks in derivative
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Angular Structure Function

• Define angular structure function (ASF):

• Structure in ASF is ~uniform in R for QCD
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Angular Structure Function

• Delta-function is noisy in finite data

• Smooth ASF by replacing:

• K is taken to be a smooth gaussian kernel:

19



20

Top Tagging



Jet Substructure

• Problem: Boosted stuff at LHC doesn’t 
necessarily lead to distinct jets as it did in 
lower energy experiments
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Jet Substructure

• Problem: Boosted stuff at LHC doesn’t 
necessarily lead to distinct jets as it did in 
lower energy experiments

22

4 well-separated 
jets



Jet Substructure

• Problem: Boosted stuff at LHC doesn’t 
necessarily lead to distinct jets as it did in 
lower energy experiments
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Combinatoric problem: 
how to pair them?



Jet Substructure

• Problem: Boosted stuff at LHC doesn’t 
necessarily lead to distinct jets as it did in 
lower energy experiments
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Combinatoric problem: 
how to pair them?



Jet Substructure

• Problem: Boosted stuff at LHC doesn’t 
necessarily lead to distinct jets as it did in 
lower energy experiments
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Jet Substructure

• Problem: Boosted stuff at LHC doesn’t 
necessarily lead to distinct jets as it did in 
lower energy experiments
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• Boost removes 
combinatoric problem
• Jets are no longer 
widely separated
• Study inside of “fat” jets



Jet Substructure
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FIG. 4: Leptonic top candidate formed by high pT electron (145 GeV), moderate Emiss
T , and a b-tagged jet. When

reclustered with R = 1.0 the leptonic candidate acquires a large pT , mass and 1 → 2 splitting scale as it absorbs the
electron. Three jets are identified with the hadronic top quark. When reclustered with R = 1.0, these jets merge into a
single jet with mjet = 197 GeV,

√
d12 = 110 GeV, and

√
d23 = 40 GeV. Jets indicated in red correspond to R = 0.4, jets

in green to R = 1.0.

∆φW,jet > 1.2 in these events is shown in Figure 5. A clear mass peak near the W mass indicates the presence of
boosted hadronic W ’s. The three main contributions to these events are tt̄ (generated with MC@NLO+HERWIG
/JIMMY [38, 39]), W+jets (generated with ALPGEN+HERWIG/JIMMY ), and WW (generated with HERWIG/JIMMY),
all normalized to the highest order cross-section available (see Ref. [37] for more details). The good agreement
between data and the various MC simulations suggests both that the tools described above are well described
in a complex physics environment and that the systematics are generally well under control.

V. CONCLUSIONS

The study of the hadronic final state is explored in terms of the substructure of hadronic jets via measurements
of the jet mass and kt splitting scales for anti-kt jets with R = 1.0 and C/A jets with R = 1.2. These
measurements are corrected for detector effects and a full systematic uncertainty evaluation is performed. In
addition, the jet mass is measured for C/A jets after a splitting and filtering procedure. In all observables the
PYTHIA and HERWIG samples are in agreement with data to within the systematic uncertainties. The HERWIG++
prediction appears to be slightly disfavoured in the unfiltered C/A mass spectra, producing jets with a higher
mass than found in data.
The effect of pile-up on jet mass has also been studied. The expected scaling with number of vertices and jet

radius is observed. It has also been shown that the filtering procedure applied to C/A jets reduces the impact
of pile-up on jet mass to the extent that it is undetectable in the 2010 dataset.
Finally, the applications of these techniques is demonstrated in the tagging of candidate boosted top quarks

and the measurement of fully hadronic W decays.
Overall it is clear that ATLAS is capable of delivering measurements of the variables considered in this study

and that these observables are well modeled by leading order Monte Carlo. Searches for boosted Higgs bosons,
supersymmetric particles, and top-quark resonances will all benefit from utilizing these techniques.



Jet Substructure

• Declustering

• Define a branching tree with a sequential 
jet algorithm

• kT-type sequential jet algorithm

• 1) Compute

• n = 1: kT

• n = 0: Cambridge-Aachen

• n = -1: anti-kT 28

Ellis, Soper
Catani, et al.



• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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• kT-type sequential jet algorithm

• 2) Merge closest pair of particles
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Jet Substructure



• kT-type sequential jet algorithm

• 3) Continue until no pair of particles is 
close
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Jet Substructure



• Idea: Clustering procedure defines a 
branching tree!
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• Idea: Clustering procedure defines a 
branching tree!
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• QCD: branches of small 
mass, small angle, low 
energy

• Heavy particle: some 
branches with large 
mass, large energy

• Isolate/remove QCD 
branches

Courtesy Jon Walsh

Jet Substructure



37

“Jet Substructure Without Trees”

• Use ACF and ASF to extract angular and 
mass scales directly from constituents 
without reference to any clustering tree



• Cliffs in         = separation of hard subjets

•         for a top quark jet
38

be used to decompose a jet into subjets. This unclustering procedure has seen a wide
variety of phenomenological applications, especially in the context of tagging jets that
result from boosted heavy particle decays, e.g . filtering in boosted Higgs searches [11].
A closely related procedure, referred to as pruning [27], vetoes on QCD-like branches
with the goal of sharpening jet mass resolution. This family of procedures offers a
number of tunable parameters, allowing the user to control how much and what kind
of substructure is identified. A disadvantage of these procedures is that, in order for
them to be most effective, the clustering tree must accurately reconstruct the parton
shower history of the jet. In practice the CA and kT algorithms reconstruct the most
probable shower history, which need not coincide with the actual shower history. In
addition, the parameters which define the unclustering typically impose a hard line
between QCD-like behavior and non-QCD-like behavior that can fail to accommodate
jets that deviate too much from “most probable” jets.

The goal of this paper is to explore an alternative procedure for identifying and
characterizing substructure within jets. The discussion is organized as follows. In
Section 2, we introduce the “angular correlation function” G(R) and discuss how
structure in G(R) can be used to construct IRC safe jet observables. In particular
we use G(R) to extract angular scales R∗ and mass scales m∗ directly from the con-
stituents of a jet without use of a clustering tree. These angular and mass scales
correspond to the angular separations and invariant masses of pairs of hard substruc-
ture in the jet. In Section 3, we present an application of these ideas to the tagging of
boosted top quarks. We find that the resulting top tagging algorithm is competitive
with other methods in the literature. Given the straightforward approach we take in
applying G(R) to top tagging, this good performance ‘out of the box’ is encouraging.
In Section 4 we discuss other possible applications of the methods introduced in this
paper.

2 Angular Correlation Function

To characterize substructure in a jet J we define the angular correlation function
G(R) as

G(R) ≡

∑

i "=j
pT ipTj∆R2

ijΘ(R−∆Rij)

∑

i "=j
pT ipTj∆R2

ij

≈

∑

i "=j
pi ·pjΘ(R−∆Rij)

∑

i "=j
pi ·pj

(1)

where the sum runs over all pairs of constituents of J and Θ(x) is the Heaviside step
function. Here pT i is the transverse momentum of constituent i, and ∆Rij is the
Euclidean distance between i and j in the pseudorapidity (η) and azimuthal angle
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Figure 1: The angular correlation function G(R) for a sample top jet.

(φ) plane: ∆R2
ij = (ηi − ηj)2 + (φi − φj)2. On the LHS of Eq. (1) the dependence

on transverse momenta is fixed by collinear safety. Provided that ∆Rij is raised to a
positive power, the entire expression is IRC safe. We choose ∆R2

ij in Eq. (1) so that
G(R) has a clear physical interpretation: G(R) is the (fractional) mass contribution
from constituents separated by an angular distance of R or less. An important point
here is that R does not mark the distance with respect to any fixed center.

For a jet with no substructure, G(R) is featureless. In contrast, if a jet has
significant substructure at an angular scale R = R∗, G(R) exhibits a discontinuous
ledge at R = R∗, see Fig. 1. Such a ledge corresponds to two or more hard subjets
separated by a distance R∗ from one another, with the ledge drop determined by the
invariant mass of the subjets. Notice that these ledges are closely related to mass
drops as exploited in a variety of jet substructure studies [8–12]. We expect that a
typical QCD jet will have an angular correlation function that is more or less smoothly
varying without any sharp ledges, while for a jet with significant substructure G(R)
will have one or more sharp ledges at angular scales R = R∗ corresponding to distinct
separations between hard subjets in the jet. This suggests several jet observables
that can be defined from G(R). Given a procedure for finding ledges in G(R), we can
consider: (i) the total number of ledges; (ii) the angular scales R = R∗ at which ledges
are found; and (iii) the ledge drops at each R = R∗. We will see that, once suitably
defined, each of the resulting observables proves useful in characterizing substructure
within jets.

In effect, G(R) defines a continuous family of jet shape observables. Each G(R0)
for a given R0 differs from most jet shape observables in that: (i) it does not contain
any preferred or reference four-vectors (e.g. the energy center of the jet); and (ii)
it involves a sum over two-particle correlations. For example, the radial jet energy

3

Why the ASF?



• Cliffs in         = separation of hard subjets

• Which correspond to something physical?
39
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .

4

Top Jet

Why the ASF?



41

QCD Jet

!1.5 !1.0 !0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

Η

Φ

R
1$ %

1
.1
2

(a)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

R

!
!
!R"

(b)

Figure 4: (a) pT plot and (b) angular structure function ∆G(R) for a QCD jet with diffuse
substructure and pT ∼ 600 GeV. In the pT plot, the small cell at the end of the arrow is
so soft that it is barely visible. Prominent peaks in ∆G(R) are distributed approximately
uniformly in R. For a minimum prominence of 4.0, ∆G(R) has a single peak at R1∗ = 1.09.
Note the scale of ∆G(R) as compared to the top jet in Fig. 2(b).

than nmax
p prominent peaks. When a prominent peak is resolvable, however, the

resulting angular scale Ri∗ corresponds to an angular separation between two or more
hard substructures in the jet. For a QCD jet, the distribution of prominent peaks
should be roughly uniform in R, since QCD is approximately scale invariant. For a
jet that is initiated by a heavy particle decay, the angular scales Ri∗ will be peaked at
values characteristic of the decay kinematics of the heavy particle. The corresponding
partial masses will be correlated to mass scales intrinsic to the heavy particle decay. In
contrast, for QCD jets the partial masses will be peaked at small values, as determined
by the soft and collinear singularities of QCD.

Some of the foregoing discussion is illustrated in Figs. 2 and 4. In Fig. 2 we show
a boosted top jet with a clean three-pronged substructure. In the pT plot in Fig. 2(a)
the distances Ri∗ between the three hardest cells are indicated. From Fig. 2(b) we
see that it is these same three angular scales that show up as prominent peaks in
the angular structure function ∆G(R). Less prominent peaks correspond to soft-
hard correlations in the jet. The substructure of the QCD jet in Fig. 4(a) is quite
different, with a single hard core surrounded by soft diffuse radiation. The mass of
the jet is largely due to these soft, wide-angle emissions, and the most prominent peak
in ∆G(R) corresponds to correlations between the hard core of the jet and one such
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Prominence

•           picks out physical peaks beautifully!

• How do we define interesting peaks?

• By height?  Why?

42
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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• Disclaimer: The following slides were made 
for an audience in the US.  I haven’t been 
able to find an analogy for Europeans.
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• Quiz:  What is the highest mountain in the 
contiguous US?
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• Quiz:  What is the highest mountain in the 
contiguous US?

• Mt. Whitney, CA

• What is the most prominent mountain in 
the contiguous US?
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• Quiz:  What is the highest mountain in the 
contiguous US?

• Mt. Whitney, CA

• What is the most prominent mountain in 
the contiguous US?

• Mt. Rainier, WA



Prominence

• Proposition: Define peaks by their 
prominence

• Prominence = amount peak sticks out 
above ambient background
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Prominence 
of little bump 

is tiny!



Prominence

• Possible double counting of angular scales

• Defining interesting peaks by prominence 
removes double counting ambiguity
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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• Entire curve is IRC safe
• Location of peaks in R
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .
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Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 2: pT plot and angular structure function ∆G(R) for the top jet whose G(R) is
illustrated in Fig. 1. (a) The pT plot depicts the transverse energy deposited in calorimeter
cells of size 0.1 × 0.1 in (η,φ) with the area of each red square proportional to the pT .
This top has pT ∼ 300 GeV and a clean three-pronged substructure. (b) For a minimum
prominence of 4.0, ∆G(R) has three peaks with R1∗ = 0.66, R2∗ = 0.91, and R3∗ = 1.48.
The red arrows illustrate the prominence of the two peaks at R2∗ and R3∗.

profile ψ(R) as in [28, 29] quantifies the fraction of a jet’s energy that is contained
within an angular distance R of the center of the jet. Although ψ(R) for a top jet will
exhibit discontinuous ledges at particular angular scales, these scales are not useful
for characterizing the substructure of the jet. This is because the resulting angular
scales, which are defined with respect to the jet center, cannot be used to reconstruct
the separations between the three top subjets. In addition, the invariant masses of
pairs of subjets are not accessible from ψ(R). The angular correlation function G(R)
is closer in spirit to factorial moments as in [30], which were introduced to quantify
scaling behavior in multi-particle production.

In order for the observables derived from G(R) to be useful, care must be taken
in defining them. We find that, instead of directly finding ledges in G(R), it is prefer-
able to find peaks in a suitably chosen derivative of G(R). In particular, because
we are interested in ratios of mass scales, we should look for structure in log G(R)‡.
Because QCD is approximately scale invariant, structure in log G(R) should be iden-
tified by calculating derivatives with respect to logR. Since d/d logR = R d/dR,

‡ The normalization in G(R) has been chosen with this logarithm in mind: G(R) increases mono-
tonically from 0 to 1 as R increases from R = 0 to R = max∆Rij .

4

R1 R2 R3

P1

P2

P3

• IRC safe observables from           :
0.5 1.0 1.5 2.0 2.5 3.0

R

5

10

15

!!!R"
R

Figure 3: An illustration of how prominence requirements, by selecting peaks that stand
out above background noise, prevent angular scales from being double-counted.

this choice ensures that noise in log G(R) at small R does not result in extraneous
peaks. This suggests that the quantity of interest is d log G(R)/d logR. A concern
with d log G(R)/d logR is that the derivative produces a delta function δ(R−∆Rij);
as a consequence, d log G(R)/d logR defines a noisy function of R. Therefore, to
identify structure in log G(R) we define an “angular structure function” ∆G(R) by
replacing the delta function in d log G(R)/d logR with a smooth kernel K(x):

∆G(R) ≡ R

∑

i !=j
pT ipTj∆R2

ijK(R−∆Rij)

∑

i !=j
pT ipTj∆R2

ijΘ(R−∆Rij)
(2)

In the following we choose a gaussian K(x) = e−x2/dR2
/
√
πdR2 with dR = 0.06. We

find that this choice reduces noise substantially. This value of dR was selected after
scanning a range dR ∈ [0.02, 0.12] and choosing dR to maximize the performance of
the top tagging algorithm presented in Sec. 3.

To identify angular scales R = R∗ in the jet that correspond to distinct hard
substructure in the event, it is important to find peaks in ∆G(R) in a way that is
robust against noise.§ For this purpose we borrow a concept from geography called
(topographic) prominence [31]. The prominence of the highest peak is defined as
its height. In the mountaineering analogy, the prominence of any lower peak P
is defined as the minimum vertical descent that is required in descending from P
before ascending a higher, neighboring peak P ′, where P ′ can lie to either side of P .
Fig. 2(b) illustrates this concept for two different peaks. In Fig. 3 we illustrate how
using prominence instead of height to identify physical peaks can eliminate extraneous
peaks that are artifacts of the detector’s finite angular resolution. The pictured jet
has two distinct hard subjets separated by a single angular scale ∆R. Since one of
the subjets has its energy deposited in two neighboring calorimeter cells, the angular
structure function∆G(R) exhibits two distinct peaks in the neighborhood of R = ∆R.
Only one of the two peaks has a large prominence, and so using prominence to select
peaks in ∆G(R) ensures that only a single angular scale near R = ∆R is identified.

§Using the kernel K(x) reduces the noise in ∆G(R) but does not do so completely.
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Figure 6: Distributions for observables in the np = 3 bin with 500 GeV ≤ pT ≤ 600
GeV. Distributions for top jets (QCD jets) are shown in blue (red). Angular scales Ri∗ and
partial masses mi∗ are ordered so that R1∗ ≤ R2∗ ≤ R3∗. For QCD the Ri∗ distributions
are consistent with scale-invariant emission, while the mi∗ distributions peak towards small
partial masses. For tops the Ri∗ and mi∗ distributions are peaked at angular and mass
scales characteristic of top decay kinematics.

GeV. These predictions for the Ri∗ and mi∗ match up well with the distributions in
Fig. 6, although in practice the corresponding identifications only hold on the average.
Note that the kinematic constraints of the top quark decay imply strong correlations
between Ri∗ and mi∗ for each i. This is illustrated in Fig. 7, where R2∗ has been
plotted against m2∗ in the np = 3 bin. For QCD jets R2∗ and m2∗ are uncorrelated.

In contrast to top jets, QCD jets have no intrinsic scales. Since QCD is ap-
proximately scale invariant and the derivative in ∆G(R) is with respect to logR,
we expect the R∗ distributions to be approximately uniform. Imposing the ordering
R1∗ ≤ R2∗ ≤ R3∗ then has the consequence that the R1∗ distribution should peak at
R = 0, the R2∗ distribution should peak at intermediate R, and the R3∗ distribution
should peak towards large R. This is consistent with what is seen in Fig. 6, up to
edge effects at large R in the R3∗ distribution. The partial masses of QCD jets are
peaked towards small mi∗, as we expect given that the physics of mi∗ is qualitatively
similar to the physics of jet masses mJ .
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• Correlation of 
separation of 
subjets and their 
invariant mass

• Top: m ~ R
• QCD: m, R 
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Figure 7: Correlations between R2∗ and m2∗ in the np = 3 bin with 500 GeV ≤ pT ≤
600 GeV. For the top kinematic constraints imply strong correlations between R2∗ and
m2∗, while for QCD jets the two are uncorrelated. Correlations for top jets (QCD jets) are
depicted in blue (red).
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Figure 8: The jet mass mJ for tops (blue) and QCD (red) in the np = 3 bin with 500 GeV
≤ pT ≤ 600 GeV.
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• Comparison to other top taggers
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(c) 300–400 GeV
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(d) 500–600 GeV

Fig. 3. Mistag rate versus efficiency after optimisation for the studied top-taggers in linear scale (a) and logarithmic scale (b).
Tag rates were computed averaging over all pT subsamples (a,b) and for the subsample containing jet with pT range 300–400
GeV (c) and 500–600 GeV (d)

We finally consider a top-tagger that employs pruning
to groom the jets (described in detail in Section 3.3). For
the purposes of this study, we included an additional step:
To identify the W boson subjet, the final jet is unclustered
to three subjets (by undoing the last merging) and the
minimum-mass pairing is chosen to be the W boson, as in
the CMS tagger.

To generate the pruning tagger efficiency curves in
Fig. 3, the parameters zcut and Dcut are scanned over the
ranges 0.01–0.2 and (0.1–0.85)×(2m/pT )jet. We then scan
the cuts on the jet and W boson subjet masses, with the
only constraint being that the top jet mass is always re-
quired to be greater than 120 GeV. We define two working
points, that yield an average efficiency of 20% and 50%.
The tagger parameters of both working points are given
in Table 1. The tagging rates for signal and background
as functions of anti-kT jet pT are shown in Fig. 4. The tag
rates are relatively flat for pT ! 400 GeV, after a turn-on
for lower pT .

In general all grooming-based taggers that we tested
have a flatter efficiency above pT of 400 GeV than the

ungroomed approaches. This reflects the relative stabil-
ity of the groomed variables as a function of pT . Splitting
scales, in particular, are sensitive to the pT of the initial
jets, however groomed masses correspond closely to phys-
ical quantities and hence are Lorentz-boost invariant.

The overall mistag rates for the different taggers at
the different working points are summarised in Table 2.
For the 20% working point it is clear that the groom-
ing based taggers perform strongly, suppressing the back-
ground by a factor of 20–100. For the samples we chose,
the pruning approach performs best. The ungroomed tag-
ging approaches are more competitive at the 50% work-
ing point, which is often at the limit of the applicable
range for the grooming-based approaches. It can be seen
that the pruning-based approach actually performs worst
at this working point. This seems to be the reflection of
the fact that grooming approaches produce a narrow top
mass peak, typically containing around 60% of the signal
for top jets. To produce an overall efficiency of around
50% , in combination with the mjet > 120GeV require-
ment, we must then choose a large mass window. This

Our Tagger
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Figure 11: The performance of the top tagger as given by the HERWIG event samples.
The background efficiency vs. signal efficiency for our top tagger is compared to other
algorithms in the literature in (a). This figure is reproduced from [36] with the results
from our tagger added. Here the candidate jets have transverse momenta 500 GeV ≤ pT ≤
600 GeV. For Fig. (a) only, candidate jets have been clustered with the anti-kT algorithm
with R = 1.0, as was done in the BOOST study. As a consequence the performance in
(a) is better than in (b), where the large jet radius degrades top mass resolution. In (b)
the background efficiency is plotted as a function of pT for signal efficiencies of εS = 50%
(black), 40% (blue), 30% (green) and 20% (red). Efficiencies at a given pT0 are calculated
from a pT window of 100 GeV centered at pT0. Note that, as a consequence, each point is
not statistically independent. Error bands are statistical.

np = 1 mt min mt max Rmax
1∗ mmin

1∗ εS(%) εB(%)
300− 400 GeV 177 GeV 300 GeV 0.96 78 GeV 23.8 1.9
500− 600 GeV 175 GeV 300 GeV 0.57 74 GeV 27.0 2.6

np = 2 mt min Rmax
1∗ Rmax

2∗ mmin
1∗ mmin

2∗ εS(%) εB(%)
300− 400 GeV 157 GeV 0.85 1.59 30 GeV 77 GeV 57.2 11.4
500− 600 GeV 159 GeV 0.57 1.00 36 GeV 55 GeV 59.6 9.8

np = 3 mt min Rmax
1∗ Rmax

2∗ Rmax
3∗ mmin

2∗ mmin
3∗ εS(%) εB(%)

300− 400 GeV 102 GeV 0.81 1.03 2.11 26 GeV 79 GeV 82.9 15.9
500− 600 GeV 155 GeV 0.62 0.66 1.35 46 GeV 73 GeV 73.6 7.9

Table 1: Sample optimized cut parameters at a (total) signal efficiency of εS = 50% for two
different pT bins. In the rightmost column we show the signal and background efficiencies
obtained within each np bin taken separately; i.e. these numbers do not take into account
what fraction of candidate jets end up in each np bin. Signal efficiency increases substantially
with np.
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Figure 1. Comparison of N -subjettiness to other boosted top taggers using benchmark samples
from the BOOST2010 report [14]. These efficiency/mistag curves are taken from Ref. [14] and then
overlayed with our results from Fig. 9 (for a one-dimensional τ3/τ2 cut) and Fig. 12 (for a multivariate
τN method). Details about these curves are given in Sec. 4, and we will use a different range for the
vertical axis in subsequent figures to highlight the small mistag rate region. Except for the very high
efficiency region, N -subjettiness outperforms previous top tagging methods.

jets” from “QCD jets”. The experimental and theoretical progress in jet substructure has

been summarized in a report following the BOOST2010 workshop [14], where the various

tagging methods were roughly grouped as follows: algorithmic procedures to directly identify

subjets within a fat jet [15–21]; jet shape techniques to measure the energy flow in a jet

[22–25]; and grooming methods to improve jet mass resolution by reducing jet contamination

[26–30]. There has also been work on template and matrix element methods [31, 32].

Recently, we introduced a new method to tag boosted hadronic objects using a jet shape

called N -subjettiness [33]. Denoted by τN and adapted from the event shape N -jettiness

[34], N -subjettiness measures the degree to which radiation within a jet is aligned along N

candidate subjet axes. As a jet shape, N -subjettiness is interesting in its own right, since

it is a calculable property of jets that generalizes the notion of jet angularities [22, 35, 36].

As a boosted object tagger, N -subjettiness exhibits a number of advantages, combining the

flexibility of jet shape techniques with the tagging performance of algorithmic procedures.

As a proof of concept, we found in Ref. [33] that a simple one-dimensional cut on the ratio

τ3/τ2 is particularly effective for identifying boosted hadronic tops. An alternative version

of N -subjettiness defined in the jet rest frame was introduced by Kim in Ref. [37] and ap-

plied to boosted Higgs searches. Recently, N -subjettiness has been applied to boosted ditau

resonances [38] and technipions [39].

In this paper, we will show how the tagging performance of N -subjettiness can be im-

proved through minimization, focusing on the case of boosted tops. As originally defined in

Ref. [33], N -subjettiness required an external algorithm to determine the N candidate subjet

axes within a jet, as it relied on axes from the exclusive kT clustering algorithm [40, 41] to
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